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We provide a new characterization of both belief update and belief revision in terms of a Kripke-
Lewis semantics. We consider frames consisting of a set of states, a Kripke belief relation and a 
Lewis selection function. Adding a valuation to a frame yields a model. Given a model and a state, 
we identify the initial belief set 𝐾 with the set of formulas that are believed at that state and we 
identify either the updated belief set 𝐾 ⋄𝜙 or the revised belief set 𝐾 ∗ 𝜙 (prompted by the input 
represented by formula 𝜙) as the set of formulas that are the consequent of conditionals that (1) are 
believed at that state and (2) have 𝜙 as antecedent. We show that this class of models characterizes 
both the Katsuno-Mendelzon (KM) belief update functions and the Alchourrón, Gärdenfors and 
Makinson (AGM) belief revision functions, in the following sense: (1) each model gives rise to 
a partial belief function that can be completed into a full KM/AGM update/revision function, 
and (2) for every KM/AGM update/revision function there is a model whose associated belief 
function coincides with it. The difference between update and revision can be reduced to two 
semantic properties that appear in a stronger form in revision relative to update, thus confirming 
the finding by Peppas et al. (1996) [30] that, “for a fixed theory 𝐾 , revising 𝐾 is much the same 
as updating 𝐾”. It is argued that the proposed semantic characterization brings into question 
the common interpretation of belief revision and update as change in beliefs in response to new 
information.

1. Introduction

The notion of belief revision is normally associated with the seminal contribution by Alchourrón, Gärdenfors and Makinson 
(henceforth AGM) in [1], while the notion of belief update was formally introduced by Katsuno and Mendelzon (henceforth KM) in 
[16]. The two notions are usually interpreted as instances of belief change in response to new information, when the information is taken 
to be entirely reliable. The difference between the two notions is usually explained in terms of the context in which belief change 
occurs: a static context in the case of revision, and a dynamic context in the case of update. In other words, revision occurs when the 
new information adds to, or corrects, the agent’s picture of an unchanged world, while update takes place when the agent is informed 
that the world itself might have changed.

Example 1. Consider an agent who is outside two rooms, A and B, that are not accessible from each other. In each room there is a 
light controlled by a motion-activated switch located in that room; once the light is on, it remains on until it is manually switched off. 
The agent initially believes that either the light is on in both rooms or the light is off in both rooms. As an example of a belief revision
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scenario, the agent – who is certain that nobody entered either room and thus no change has occurred – receives information (e.g. 
in the form of a snapshot taken by a camera located in Room B) that the light in Room B is on; in this case the AGM theory of belief 
revision requires the agent to now believe that the light is on, not only in Room B, but also in Room A. In a belief update scenario, the 
agent observes a robot enter Room B (so that, if the light was off, the motion-activated switch will have turned it on; the robot does 
not have the ability to manually turn the switch off); in this case the KM theory of belief update requires the agent to either believe 
that the light is on in both rooms or that the light is off in Room A and on in Room B. [These two scenarios are illustrated in Fig. 2
in Section 3.]

The common view is that revision and update capture two very different phenomena. However, Peppas et al. in [30] reconsidered 
the distinction between AGM belief revision and KM belief update by comparing the two processes in terms of their construction from 
pre-orders on possible worlds ([14,16]) and showed that, “essentially the results of revision can be duplicated using the construction 
for update”, thus concluding that, for a fixed initial belief set 𝐾 , “revising 𝐾 is much the same as updating 𝐾” ([30, p. 95]. We reach 
the same conclusion, but from a different route, by using a Kripke-Lewis semantics that establishes a connection between both revision 
and update, on one hand, and belief in conditionals, on the other hand. The significance of this alternative semantic characterization 
is discussed at length in Section 7, where it argued that it challenges the common interpretation of belief revision and update as belief 
change in response to new information.

We consider frames consisting of a set of states, a Kripke belief relation and a Lewis selection function. Adding a valuation to a 
frame yields a model. Given a model and a state 𝑠, we identify the initial belief set 𝐾 with the set of formulas that are believed at 
state 𝑠 and interpret the revised/updated belief set (prompted by the input represented by formula 𝜙) as the set of formulas that are 
the consequent of conditionals that are believed at state 𝑠 and have 𝜙 as antecedent; that is, 𝜓 ∈𝐾 ∗ 𝜙 (in the case of revision) or 
𝜓 ∈𝐾 ⋄ 𝜙 (in the case of update) if and only if at state 𝑠 the agent believes that “if 𝜙 is (or were) the case, then 𝜓 is (or would be) 
the case”. We show that this class of models characterizes both the AGM belief revision functions and the Katsuno-Mendelson (KM) 
belief update functions, in the following sense: (1) each model (in the appropriate class) gives rise to a partial belief function that can 
be completed into a full AGM/KM function, and (2) for every AGM/KM function there is a model (in the appropriate class) whose 
associated belief function coincides with it. The difference between revision and update boils down to two semantic properties that 
appear in a stronger form in revision and a weaker form in update.

Section 2 reviews and compares the notions of KM belief update function and AGM belief revision function. Section 3 introduces 
the semantics, Section 4 provides frame characterization results for the KM axioms and provides a characterization of belief update, 
while Section 5 does the same for AGM belief revision. Section 6 compares the two notions of update and revision in light of the 
results of the previous section. Section 7 contains a discussion of the significance of the proposed semantics and its relevance to 
Artificial Intelligence (AI). Section 8 reviews related literature and Section 9 concludes.

2. Belief change functions

In what follows we shall use the symbol ◦ for general belief change functions, the symbol ⋄ for belief update functions and the 
symbol ∗ for belief revision functions.

We consider a propositional logic based on a countable set At of atomic formulas. We denote by Φ0 the set of Boolean formulas 
constructed from At as follows: At ⊂Φ0 and if 𝜙, 𝜓 ∈Φ0 then ¬𝜙 and 𝜙 ∨𝜓 belong to Φ0. Define 𝜙 → 𝜓 , 𝜙 ∧𝜓 , and 𝜙 ↔ 𝜓 in terms 
of ¬ and ∨ in the usual way.

Given a subset 𝐾 of Φ0, its deductive closure 𝐶𝑛(𝐾) ⊆Φ0 is defined as follows: 𝜓 ∈ 𝐶𝑛(𝐾) if and only if there exist 𝜙1, ..., 𝜙𝑛 ∈𝐾

(with 𝑛 ≥ 0) such that (𝜙1 ∧ ... ∧𝜙𝑛) → 𝜓 is a tautology. A set 𝐾 ⊆Φ0 is consistent if 𝐶𝑛(𝐾) ≠Φ0; it is deductively closed if 𝐾 = 𝐶𝑛(𝐾). 
Given a set 𝐾 ⊆Φ0 and a formula 𝜙 ∈Φ0, the expansion of 𝐾 by 𝜙, denoted by 𝐾 + 𝜙, is defined as follows: 𝐾 + 𝜙 = 𝐶𝑛 (𝐾 ∪ {𝜙}).

Let 𝐾 ⊆ Φ0 be a consistent and deductively closed set representing the agent’s initial beliefs and let Ψ ⊆ Φ0 be a set of formulas 
representing possible inputs for belief change. A belief change function based on Ψ and 𝐾 is a function ◦ ∶ Ψ → 2Φ0 (where 2Φ0 denotes 
the set of subsets of Φ0) that associates with every formula 𝜙 ∈ Ψ a set 𝐾◦𝜙 ⊆Φ0, interpreted as the change in 𝐾 prompted by the 
input 𝜙. We follow the common practice of writing 𝐾◦𝜙 instead of ◦(𝜙) which has the advantage of making it clear that the belief 
change function refers to a given, fixed, 𝐾 . If Ψ ≠Φ0 then ◦ is called a partial belief change function, while if Ψ =Φ0 then ◦ is called 
a full-domain belief change function.2

Definition 1. Let ◦ ∶ Ψ → 2Φ0 be a partial belief change function (thus Ψ ⊊ Φ0) and ◦′ ∶ Φ0 → 2Φ0 a full-domain belief change 
function. We say that ◦′ is an extension of ◦ if ◦′ coincides with ◦ on the domain of ◦, that is, if, for every 𝜙 ∈Ψ, 𝐾◦′𝜙 =𝐾◦𝜙.

2.1. Belief update functions

We consider the notion of belief update introduced by Katsuno and Mendelzon in [16] and compare it to the notion of belief 
revision introduced by Alchourrón, Gärdenfors and Makinson in [1]. The formalism in the two theories is somewhat different. In [16]
a belief state is represented by a sentence in a finite propositional calculus and belief update is modeled as a function over formulas, 
while in [1] a belief state is represented (as we did above) as a set of formulas. Furthermore, while [16] allows for the possibility 
2

2 Partial belief functions were used in [3] to prove an equivalence between AGM belief revision and rational choice theory.
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of inconsistent initial beliefs, [1] take as starting point a consistent belief set. We follow closely the axiomatization of belief update 
proposed by [28,30], which makes update directly comparable to revision (note, however, that [28,30] only cover the case of “strong” 
update, where axioms (𝐾 ⋄ 6) and (𝐾 ⋄ 7) are replaced by (𝐾 ⋄ 9): see Definition 3 below).

Definition 2. A belief update function, based on the consistent and deductively closed set 𝐾 (representing the initial beliefs), is a full 
domain belief change function ⋄ ∶ Φ0 → 2Φ0 that satisfies the following axioms: ∀𝜙, 𝜓 ∈Φ0,

(𝐾 ⋄ 0) 𝐾 ⋄𝜙 = 𝐶𝑛(𝐾 ⋄𝜙).
(𝐾 ⋄ 1) 𝜙 ∈𝐾 ⋄ 𝜙.
(𝐾 ⋄ 2) If 𝜙 ∈𝐾 then 𝐾 ⋄ 𝜙 =𝐾 .
(𝐾 ⋄ 3) 𝐾 ⋄𝜙 =Φ0 if and only if 𝜙 is a contradiction.
(𝐾 ⋄ 4) If 𝜙 ↔ 𝜓 is a tautology then 𝐾 ⋄𝜙 =𝐾 ⋄𝜓 .
(𝐾 ⋄ 5) 𝐾 ⋄ (𝜙 ∧𝜓) ⊆ (𝐾 ⋄ 𝜙) +𝜓 .
(𝐾 ⋄ 6) If 𝜓 ∈𝐾◦𝜙 and 𝜙 ∈𝐾◦𝜓 then 𝐾◦𝜙 =𝐾◦𝜓 .
(𝐾 ⋄ 7) If 𝐾 is complete3 then (𝐾◦𝜙) ∩ (𝐾◦𝜓) ⊆ 𝐾◦(𝜙 ∨𝜓).

Remark 1. Katsuno and Mendelzon provide an additional axiom (they name it U8), which they call the “disjunction rule”. Peppas 
et al. ([30]) translate it into the following “axiom”, which makes use of maximally consistent sets of formulas (MCS).4 Given a set of 
formulas Γ, let �Γ� be the set of MCS that contain all the formulas in Γ.5 The additional axiom is the following:

If �𝐾� ≠∅ then 𝐾 ⋄ 𝜙 =
⋂

𝑤∈�𝐾�

𝑤 ⋄ 𝜙. (𝐾 ⋄ 8)

(𝐾 ⋄ 8) is of a different nature than the other axioms, since it applies the update operator not only to the initial belief set 𝐾 but also 
to the individual MCS contained in �𝐾�. It seems that (𝐾 ⋄ 8) is more of a condition on the interpretation or semantics than a real 
axiom; it is not needed in our framework since its role is directly captured by the semantics detailed in the next section. We shall 
return to (𝐾 ⋄ 8) in Section 4.

(𝐾 ⋄ 0) does not appear in the list of axioms provided by Katsuno and Mendelzon, since their formalism is not in terms of belief 
sets. For 𝑖 ∈ {1, 2, 4, 5, 6}, axiom (𝐾 ⋄ 𝑖) is a translation of Katsuno and Mendelzon’s axiom (𝑈𝑖) (for details see [28]). (𝐾 ⋄ 3) is the 
translation of Katsuno and Mendelzon’s axiom (𝑈3) when attention is restricted to the case where the initial belief set 𝐾 is consistent.6

The following Lemma will be used later.

Lemma 1. Assuming that 𝐾 is deductively closed (𝐾 = 𝐶𝑛(𝐾)), every belief update function satisfies the following axiom:

𝐾 ⋄ 𝜙 ⊆ 𝐾 + 𝜙.

Proof. Since 𝜙 ↔ ((𝜙 ∨ ¬𝜙) ∧ 𝜙) is a tautology, by (𝐾 ⋄ 4),

𝐾 ⋄ 𝜙 =𝐾 ⋄ ((𝜙 ∨ ¬𝜙) ∧ 𝜙). (1)

By (𝐾 ⋄ 5),

𝐾 ⋄ ((𝜙 ∨ ¬𝜙) ∧ 𝜙) ⊆ (𝐾 ⋄ (𝜙 ∨ ¬𝜙)) + 𝜙. (2)

Thus, by (1) and (2),

𝐾 ⋄ 𝜙 ⊆ (𝐾 ⋄ (𝜙 ∨ ¬𝜙)) +𝜙. (3)

Since, by hypothesis, 𝐾 is deductively closed and (𝜙 ∨ ¬𝜙) is a tautology, (𝜙 ∨ ¬𝜙) ∈ 𝐾 , so that, by (𝐾 ⋄ 2), 𝐾 ⋄ (𝜙 ∨ ¬𝜙) = 𝐾 . It 
follows from this and (3) that 𝐾 ⋄ 𝜙 ⊆ 𝐾 + 𝜙. □

3 A belief set 𝐾 is complete if, for every formula 𝜙 ∈Φ0 , either 𝜙 ∈𝐾 or ¬𝜙 ∈𝐾 ; if 𝐾 is consistent, then 𝐾 is complete if and only if �𝐾� is a singleton, where �𝐾�

denotes the set of maximally consistent sets of formulas (see Footnote 4) that contain all the formulas in 𝐾 .
4 A set of formulas Δ ⊂Φ0 is maximally consistent if it is consistent and, furthermore, ∀𝜙 ∈ Φ0 ⧵Δ, Δ ∪ {𝜙} is inconsistent. Every MCS is deductively closed and 

complete.
5 Thus, Δ ∈ �Γ� if and only if Γ ⊆Δ and Δ is a MCS.
6 Katsuno and Mendelzon allow for the possibility that the initial beliefs are inconsistent in which case (𝐾 ⋄ 3) would be stated as follows: 𝐾 ⋄ 𝜙 =Φ0 if and only 

if either 𝐾 is inconsistent or 𝜙 is inconsistent. In order to facilitate the comparison between belief update and belief revision, we follow [30] and restrict attention to 
the case where the initial belief set 𝐾 is consistent. It should be noted, however, that one important difference between update and revision is precisely that updating 
an inconsistent 𝐾 by a consistent formula 𝜙 yields the inconsistent belief set Φ0 , while revising an inconsistent 𝐾 by a consistent formula 𝜙 yields a consistent set 
3

(AGM axiom 𝐾 ∗ 5).
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Remark 2. KM show that their notion of belief update corresponds, semantically, to partial pre-orders on the set of maximally 
consistent sets of formulas (also called possible worlds); furthermore, they show that if their axioms (𝑈6) and (𝑈7) are replaced by 
a stronger axiom, which they call (𝑈9), then belief update corresponds semantically to total pre-orders on the set of possible worlds. 
The translation of their axiom (𝑈9) in our framework is the following axiom (see [30]):

If 𝐾 is complete and ¬𝜓 ∉𝐾 ⋄ 𝜙 then (𝐾 ⋄𝜙) +𝜓 ⊆ 𝐾 ⋄ (𝜙 ∧𝜓). (𝐾 ⋄ 9)

Definition 3. A strong belief update function is a full-domain belief change function ⋄ ∶ Φ0 → 2Φ0 that satisfies axioms (𝐾 ⋄ 0)-(𝐾 ⋄ 5)
and (𝐾 ⋄ 9).

2.2. Belief revision functions

In this section we consider the notion of belief revision proposed Alchourrón, Gärdenfors and Makinson in [1].

Definition 4. A belief revision function, based on the consistent and deductively closed set 𝐾 (representing the initial beliefs), is a full 
domain belief change function ∗∶ Φ0 → 2Φ0 that satisfies the following axioms: ∀𝜙, 𝜓 ∈Φ0,

(𝐾 ∗ 1) 𝐾 ∗ 𝜙 = 𝐶𝑛(𝐾 ∗ 𝜙).
(𝐾 ∗ 2) 𝜙 ∈𝐾 ∗ 𝜙.
(𝐾 ∗ 3) 𝐾 ∗ 𝜙 ⊆ 𝐾 +𝜙.
(𝐾 ∗ 4) if ¬𝜙 ∉𝐾 , then 𝐾 ⊆ 𝐾 ∗ 𝜙.
(𝐾 ∗ 5) 𝐾 ∗ 𝜙 =Φ0 if and only if 𝜙 is a contradiction.
(𝐾 ∗ 6) if 𝜙 ↔ 𝜓 is a tautology then 𝐾 ∗ 𝜙 =𝐾 ∗ 𝜓 .
(𝐾 ∗ 7) 𝐾 ∗ (𝜙 ∧𝜓) ⊆ (𝐾 ∗ 𝜙) +𝜓 .
(𝐾 ∗ 8) if ¬𝜓 ∉𝐾 ∗ 𝜙, then (𝐾 ∗ 𝜙) +𝜓 ⊆ 𝐾 ∗ (𝜙 ∧𝜓).

Remark 3. Note that

• (𝐾 ∗ 1) coincides with (𝐾 ⋄ 0),
• (𝐾 ∗ 2) coincides with (𝐾 ⋄ 1),
• (𝐾 ∗ 3) applies also to belief update (Lemma 1),
• (𝐾 ∗ 5) coincides with (𝐾 ⋄ 3),
• (𝐾 ∗ 6) coincides with (𝐾 ⋄ 4),
• (𝐾 ∗ 7) coincides with (𝐾 ⋄ 5)

On the other hand,

⊳ (𝐾 ∗ 4) is a stronger version of (𝐾 ⋄ 2), and
⊳ (𝐾 ∗ 8) is a stronger version of (𝐾 ⋄ 9).

Thus one can view the AGM theory of belief revision as a stronger version of the strong version of KM belief update, namely that 
which satisfies axioms (𝐾 ⋄ 0)-(𝐾 ⋄ 5) and (𝐾 ⋄ 9). At the semantic level, this point is discussed in detail in Section 5.

3. Semantics: Kripke-Lewis frames

In this section we introduce semantic structures and establish a correspondence between axioms of belief change functions and 
properties of the structures. A Kripke-Lewis structure consists of a belief relation, which represents initial beliefs, and a selection 
function, which represents conditionals. We begin with the formal definitions and then illustrate them graphically (Figs. 1 and 2).

Definition 5. A Kripke-Lewis frame is a triple ⟨𝑆,, 𝑓 ⟩ where

1. 𝑆 is a set of states; subsets of 𝑆 are called events.
2.  ⊆ 𝑆 × 𝑆 is a binary belief relation on 𝑆 which is serial: ∀𝑠 ∈ 𝑆, ∃𝑠′ ∈ 𝑆 , such that 𝑠𝑠′ (𝑠𝑠′ is an alternative notation for 

(𝑠, 𝑠′) ∈). We denote by (𝑠) the set of states that are reachable from 𝑠 by : (𝑠) = {𝑠′ ∈ 𝑆 ∶ 𝑠𝑠′}. (𝑠) is interpreted as the 
set of states that the agent considers doxastically possible at state 𝑠.

3. 𝑓 ∶ 𝑆×(2𝑆 ⧵∅) → 2𝑆 is a selection function that associates with every state-event pair (𝑠, 𝐸) (with 𝐸 ≠∅) a set of states 𝑓 (𝑠, 𝐸) ⊆ 𝑆 , 
such that

(3.1) 𝑓 (𝑠, 𝐸) ≠∅ (Consistency).
4

(3.2) 𝑓 (𝑠, 𝐸) ⊆ 𝐸 (Success).
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𝑠1

𝑠2

𝑠3

𝑠4

𝑎 ∧ ¬𝑏

𝑎 ∧ 𝑏

¬𝑎 ∧ ¬𝑏

¬𝑎 ∧ 𝑏

Fig. 1. The belief relation and valuation.

(3.3) if 𝑠 ∈𝐸 then 𝑠 ∈ 𝑓 (𝑠, 𝐸) (Weak Centering).

𝑓 (𝑠, 𝐸) is interpreted as the set of 𝐸-states that are closest (or most similar) to 𝑠 (an 𝐸-state is a state that belongs to 𝐸).
(3.1) says that there is at least one 𝐸-state that is closest to 𝑠 (note that, by hypothesis, 𝐸 ≠∅).
(3.2) is a coherence requirement: the states that are closest to 𝑠, conditional on 𝐸, are indeed 𝐸-states.
(3.3) says that if 𝑠 is an 𝐸-state then it is one of the closest 𝐸-states to itself.7

Adding a valuation to a frame yields a model. Thus a model is a tuple ⟨𝑆,, 𝑓 , 𝑉 ⟩ where ⟨𝑆,, 𝑓 ⟩ is a frame and 𝑉 ∶ At→ 2𝑆 is 
a valuation that assigns to every atomic formula 𝑝 ∈ At the set of states where 𝑝 is true. Given a model 𝑀 = ⟨𝑆,, 𝑓 , 𝑉 ⟩ define truth 
of a Boolean formula 𝜙 ∈Φ0 at a state 𝑠 ∈ 𝑆 in model 𝑀 , denoted by 𝑠 ⊧𝑀 𝜙, in the usual way:

Definition 6. Truth of a formula 𝜙 ∈Φ0 at a state 𝑠 is defined as follows:

1. if 𝑝 ∈ At then 𝑠 ⊧𝑀 𝑝 if and only if 𝑠 ∈ 𝑉 (𝑝),
2. 𝑠 ⊧𝑀 ¬𝜙 if and only if 𝑠 ̸⊧𝑀 𝜙,
3. 𝑠 ⊧𝑀 (𝜙 ∨𝜓) if and only if 𝑠 ⊧𝑀 𝜙 or 𝑠 ⊧𝑀 𝜓 (or both).

We denote by ‖𝜙‖𝑀 the truth set of formula 𝜙 in model 𝑀 : ‖𝜙‖𝑀 = {𝑠 ∈ 𝑆 ∶ 𝑠 ⊧𝑀 𝜙}.
Given a model 𝑀 = ⟨𝑆,, 𝑓 , 𝑉 ⟩ and a state 𝑠 ∈ 𝑆 , let 𝐾𝑠,𝑀 = {𝜙 ∈Φ0 ∶(𝑠) ⊆ ‖𝜙‖𝑀}; thus a Boolean formula 𝜙 belongs to 𝐾𝑠,𝑀

if and only if at state 𝑠 the agent believes 𝜙 (in the sense that 𝜙 is true at every state that the agent considers doxastically possible at 
state 𝑠). We identify 𝐾𝑠,𝑀 with the agent’s initial beliefs at state 𝑠. It is shown in Lemma 2 below that the set 𝐾𝑠,𝑀 ⊆Φ0 so defined is 
deductively closed and consistent.

Next, given a model 𝑀 = ⟨𝑆,, 𝑓 , 𝑉 ⟩ and a state 𝑠 ∈ 𝑆 , let Ψ𝑀 = {𝜙 ∈Φ0 ∶ ‖𝜙‖𝑀 ≠∅}8 and define the following partial belief 
change function ◦ ∶ Ψ𝑀 → 2Φ0 based on 𝐾𝑠,𝑀 :

𝜓 ∈𝐾𝑠,𝑀◦𝜙 if and only if ∀𝑠′ ∈(𝑠), 𝑓
(
𝑠′,‖𝜙‖𝑀

)
⊆ ‖𝜓‖𝑀. (RI)

Given the customary interpretation of selection functions in terms of conditionals,9 (RI) can be interpreted as stating that 𝜓 ∈𝐾𝑠,𝑀◦𝜙
if and only if at state 𝑠 the agent believes that “if 𝜙 is (were) the case then 𝜓 is (would be) the case”. ‘RI’ stand for ‘Ramsey 
Interpretation’.10

Example 2. We construct two models to illustrate the two scenarios of Example 1. In both models the set of states is 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4}, 
the set of atomic formulas is At = {𝑎, 𝑏}, where 𝑎 means that the light in Room A is on and 𝑏 means that the light in Room B is on, the 
valuation is 𝑉 (𝑎) = {𝑠1, 𝑠2} and 𝑉 (𝑏) = {𝑠2, 𝑠4}, and the belief relation is  = {(𝑠1, 𝑠2), (𝑠1, 𝑠3), (𝑠2, 𝑠2), (𝑠2, 𝑠3), (𝑠3, 𝑠2), (𝑠3, 𝑠3), (𝑠4, 𝑠2),
(𝑠4, 𝑠3)}. This is illustrated in Fig. 1, where the belief relation is shown as directed edges with the interpretation that 𝑠 → 𝑠′ if and 
only if 𝑠𝑠′ (that is, (𝑠, 𝑠′) ∈ ). Suppose that the actual state is 𝑠1; then at 𝑠1 the agent believes ((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ ¬𝑏)), that is, that 
either the light is on in both rooms or the light is off in both rooms.

7 A stronger property, called centering, requires that if 𝑠 ∈𝐸 then 𝑓 (𝑠, 𝐸) = {𝑠}. For our purposes this stronger property is not needed.
8 Since, in any given model there are formulas 𝜙 such that ‖𝜙‖𝑀 =∅ (at the very least all the contradictions), Ψ𝑀 is a proper subset of Φ0 .
9 The standard interpretation of the (possibly counterfactual) conditional ‘if 𝜙 then 𝜓 ’, usually denoted by 𝜙 > 𝜓 , is as follows: 𝜙 > 𝜓 is true at state 𝑠′ if and only 

if 𝜓 is true at all the 𝜙-states closest to 𝑠′ (a state is a 𝜙-state if 𝜙 is true at that state), that is, if and only if 𝑓 (𝑠′ , ‖𝜙‖) ⊆ ‖𝜓‖.
10 In the literature the expression ‘Ramsey Test’ is used to refer to the following passage from [31, p. 247]: “If two people are arguing “If 𝑝 will 𝑞?” and are both in 
5

doubt as to 𝑝, they are adding 𝑝 hypothetically to their stock of knowledge and arguing on that basis about 𝑞”.
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𝑠1

𝑠2

𝑠3

𝑠4

‖𝑏‖

‖𝑏‖

𝑎 ∧ ¬𝑏

𝑎 ∧ 𝑏

¬𝑎 ∧ ¬𝑏

¬𝑎 ∧ 𝑏

(a) The revision scenario

𝑠1

𝑠2

𝑠3

𝑠4

‖𝑏‖

‖𝑏‖

𝑎 ∧ ¬𝑏

𝑎 ∧ 𝑏

¬𝑎 ∧ ¬𝑏

¬𝑎 ∧ 𝑏

(b) The update scenario

Fig. 2. Two different selection functions added to the common core shown in Fig. 1.

The two models differ in the selection function as illustrated in Fig. 2, where, given two states 𝑠 and 𝑠′ and an event 𝐸 ⊆ 𝑆 , there 
is a dashed directed edge from 𝑠 to 𝑠′ labeled ‘E’ if and only if 𝑠′ ∈ 𝑓 (𝑠, 𝐸). In particular, we focus on the event ‖𝑏‖ = {𝑠2, 𝑠4}

Model 1 [The revision scenario, represented in Panel (a) of Fig. 2]. In this model, conditional on 𝑏 the closest state to 𝑠2 is 𝑠2 itself 
and the closest state to 𝑠3 is also 𝑠2, that is, 𝑓 (𝑠2, ‖𝑏‖) = 𝑓 (𝑠3, ‖𝑏‖) = {𝑠2}. Thus at state 𝑠1 the agent believes the conditional ‘if 𝑏 is 
the case then (𝑎 ∧ 𝑏) is the case’, that is, if the light is on in Room B then the light is on in both rooms.

Model 2 [The update scenario, represented in Panel (b) of Fig. 2]. In this model, conditional on 𝑏 the closest state to 𝑠2 is 𝑠2 itself 
and the closest state to 𝑠3 is 𝑠4, that is, 𝑓 (𝑠2, ‖𝑏‖) = {𝑠2} and 𝑓 (𝑠3, ‖𝑏‖) = {𝑠4}. Thus at state 𝑠1 the agent believes the conditional ‘if 
𝑏 is the case then ((𝑎 ∧ 𝑏) ∨ (¬𝑎 ∧ 𝑏)) is the case’, that is, if the light is on in Room B then either the light is on in both rooms or it is 
on only in Room B.

It is possible that, in a given model 𝑀 , 𝑠′ ∈(𝑠) and 𝐾𝑠,𝑀 ≠𝐾𝑠′ ,𝑀 , that is, it is possible that the agent’s initial beliefs at state 𝑠 are 
different from the agent’s beliefs at a state 𝑠′ that is doxastically accessible from 𝑠. Such a phenomenon can be ruled out by imposing 
two additional properties on : transitivity (if 𝑠′ ∈(𝑠) then (𝑠′) ⊆(𝑠)) and euclideanness (if 𝑠′ ∈(𝑠) then (𝑠) ⊆(𝑠′)).11 Since 
none of the results proved below require these two additional properties of , we did not incorporate them in Definition 5. Note also 
that we did not assume reflexivity of  ( is reflexive if, ∀𝑠 ∈ 𝑆, 𝑠 ∈(𝑠)). Thus, we allow for the possibility of false beliefs (that is, 
it is possible in a model to have, at some state 𝑠 and for some formula 𝜙, (𝑠) ⊆ ‖𝜙‖𝑀 and also 𝑠 ∉ ‖𝜙‖𝑀 ).12

Lemma 2. Let 𝐹 = ⟨𝑆,, 𝑓 ⟩ be a frame, 𝑀 a model based on 𝐹 , 𝑠 ∈ 𝑆 a state, and Ψ𝑀 = {𝜙 ∈Φ0 ∶ ‖𝜙‖𝑀 ≠∅}. Let 𝐾𝑠,𝑀 = {𝜓 ∈Φ0 ∶
(𝑠) ⊆ ‖𝜓‖𝑀} be the initial beliefs at state 𝑠 and, for every 𝜙 ∈ Ψ𝑀 , let 𝐾𝑠,𝑀◦𝜙 ⊆Φ0 be the new beliefs (in response to input 𝜙) defined 
by (RI). Then

(A) the set 𝐾𝑠,𝑀 is consistent and deductively closed, and

(B) the set 𝐾𝑠,𝑀◦𝜙 is consistent and deductively closed.

Proof. To simplify the notation, we omit the subscript 𝑀 referring to the given model, that is, we write 𝐾𝑠 instead of 𝐾𝑠,𝑀 and ‖𝜙‖
instead of ‖𝜙‖𝑀 .

(A) First we show that 𝐾𝑠 is deductively closed, that is, 𝐾𝑠 = 𝐶𝑛(𝐾𝑠). If 𝜓 ∈𝐾𝑠 then 𝜓 ∈ 𝐶𝑛(𝐾𝑠), because 𝜓 → 𝜓 is a tautology; thus 
𝐾𝑠 ⊆ 𝐶𝑛(𝐾𝑠). To show that 𝐶𝑛(𝐾𝑠) ⊆ 𝐾𝑠, let 𝜓 ∈ 𝐶𝑛(𝐾𝑠), that is, there exist 𝜙1, ..., 𝜙𝑛 ∈𝐾𝑠 (𝑛 ≥ 0) such that (𝜙1 ∧ ... ∧𝜙𝑛) → 𝜓

is a tautology. Since ‖𝜙1 ∧ ... ∧ 𝜙𝑛‖ = ‖𝜙1‖ ∩ ... ∩ ‖𝜙𝑛‖ and, for all 𝑖 = 1, ..., 𝑛, 𝜙𝑖 ∈ 𝐾𝑠 (that is, (𝑠) ⊆ ‖𝜙𝑖‖), it follows that 
(𝑠) ⊆ ‖𝜙1 ∧ ... ∧ 𝜙𝑛‖. Since (𝜙1 ∧ ... ∧ 𝜙𝑛) → 𝜓 is a tautology, ‖(𝜙1 ∧ ... ∧ 𝜙𝑛) → 𝜓‖ = 𝑆 , that is, ‖𝜙1 ∧ ... ∧ 𝜙𝑛‖ ⊆ ‖𝜓‖. Thus 
(𝑠) ⊆ ‖𝜓‖, that is, 𝜓 ∈𝐾𝑠.

Next we show that 𝐾𝑠 is consistent, that is, 𝐶𝑛(𝐾𝑠) ≠Φ0. Let 𝑝 ∈ At be an atomic formula. Then ‖𝑝 ∧ ¬𝑝‖ =∅. By seriality 
of , (𝑠) ≠∅ so that (𝑠) ⊈ ‖𝑝 ∧ ¬𝑝‖, that is, (𝑝 ∧ ¬𝑝) ∉𝐾𝑠 and hence, since 𝐾𝑠 = 𝐶𝑛(𝐾𝑠), (𝑝 ∧ ¬𝑝) ∉ 𝐶𝑛(𝐾𝑠).

(B) First we show that 𝐾𝑠◦𝜙 is deductively closed, that is, 𝐾𝑠◦𝜙 = 𝐶𝑛 
(
𝐾𝑠◦𝜙

)
. The inclusion 𝐾𝑠◦𝜙 ⊆ 𝐶𝑛 

(
𝐾𝑠◦𝜙

)
follows from the 

fact that, for every 𝜓 ∈ 𝐾𝑠◦𝜙, 𝜓 → 𝜓 is a tautology. Next we show that 𝐶𝑛 
(
𝐾𝑠◦𝜙

)
⊆ 𝐾𝑠◦𝜙. Since, by hypothesis, ‖𝜙‖ ≠ ∅, 

11 These two properties are satisfied by the belief relation illustrated in Fig. 1.
12 For example, in the model shown in Fig. 1, at state 𝑠1 the agent has false beliefs: he believes that either the light is on in both rooms or that the light is off in both 
6

rooms, but – as a matter of fact – at state 𝑠1 the light is on in Room A and off in Room B.
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𝑓 (𝑠′, ‖𝜙‖) is defined for every 𝑠′ ∈ (𝑠). Fix an arbitrary 𝜓 ∈ 𝐶𝑛 
(
𝐾𝑠◦𝜙

)
; then there exist 𝜙1, ..., 𝜙𝑛 ∈ 𝐾𝑠◦𝜙 (𝑛 ≥ 0) such that 

(𝜙1 ∧ ... ∧𝜙𝑛) → 𝜓 is a tautology, so that ‖(𝜙1 ∧ ... ∧𝜙𝑛) → 𝜓‖ = 𝑆 , that is, ‖𝜙1 ∧ ... ∧𝜙𝑛‖ ⊆ ‖𝜓‖. Fix an arbitrary 𝑠′ ∈(𝑠) and 
an arbitrary 𝑖 = 1, ..., 𝑛. Then, since 𝜙𝑖 ∈𝐾𝑠◦𝜙, by (RI) 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜙𝑖‖. Hence 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜙1‖ ∩ ... ∩ ‖𝜙𝑛‖ = ‖𝜙1 ∧ ... ∧𝜙𝑛‖. 
Since ‖𝜙1 ∧ ... ∧ 𝜙𝑛‖ ⊆ ‖𝜓‖ it follows that 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖. Thus, since 𝑠′ ∈(𝑠) was chosen arbitrarily, 𝜓 ∈𝐾𝑠◦𝜙.

Next we show that 𝐾𝑠◦𝜙 is consistent, that is, 𝐶𝑛(𝐾𝑠◦𝜙) ≠Φ0. Let 𝑝 ∈ At be an atomic formula. Then ‖𝑝 ∧¬𝑝‖ =∅. Since, by 
hypothesis, ‖𝜙‖ ≠∅, by Property (3.1) of the definition of frame (Definition 5) 𝑓 (𝑠′, ‖𝜙‖) ≠∅, for every 𝑠′ ∈(𝑠) (recall that, by 
seriality of , (𝑠) ≠∅). Thus 𝑓 (𝑠′, ‖𝜙‖) ⊈ ‖𝑝 ∧¬𝑝‖ so that (𝑝 ∧¬𝑝) ∉𝐾𝑠◦𝜙. Hence, since (as shown above) 𝐾𝑠◦𝜙 = 𝐶𝑛 

(
𝐾𝑠◦𝜙

)
, 

(𝑝 ∧ ¬𝑝) ∉ 𝐶𝑛 
(
𝐾𝑠◦𝜙

)
so that 𝐶𝑛 

(
𝐾𝑠◦𝜙

)
≠Φ0. □

In what follows, when stating an axiom for a belief change function, we implicitly assume that it applies to every formula in its 
domain. For example, the axiom 𝜙 ∈𝐾◦𝜙 asserts that, for all 𝜙 in the domain of ◦, 𝜙 ∈𝐾◦𝜙.

Definition 7. An axiom is valid on a frame 𝐹 if, for every model based on that frame and for every state 𝑠 in that model, the partial 
belief change function defined by (RI) satisfies the axiom. An axiom is valid on a set of frames  if it is valid on every frame 𝐹 ∈  .

Proposition 1. The following axioms are valid on the set of all frames (as defined in Definition 5):

1. 𝐾◦𝜙 ⊆ 𝐾 + 𝜙. (∗ 3)

2. 𝜙 ∈𝐾◦𝜙. (⋄1∕ ∗ 2)

3. if 𝜙↔ 𝜓 is a tautology, then 𝐾◦𝜙 =𝐾◦𝜓. (⋄4∕ ∗ 6)

Proof. Let 𝐹 be a frame, 𝑀 a model based on 𝐹 and 𝑠 ∈ 𝑆 a state in that model. Let Ψ𝑀 = {𝜙 ∈Φ0 ∶ ‖𝜙‖𝑀 ≠∅}, 𝐾𝑠,𝑀 = {𝜙 ∈Φ0 ∶
(𝑠) ⊆ ‖𝜙‖𝑀} and, for every 𝜙 ∈ Ψ𝑀 , let 𝐾𝑠,𝑀◦𝜙 be the partial belief change function defined by (RI). As before, in what follows 
we simplify the notation by omitting the subscript 𝑀 referring to the given model.

1. Let 𝜙 ∈ Ψ0 be in the domain of ◦ (that is, ‖𝜙‖ ≠∅) and fix an arbitrary 𝜓 ∈𝐾𝑠◦𝜙. Then, by (RI), ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖. 
Thus, since ‖𝜓‖ ⊆ ‖¬𝜙‖ ∪ ‖𝜓‖ = ‖𝜙 → 𝜓‖ we have that

∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,‖𝜙‖) ⊆ ‖𝜙→ 𝜓‖. (4)

We need to show that 𝜓 ∈ 𝐾𝑠 + 𝜙 = 𝐶𝑛(𝐾𝑠 ∪ {𝜙}), that is – since, by (A) of Lemma 2, 𝐾𝑠 = 𝐶𝑛(𝐾𝑠) – that (𝜙 → 𝜓) ∈ 𝐾𝑠, i.e. 
(𝑠) ⊆ ‖𝜙 → 𝜓‖. Fix an arbitrary 𝑠′ ∈ (𝑠). If 𝑠′ ∉ ‖𝜙‖ then 𝑠′ ∈ ‖¬𝜙‖ ⊆ ‖¬𝜙‖ ∪ ‖𝜓‖ = ‖𝜙 → 𝜓‖. If 𝑠′ ∈ ‖𝜙‖, then by Property 
(3.2) of the definition of frame (Definition 5), 𝑠′ ∈ 𝑓 (𝑠′, ‖𝜙‖), so that, by (4), 𝑠′ ∈ ‖𝜙 → 𝜓‖.

2. Fix an arbitrary 𝜙 ∈Φ0 such that ‖𝜙‖ ≠∅ and an arbitrary 𝑠′ ∈(𝑠). By Property (3.2) of the definition of frame (Definition 5), 
𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜙‖. Hence, by (RI), 𝜙 ∈𝐾◦𝜙.

3. Let 𝜙, 𝜓 ∈ Φ0 be such that ‖𝜙‖ ≠ ∅ and ‖𝜓‖ ≠ ∅. If 𝜙 ↔ 𝜓 is a tautology then ‖𝜙 ↔ 𝜓‖ = 𝑆 , that is, ‖𝜙‖ = ‖𝜓‖, so that, for 
every 𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙‖) = 𝑓 (𝑠′, ‖𝜓‖). Hence, for every 𝜒 ∈Ψ, 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜒‖ if and only if 𝑓 (𝑠′, ‖𝜓‖) ⊆ ‖𝜒‖, that is, by (RI), 
𝜒 ∈𝐾◦𝜙 if and only if 𝜒 ∈𝐾◦𝜓 . □

4. Frame correspondence. Part 1: update

A stronger notion than validity is that of frame correspondence. The following definition mimics the notion of frame correspon-
dence in modal logic.

Definition 8. We say that an axiom 𝐴 of belief change functions is characterized by or corresponds to a property 𝑃 of frames if the 
following is true:

(1) axiom 𝐴 is valid on the class of frames that satisfy property 𝑃 , and
(2) if a frame does not satisfy property 𝑃 then axiom 𝐴 is not valid on that frame, that is, there is a model based on that frame and 

a state in that model where the partial belief change function defined by (RI) violates axiom 𝐴.

Proposition 2. The following axiom:

if 𝜙 ∈𝐾 then 𝐾◦𝜙 =𝐾 (⋄2)

is characterized by the following property of frames: ∀𝑠 ∈ 𝑆, ∀𝐸 ⊆ 𝑆 ,
7

if (𝑠) ⊆ 𝐸 then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,𝐸) ⊆(𝑠). (𝑃⋄2)
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Proof. (A) Fix a frame that satisfies property (𝑃⋄2), an arbitrary model 𝑀 based on it and an arbitrary state 𝑠 ∈ 𝑆 . As before, we 
simplify the notation and omit the subscript 𝑀 referring to the given model. Let 𝜙 ∈ Φ0 be such that 𝜙 ∈ 𝐾𝑠, that is, (𝑠) ⊆ ‖𝜙‖
(note that, by seriality of , it follows that ‖𝜙‖ ≠∅ so that 𝑓 (𝑠′, ‖𝜙‖) is defined for every 𝑠′).

First we show that 𝐾𝑠 ⊆ 𝐾𝑠◦𝜙. Let 𝜓 ∈𝐾𝑠. Then (𝑠) ⊆ ‖𝜓‖. By property (𝑃⋄2) (with 𝐸 = ‖𝜙‖), for every 𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆
(𝑠) and thus 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖, so that, by (RI), 𝜓 ∈𝐾𝑠◦𝜙.

Conversely, suppose that 𝜓 ∈ 𝐾𝑠◦𝜙, that is, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖, so that 
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,‖𝜙‖) ⊆ ‖𝜓‖. Since (𝑠) ⊆ ‖𝜙‖, for 

every 𝑠′ ∈(𝑠), 𝑠′ ∈ ‖𝜙‖ and thus, by Property (3.3) of Definition 5 (Weak Centering), {𝑠′} ⊆ 𝑓 (𝑠′, ‖𝜙‖). Hence (𝑠) =
⋃

𝑠′∈(𝑠)
{𝑠′} ⊆⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,‖𝜙‖) ⊆ ‖𝜓‖; it follows from this and the definition of 𝐾𝑠 that 𝜓 ∈𝐾𝑠.

(B) Fix a frame that violates property (𝑃⋄2). Then there exist two states 𝑠, 𝑠′ ∈ 𝑆 and an event 𝐸 ⊆ 𝑆 such that (a) (𝑠) ⊆ 𝐸, (b) 
𝑠′ ∈ (𝑠) and (c) 𝑓 (𝑠′, 𝐸) ⊈ (𝑠). Let 𝑝, 𝑞 ∈ At be atomic formulas and construct a model where ‖𝑝‖ = 𝐸 and ‖𝑞‖ = (𝑠). Since 
(𝑠) ⊆ ‖𝑞‖, 𝑞 ∈𝐾𝑠. Since 𝑓 (𝑠′, 𝐸) ⊈(𝑠), 𝑓 (𝑠′, ‖𝑝‖) ⊈ ‖𝑞‖ and thus, since 𝑠′ ∈(𝑠), by (RI) 𝑞 ∉𝐾𝑠◦𝑝 so that 𝐾𝑠◦𝑝 ≠𝐾𝑠. □

Proposition 3. The following axiom:

𝐾◦(𝜙 ∧𝜓) ⊆ (𝐾◦𝜙) +𝜓 (⋄5∕ ∗ 7)

is characterized by the following property of frames: ∀𝑠 ∈ 𝑆, ∀𝐸, 𝐹 , 𝐺 ∈ 2𝑆 , with 𝐸 ∩ 𝐹 ≠∅,

if, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,𝐸 ∩ 𝐹 ) ⊆ 𝐺,

then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,𝐸) ∩ 𝐹 ⊆ 𝐺.
(𝑃⋄5∕∗7)

Proof. (A) Fix a frame that satisfies property (𝑃⋄5∕∗7), an arbitrary model 𝑀 based on it and an arbitrary state 𝑠 ∈ 𝑆 and let ◦ be 
the belief change function defined by (RI). Let 𝜙, 𝜓 ∈ Φ0 be such that 𝜙 ∧ 𝜓 is in the domain of ◦, that is, ‖𝜙 ∧ 𝜓‖ ≠ ∅ (so that, 
since ‖𝜙 ∧ 𝜓‖ = ‖𝜙‖ ∩ ‖𝜓‖, also 𝜙 and 𝜓 are in the domain of ◦). We want to show that 𝐾𝑠◦(𝜙 ∧ 𝜓) ⊆ (𝐾𝑠◦𝜙) + 𝜓 (recall that 
(𝐾𝑠◦𝜙) +𝜓 = 𝐶𝑛 

(
(𝐾𝑠◦𝜙) ∪ {𝜓}

)
. By (A) of Lemma 2, 𝐾𝑠◦𝜙 is deductively closed, so that, ∀𝜒 ∈Φ0,

𝜒 ∈ 𝐶𝑛
(
(𝐾𝑠◦𝜙) ∪ {𝜓}

)
if and only if (𝜓 → 𝜒) ∈𝐾𝑠◦𝜙

if and only if, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,‖𝜙‖) ⊆ ‖𝜓 → 𝜒‖ = ‖¬𝜓‖ ∪ ‖𝜒‖
= (𝑆 ⧵ ‖𝜓‖) ∪ ‖𝜒‖. (5)

First note that

𝑓 (𝑠′,‖𝜙‖) ⊆ (𝑆 ⧵ ‖𝜓‖) ∪ ‖𝜒‖ if and only if 𝑓 (𝑠′,‖𝜙‖) ∩ ‖𝜓‖ ⊆ ‖𝜒‖. (6)

Fix an arbitrary 𝜒 ∈ 𝐾𝑠◦(𝜙 ∧ 𝜓). Then, by (RI), ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, ‖𝜙‖ ∩ ‖𝜓‖) ⊆ ‖𝜒‖. By Property (𝑃⋄5∕∗7) and by (6), ∀𝑠′ ∈
(𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ (𝑆 ⧵ ‖𝜓‖) ∪ ‖𝜒‖ = ‖𝜓 → 𝜒‖ and thus, by (5), 𝜒 ∈ 𝐶𝑛 

(
(𝐾𝑠◦𝜙) ∪ {𝜓}

)
.

(B) Fix a frame that violates property (𝑃⋄5∕∗7). Then there exist two states 𝑠, ̂𝑠 ∈ 𝑆 and three events 𝐸, 𝐹 and 𝐺, with 𝐸 ∩𝐹 ≠∅, such 
that (a) ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸∩𝐹 ) ⊆ 𝐺, (b) 𝑠̂ ∈(𝑠) and (c) 𝑓 (𝑠̂, 𝐸) ∩𝐹 ⊈ 𝐺, that is, by (6), 𝑓 (𝑠̂, 𝐸) ⊈ (𝑆 ⧵𝐹 ) ∪𝐺. Let 𝑝, 𝑞, 𝑟 ∈ At be atomic 
formulas and construct a model where ‖𝑝‖ = 𝐸, ‖𝑞‖ = 𝐹 and ‖𝑟‖ =𝐺. Then, by (a), 𝑟 ∈𝐾𝑠◦(𝑝 ∧ 𝑞) and, by (c), 𝑓 (𝑠̂, ‖𝑝‖) ⊈ ‖𝑞 → 𝑟‖, 
so that, by (b) and (RI), (𝑞 → 𝑟) ∉𝐾𝑠◦𝑝 and thus, by (5), 𝑟 ∉ 𝐶𝑛 

(
(𝐾𝑠◦𝑝) ∪ {𝑞}

)
. □

Remark 4. A stronger property than (𝑃⋄5∕∗7) is the following:

∀𝑠 ∈ 𝑆,∀𝐸,𝐹 ∈ 2𝑆 ,∀𝑠′ ∈(𝑠),
𝑓 (𝑠′,𝐸) ∩ 𝐹 ⊆ 𝑓 (𝑠′,𝐸 ∩ 𝐹 ). (𝑃 ′

⋄5∕∗7)

To see that (𝑃 ′
⋄5∕∗7) implies (𝑃⋄5∕∗7), let 𝐺 ⊆ 𝑆 be such that ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, 𝐸 ∩ 𝐹 ) ⊆ 𝐺. By (𝑃 ′

⋄5∕∗7), ∀𝑠
′ ∈ (𝑠), 𝑓 (𝑠′, 𝐸) ∩ 𝐹 ⊆

𝑓 (𝑠′, 𝐸 ∩ 𝐹 ), so that 𝑓 (𝑠′, 𝐸) ∩ 𝐹 ⊆ 𝐺. On the other hand, (𝑃⋄5∕∗7) does not imply (𝑃 ′
⋄5∕∗7), as the following example shows: 𝑆 =

{𝑠0, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5}, (𝑠0) = {𝑠1, 𝑠2}, 𝐸 = {𝑠3, 𝑠4, 𝑠5}, 𝐹 = 𝑓 (𝑠1, 𝐸) = {𝑠3, 𝑠4}, 𝑓 (𝑠1, 𝐸 ∩ 𝐹 ) = {𝑠3}, 𝑓 (𝑠2, 𝐸) = 𝑓 (𝑠2, 𝐸 ∩ 𝐹 ) = {𝑠4}. 
Then 𝑓 (𝑠1, 𝐸 ∩𝐹 ) ∪ 𝑓 (𝑠2, 𝐸 ∩𝐹 ) = {𝑠3, 𝑠4} so that any 𝐺 ⊆ 𝑆 that contains 𝑓 (𝑠1, 𝐸 ∩𝐹 ) ∪ 𝑓 (𝑠2, 𝐸 ∩𝐹 ) must be a superset of {𝑠3, 𝑠4}
and we do have that both 𝑓 (𝑠1, 𝐸) ∩ 𝐹 ⊆ 𝐺 and 𝑓 (𝑠2, 𝐸) ∩ 𝐹 ⊆ 𝐺 are satisfied, while {𝑠3, 𝑠4} = 𝑓 (𝑠1, 𝐸) ∩ 𝐹 ⊈ 𝑓 (𝑠1, 𝐸 ∩ 𝐹 ) = {𝑠3}.

From Proposition 3 and Remark 4 we get the following corollary.

Corollary 1. Axiom (⋄5∕ ∗ 7) is valid on the set of frames that satisfy Property (𝑃 ′
⋄5∕∗7).

Proposition 4. The following axiom:

if 𝜓 ∈𝐾◦𝜙 and 𝜙 ∈𝐾◦𝜓 then 𝐾◦𝜙 =𝐾◦𝜓 (⋄6)
8

is characterized by the following property of frames: ∀𝑠 ∈ 𝑆, ∀𝐸, 𝐹 ∈ 2𝑆 ⧵∅,
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if, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,𝐸) ⊆ 𝐹 and 𝑓 (𝑠′, 𝐹 ) ⊆ 𝐸

then
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,𝐸) =

⋃
𝑠′∈(𝑠)

𝑓 (𝑠′, 𝐹 ). (𝑃⋄6)

Proof. Fix a frame that satisfies property (𝑃⋄6), an arbitrary model 𝑀 based on it and an arbitrary state 𝑠 ∈ 𝑆 and let ◦ be the belief 
change function defined by (RI). Let 𝜙, 𝜓 ∈ Φ0 be in the domain of ◦ (that is, ‖𝜙‖ ≠ ∅ and ‖𝜓‖ ≠ ∅) and suppose that 𝜓 ∈ 𝐾𝑠◦𝜙
and 𝜙 ∈𝐾𝑠◦𝜓 . Then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖ and 𝑓 (𝑠′, ‖𝜓‖) ⊆ ‖𝜙‖ and thus, by Property (𝑃⋄6),⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,‖𝜙‖) = ⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,‖𝜓‖) (7)

It follows from (7) that, for every 𝜒 ∈Φ0, 𝜒 ∈𝐾𝑠◦𝜙 if and only if 𝜒 ∈𝐾𝑠◦𝜓 .13

Conversely, fix a frame that violates property (𝑃⋄6). Then there exist 𝑠 ∈ 𝑆 and 𝐸, 𝐹 ∈ 2𝑆 ⧵∅ such that,

∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,𝐸) ⊆ 𝐹 and 𝑓 (𝑠′, 𝐹 ) ⊆ 𝐸

and
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,𝐸) ≠

⋃
𝑠′∈(𝑠)

𝑓 (𝑠′, 𝐹 ). (8)

Thus either 
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,𝐸) ⊈

⋃
𝑠′∈(𝑠)

𝑓 (𝑠′, 𝐹 ) or 
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′, 𝐹 ) ⊈

⋃
𝑠′∈(𝑠)

𝑓 (𝑠′,𝐸). Suppose first that 
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,𝐸) ⊈

⋃
𝑠′∈(𝑠)

𝑓 (𝑠′, 𝐹 ). 

Then there must be a 𝑠̂ ∈(𝑠) such that

𝑓 (𝑠̂,𝐸) ⊈
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′, 𝐹 ). (9)

Let 𝑝, 𝑞, 𝑟 ∈ At be atomic sentences and construct a model based on this frame where ‖𝑝‖ =𝐸, ‖𝑞‖ = 𝐹 and ‖𝑟‖ = ⋃
𝑠′∈(𝑠)

𝑓 (𝑠′, 𝐹 ). By 

(8), ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, ‖𝑝‖) ⊆ ‖𝑞‖ and 𝑓 (𝑠′, ‖𝑞‖) ⊆ ‖𝑝‖, so that, by (RI), 𝑞 ∈ 𝐾◦𝑝 and 𝑝 ∈ 𝐾◦𝑞. Next we show that 𝐾◦𝑝 ≠ 𝐾◦𝑞, thus 
obtaining a violation of axiom (⋄6). By (9), 𝑓 (𝑠̂, ‖𝑝‖) ⊈ ‖𝑟‖ and thus, by (RI), 𝑟 ∉𝐾◦𝑝. On the other hand, ∀𝑠′′ ∈(𝑠), 𝑓 (𝑠′′, ‖𝑞‖) ⊆⋃
𝑠′∈(𝑠)

𝑓 (𝑠′,‖𝑞‖) = ‖𝑟‖ and thus, by (RI), 𝑟 ∈ 𝐾◦𝑞. Hence 𝐾◦𝑝 ≠ 𝐾◦𝑞. The case where 
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′, 𝐹 ) ⊈

⋃
𝑠′∈(𝑠)

𝑓 (𝑠′,𝐸) is handled 

similarly, by constructing a model where ‖𝑝‖ = 𝐸, ‖𝑞‖ = 𝐹 and ‖𝑟‖ = ⋃
𝑠′∈(𝑠)

𝑓 (𝑠′,𝐸). □

Axiom (𝐾 ⋄7) is different from the other axioms of belief update, because it involves the clause “𝐾 is complete”. In our framework, 
completeness of a belief set 𝐾𝑠 is a property pertaining to a model, not a property of frames.14 As noted above, a consistent belief 
set 𝐾 is complete if it corresponds to a single MCS (or possible world), that is, if �𝐾� is a singleton. Thus updating a complete and 
consistent 𝐾 means updating a single possible world. This property can be captured in a frame by having (𝑠) be a singleton. This is 
the motivation for the following result.

Define a state 𝑠 in a frame to be focused if (𝑠) is a singleton. Note that, in any model, if 𝑠 is a focused state then the belief set 𝐾𝑠

is complete.15

Proposition 5. Let ⋄7 be the class of frames that satisfy the following property: ∀𝑠, 𝑠′ ∈ 𝑆 ,

if (𝑠) = {𝑠′} then, ∀𝐸,𝐹 ∈ 2𝑆, 𝑓 (𝑠′,𝐸 ∪ 𝐹 ) ⊆ 𝑓 (𝑠′,𝐸) ∪ 𝑓 (𝑠′, 𝐹 ). (𝑃⋄7)

Then the following axiom

if 𝐾 is complete then (𝐾◦𝜙) ∩ (𝐾◦𝜓) ⊆ 𝐾◦(𝜙 ∨𝜓) (⋄7)

is valid at every focused state of every model based on a frame in ⋄7 and, conversely, if a frame is not in ⋄7 then the axiom is not valid on 
it.

Proof. Fix a frame that satisfies property (𝑃⋄7), an arbitrary model 𝑀 based on it and an arbitrary focused state 𝑠 ∈ 𝑆 and let ◦ be 
the belief change function based on 𝐾𝑠 defined by (RI). Let 𝑠′ ∈ 𝑆 be such that (𝑠) = {𝑠′}. Let 𝜙, 𝜓 ∈Φ0 be in the domain of ◦ and 
fix an arbitrary 𝜒 ∈ (𝐾𝑠◦𝜙) ∩ (𝐾𝑠◦𝜓). Then, by (RI), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜒‖ and 𝑓 (𝑠′, ‖𝜓‖) ⊆ ‖𝜒‖ and thus, by Property (𝑃⋄7) and the fact 
that ‖𝜙‖ ∪ ‖𝜓‖ = ‖𝜙 ∨𝜓‖, 𝑓 (𝑠′, ‖𝜙 ∨𝜓‖) ⊆ ‖𝜒‖, that is, by (RI), 𝜒 ∈𝐾𝑠◦(𝜙 ∨𝜓).

13 In fact, 𝜒 ∈ 𝐾𝑠◦𝜙 if and only if, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜒‖ which implies that ⋃
𝑠′∈(𝑠)

𝑓 (𝑠′ ,‖𝜙‖) ⊆ ‖𝜒‖, so that, by (7), ⋃
𝑠′∈(𝑠)

𝑓 (𝑠′ ,‖𝜓‖) ⊆ ‖𝜒‖, which implies 
that, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′ , ‖𝜓‖) ⊆ ‖𝜒‖, so that, by (RI), 𝜒 ∈𝐾𝑠◦𝜓 . Similarly for the case where 𝜒 ∈𝐾𝑠◦𝜓 .
14 For example, consider a frame where for some state 𝑠, (𝑠) = {𝑠1 , 𝑠2}. A model based on this frame where, for every atomic sentence 𝑝 ∈ At, 𝑠1 ⊧ 𝑝 if and only if 
𝑠2 ⊧ 𝑝 is such that 𝐾𝑠 is complete. On the other hand, a different model where, for some 𝑝 ∈ At, 𝑠1 ⊧ 𝑝 and 𝑠2 ⊧ ¬𝑝, is such that 𝐾𝑠 is not complete (because 𝑝 ∉𝐾𝑠

and ¬𝑝 ∉𝐾𝑠).
15 Fix an arbitrary model and a state 𝑠 and let 𝐾𝑠 the belief set at 𝑠. If (𝑠) = {𝑠′} then, ∀𝜙 ∈ Φ0 , either 𝑠′ ∈ ‖𝜙‖, in which case, by definition of 𝐾𝑠 , 𝜙 ∈ 𝐾𝑠 , or 
9

𝑠′ ∉ ‖𝜙‖ (that is, 𝑠′ ∈ ‖¬𝜙‖) and thus ¬𝜙 ∈𝐾𝑠 .
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Conversely, fix a frame that violates property (𝑃⋄7). Then there exist 𝑠, 𝑠′ ∈ 𝑆 and 𝐸, 𝐹 ∈ 2𝑆 such that

(𝑎) (𝑠) = {𝑠′}, and

(𝑏) 𝑓 (𝑠′,𝐸 ∪ 𝐹 ) ⊈ 𝑓 (𝑠′,𝐸) ∪ 𝑓 (𝑠′, 𝐹 ).
(10)

Let 𝑝, 𝑞, 𝑟 ∈ At be atomic formulas and construct a model where ‖𝑝‖ = 𝐸, ‖𝑞‖ = 𝐹 and ‖𝑟‖ = 𝑓 (𝑠′, 𝐸) ∪ 𝑓 (𝑠′, 𝐹 ). Then, by (10) (since ‖𝑝‖ ∪‖𝑞‖ = ‖𝑝 ∨𝑞‖), 𝑓 (𝑠′, ‖𝑝 ∨𝑞‖) ⊈ ‖𝑟‖ and thus, by (RI), 𝑟 ∉𝐾◦(𝑝 ∨𝑞). On the other hand, since 𝑓 (𝑠′, ‖𝑝‖) ⊆ 𝑓 (𝑠′, ‖𝑝‖) ∪𝑓 (𝑠′, ‖𝑞‖) =‖𝑟‖ and 𝑓 (𝑠′, ‖𝑞‖) ⊆ (𝑓 (𝑠′, ‖𝑝‖) ∪ 𝑓 (𝑠′, ‖𝑞‖) = ‖𝑟‖, 𝑟 ∈ 𝐾◦𝑝 and 𝑟 ∈ 𝐾◦𝑞, yielding a violation of axiom (⋄7), since 𝐾𝑠 is complete 
because (𝑠) is a singleton. □

The following proposition provides a similar characterization of Axiom (𝐾 ⋄ 9).

Proposition 6. Let ⋄9 be the class of frames that satisfy the following property: ∀𝑠, 𝑠′ ∈ 𝑆 ,

if (𝑠) = {𝑠′} then, ∀𝐸,𝐹 ∈ 2𝑆 ,

if 𝑓 (𝑠′,𝐸) ∩ 𝐹 ≠∅ then, 𝑓 (𝑠′,𝐸 ∩ 𝐹 ) ⊆ 𝑓 (𝑠′,𝐸) ∩ 𝐹 .
(𝑃⋄9)

Then the following axiom

if 𝐾 is complete and ¬𝜓 ∉ (𝐾◦𝜙) then (𝐾◦𝜙) +𝜓 ⊆ 𝐾◦(𝜙 ∧𝜓) (⋄9)

is valid at every focused state of every model based on a frame in ⋄9 and, conversely, if a frame is not in ⋄9 then the axiom is not valid on 
it.

Proof. Fix a frame that satisfies Property (𝑃⋄9), an arbitrary model based on it, a focused state 𝑠, and let 𝑠′ ∈ 𝑆 be such that 
(𝑠) = {𝑠′}. Let 𝐾𝑠 the belief set at 𝑠 and ◦ be the belief change function (based on 𝐾𝑠) defined by (RI). Let 𝜙, 𝜓 ∈ Φ0 be two 
formulas such that 𝜙 ∧𝜓 is in the domain of ◦ (that is ‖𝜙 ∧𝜓‖ ≠∅, which implies that also ‖𝜙‖ ≠∅ and ‖𝜓‖ ≠∅) and suppose that 
¬𝜓 ∉𝐾𝑠◦𝜙, that is, 𝑓 (𝑠′, ‖𝜙‖) ∩ ‖𝜓‖ ≠∅. Then, by Property (𝑃⋄9) (and noting that ‖𝜙 ∧ 𝜓‖ = ‖𝜙‖ ∩ ‖𝜓‖),

𝑓 (𝑠′,‖𝜙 ∧𝜓‖) ⊆ 𝑓 (𝑠′,‖𝜙‖) ∩ ‖𝜓‖. (11)

We need to show that 𝐶𝑛((𝐾𝑠◦𝜙) ∪{𝜓}) ⊆ 𝐾𝑠◦(𝜙 ∧𝜓). Let 𝜒 ∈ 𝐶𝑛((𝐾𝑠◦𝜙) ∪{𝜓}); then, since, by (B) of Lemma 2, 𝐾𝑠◦𝜙 is deductively 
closed, (𝜓 → 𝜒) ∈𝐾𝑠◦𝜙, that is, 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓 → 𝜒‖ = (𝑆 ⧵ ‖𝜓‖) ∪ ‖𝜒‖, which is equivalent to

𝑓 (𝑠′,‖𝜙‖) ∩ ‖𝜓‖ ⊆ ‖𝜒‖. (12)

It follows from (11) and (12) that 𝑓 (𝑠′, ‖𝜙 ∧𝜓‖) ⊆ ‖𝜒‖ so that, by (RI) (since (𝑠) = {𝑠′}), 𝜒 ∈𝐾◦(𝜙 ∧𝜓).

Conversely, fix a frame that violates Property (𝑃⋄9). Then there exist 𝑠, 𝑠′ ∈ 𝑆 and 𝐸, 𝐹 ∈ 2𝑆 such that

(a) (𝑠) = {𝑠′}
(b) 𝑓 (𝑠′,𝐸) ∩ 𝐹 ≠∅,

(c) 𝑓 (𝑠′,𝐸 ∩ 𝐹 ) ⊈ 𝑓 (𝑠′,𝐸) ∩ 𝐹 .

(13)

Let 𝑝, 𝑞, 𝑟 ∈ At be atomic formulas and construct a model where ‖𝑝‖ = 𝐸, ‖𝑞‖ = 𝐹 and ‖𝑟‖ = 𝑓 (𝑠′, 𝐸) ∩ 𝐹 . Then, by (b) of (13), 
𝑓 (𝑠′, ‖𝑝‖) ∩ ‖𝑞‖ ≠∅ so that ¬𝑞 ∉𝐾𝑠◦𝑝. Furthermore, by (c) of (13), 𝑓 (𝑠′, ‖𝑝 ∧ 𝑞‖) ⊈ ‖𝑟‖ and thus 𝑟 ∉𝐾◦(𝑝 ∧ 𝑞). To obtain a violation 
of Axiom (⋄9) it only remains to show that 𝑟 ∈ 𝐶𝑛((𝐾◦𝑝) ∪{𝑞}), which is equivalent to (𝑞 → 𝑟) ∈𝐾◦𝑝 (since, by (B) of Lemma 2, 𝐾◦𝑝 is 
deductively closed); that is, we have to show that 𝑓 (𝑠′, ‖𝑝‖) ⊆ ‖𝑞 → 𝑟‖ = (𝑆 ⧵‖𝑞‖) ∪‖𝑟‖. But this is equivalent to 𝑓 (𝑠′, ‖𝑝‖) ∩‖𝑞‖ ≠∅, 
which is our hypothesis (namely, (b) of (13)). □

We now return to the observation made in Remark 1 about axiom (𝐾 ⋄ 8), which [30] propose as a translation of axiom (𝑈8) in 
[16] within the context of belief sets. Let 𝑊 denote the set of maximally consistent sets (MCS) of formulas in Φ0 . Recall that, given 
a set of formulas Γ ⊆Φ0, �Γ� denotes the set of MCS that contain all the formulas in Γ: �Γ� = {𝑤 ∈𝑊 ∶ ∀𝜙 ∈ Γ, 𝜙 ∈𝑤}. Recall also 
that (𝐾 ⋄ 8) is the following requirement: if �𝐾� ≠ ∅ then 𝐾 ⋄ 𝜙 =

⋂
𝑤∈�𝐾� (𝑤 ⋄ 𝜙). Since we restricted attention to the case where 

the initial belief set 𝐾 is consistent, the clause �𝐾� ≠∅ is superfluous. Thus “axiom” (𝐾 ⋄ 8) can be stated as:

𝐾 ⋄ 𝜙 =
⋂

𝑤∈�𝐾�

(𝑤 ⋄ 𝜙).

Consider the subclass of frames where 𝑆 =𝑊 . Given any such frame, a natural model based on it is one where, ∀𝑤 ∈𝑊 , ∀𝜙 ∈ Φ0, 
𝑤 ⊧ 𝜙 if and only if 𝜙 ∈ 𝑤, so that ‖𝜙‖ = �𝜙�. Thus the definition of the initial belief set 𝐾 at 𝑤 ∈ 𝑊 , namely 𝐾𝑤 = {𝜙 ∈ Φ0 ∶
(𝑤) ⊆ ‖𝜙‖ = �𝜙�}, implies that (𝑤) ⊆ �𝐾𝑤�. Furthermore, if either (𝑤) is finite or the set of atomic formulas At is finite, then 
�𝐾𝑤� ⊆(𝑤). Let us focus on this case, so that (𝑤) = �𝐾𝑤�. For 𝑤′ ∈𝑊 and 𝜙 ∈Φ0 define 𝑤′ ⋄𝜙 ⊆Φ0 as follows: ∀𝜓 ∈Φ0,
10

𝜓 ∈ (𝑤′ ⋄𝜙) if and only if 𝑓 (𝑤′, �𝜙�) ⊆ �𝜓�. (14)
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Then (since (𝑤) = �𝐾𝑤�)

𝐾𝑤 ⋄ 𝜙 =
⋂

𝑤′∈�𝐾𝑤�

(𝑤′ ⋄ 𝜙) (15)

which is exactly (𝐾 ⋄ 8).16

Definition 9. An update frame is a frame that (besides the properties of Definition 5) satisfies the properties of Propositions 2, 3, 4
and 5, namely:

(𝑃⋄2) if (𝑠) ⊆ 𝐸 then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸) ⊆(𝑠).
(𝑃⋄5∕∗7) if, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸 ∩ 𝐹 ) ⊆ 𝐺,

then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸) ∩ 𝐹 ⊆ 𝐺.
(𝑃⋄6) if, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸) ⊆ 𝐹 and 𝑓 (𝑠′, 𝐹 ) ⊆ 𝐸

then
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′,𝐸) =

⋃
𝑠′∈(𝑠)

𝑓 (𝑠′, 𝐹 ).

(𝑃⋄7) if (𝑠) = {𝑠′} then, ∀𝐸, 𝐹 ∈ 2𝑆 ,

𝑓 (𝑠′, 𝐸 ∪ 𝐹 ) ⊆ 𝑓 (𝑠′, 𝐸) ∪ 𝑓 (𝑠′, 𝐹 ).

We denote by ⋄ the class of such frames.

For every model based on a frame in ⋄ and for every state 𝑠 in that model, the belief change function (based on 𝐾𝑠 = {𝜙 ∈Φ0 ∶
(𝑠) ⊆ ‖𝜙‖}) defined by (RI) satisfies the following axioms for belief update:

1. (𝐾 ⋄ 0) (by (B) of Lemma 2),
2. (𝐾 ⋄ 1) (by (2) of Proposition 1),
3. (𝐾 ⋄ 2) (by Proposition 2),
4. (𝐾 ⋄ 4) (by (3) of Proposition 1),
5. (𝐾 ⋄ 5) (by Proposition 3),
6. (𝐾 ⋄ 6) (by Proposition 4),
7. (𝐾 ⋄ 7) (by Proposition 5).

The only remaining axiom is 𝐾 ⋄ 3 which says that 𝐾 ⋄ 𝜙 = Φ0 if and only if 𝜙 is a contradiction. When 𝜙 is a contradiction, then ‖𝜙‖ =∅ in every model and thus 𝐾◦𝜙 is not defined according to (RI). This is easily fixed by adding the stipulation that 𝐾◦𝜙 = Φ0
when 𝜙 is a contradiction. However, in a given model there may also be consistent formulas 𝜙 such that ‖𝜙‖ = ∅, so that - again -
𝐾◦𝜙 is not defined according to (RI). Thus the question arises as to whether any partial belief change function ◦ defined by (RI) can 
be extended to a full-domain belief update function ⋄ (Definition 2). Conversely, it is natural to ask whether any full-domain belief 
update function coincides with the belief change function defined by (RI) in some model. The following proposition answers both 
questions in the affirmative. Since the proof of Proposition 7 is rather lengthy it is relegated to the Appendix.

Proposition 7. The class ⋄ of update frames characterizes the set of full-domain belief update functions in the following sense:

(A) For every model based on a frame in ⋄ and for every state 𝑠 in that model, the belief change function ◦ (based on 𝐾𝑠 = {𝜙 ∈ Φ0 ∶
(𝑠) ⊆ ‖𝜙‖}) defined by (RI) can be extended to a full-domain belief update function ⋄ (Definition 2).

(B) Let 𝐾 ⊂Φ0 be a consistent and deductively closed set and let ⋄ ∶Φ0 → 2Φ0 be a belief update function based on 𝐾 (Definition 2). Then 
there exists a frame in ⋄, a model based on that frame and a state 𝑠 in that model such that (1) 𝐾 =𝐾𝑠 = {𝜙 ∈ Φ0 ∶ (𝑠) ⊆ ‖𝜙‖}
and (2) the partial belief change function ◦ (based on 𝐾𝑠) defined by (RI) is such that 𝐾𝑠◦𝜙 =𝐾𝑠 ⋄ 𝜙 for every consistent formula 𝜙.

Remark 5. As noted in Remark 2, in [16] Katsuno and Mendelzon also put forward a stronger notion of belief update, obtained by 
replacing (in our translation) axioms (𝐾 ⋄ 6) and (𝐾 ⋄ 7) with axiom (𝐾 ⋄ 9). Proposition 8 below shows that a result analogous to 
the characterization of Proposition 7 applies also to this stronger notion. Since the proof is very similar to the proof of Proposition 7
we omit it.

Definition 10. A strong update frame is a frame that (besides the properties of Definition 5) satisfies the following properties:

(𝑃⋄2) if (𝑠) ⊆ 𝐸 then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸) ⊆(𝑠).

16 Proof. First we show that 𝐾𝑤 ⋄𝜙 ⊆⋂
𝑤′∈(𝑤) (𝑤′ ⋄𝜙). Fix an arbitrary 𝜓 ∈𝐾𝑤 ⋄𝜙. Then, by (RI), ∀𝑤′ ∈(𝑤), 𝑓 (𝑤′, �𝜙�) ⊆ �𝜓�, that is, by (14), ∀𝑤′ ∈(𝑤), 𝜓 ∈

(𝑤′ ⋄ 𝜙) so that 𝜓 ∈
⋂

𝑤′∈(𝑤) (𝑤′ ⋄𝜙). Next we show that ⋂𝑤′∈(𝑤) (𝑤′ ⋄ 𝜙) ⊆ 𝐾𝑤 ⋄ 𝜙. Let 𝜓 ∈
⋂

𝑤′∈(𝑤) (𝑤′ ⋄𝜙). Then, ∀𝑤′ ∈ (𝑤), 𝜓 ∈ (𝑤′ ⋄ 𝜙), that is, by (14), 
11

∀𝑤′ ∈(𝑤), 𝑓 (𝑤′ , �𝜙�) ⊆ �𝜓� so that, by (RI), 𝜓 ∈𝐾𝑤 ⋄ 𝜙.
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(𝑃⋄5∕∗7) if, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸 ∩ 𝐹 ) ⊆ 𝐺,

then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸) ∩ 𝐹 ⊆ 𝐺.

(𝑃⋄9) if (𝑠) = {𝑠′} then, ∀𝐸, 𝐹 ∈ 2𝑆 , if 𝑓 (𝑠′, 𝐸) ∩ 𝐹 ≠∅
then, 𝑓 (𝑠′, 𝐸 ∩ 𝐹 ) ⊆ 𝑓 (𝑠′, 𝐸) ∩ 𝐹 .

We denote by ⋄⋄ the class of such frames.

Proposition 8. The class ⋄⋄ of strong update frames characterizes the set of strong belief update functions (Definition 3):

(A) For every model based on a frame in ⋄⋄ and for every state 𝑠 in that model, the belief change function ◦ (based on 𝐾𝑠 = {𝜙 ∈ Φ0 ∶
(𝑠) ⊆ ‖𝜙‖}) defined by (RI) can be extended to a full-domain belief update function ⋄ that satisfies axioms (𝐾 ⋄0)-(𝐾 ⋄5) and (𝐾 ⋄9).

(B) Let 𝐾 ⊂Φ0 be a consistent and deductively closed set and let ⋄ ∶ Φ0 → 2Φ0 be a belief update function based on 𝐾 that satisfies axioms 
(𝐾 ⋄ 0)-(𝐾 ⋄ 5) and (𝐾 ⋄ 9). Then there exists a frame in ⋄⋄, a model based on that frame and a state 𝑠 in that model such that (1) 
𝐾 =𝐾𝑠 = {𝜙 ∈Φ0 ∶(𝑠) ⊆ ‖𝜙‖} and (2) the partial belief change function ◦ (based on 𝐾𝑠) defined by (RI) is such that 𝐾𝑠◦𝜙 =𝐾𝑠 ⋄𝜙

for every consistent formula 𝜙.

5. Frame correspondence. Part 2: revision

As noted in Remark 3, axioms (𝐾 ∗ 4) and (𝐾 ∗ 8) can be viewed as the crucial axioms that distinguish AGM belief revision from the 
strong version of KM belief update. In this section we provide a semantic characterization of these two axioms and a characterization 
of AGM belief revision functions along the lines of that provided for belief update (Propositions 7 and 8), while in Section 6 we 
compare belief revision and belief update by focusing on the interpretation of the semantic properties corresponding to (𝐾 ∗ 4) and 
(𝐾 ∗ 8) in relation to the semantic properties corresponding to (𝐾 ⋄ 2) and (𝐾 ⋄ 9).

Proposition 9. The following axiom:

if ¬𝜙 ∉𝐾 then 𝐾 ⊆ 𝐾◦𝜙 (∗ 4)

is characterized by the following property of frames: ∀𝑠 ∈ 𝑆, ∀𝐸 ⊆ 𝑆 ,

if (𝑠) ∩𝐸 ≠∅ then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,𝐸) ⊆(𝑠) ∩𝐸. (𝑃∗4)

Proof. Fix a frame that satisfies Property (𝑃∗4), an arbitrary model based on it, a state 𝑠 and let 𝐾𝑠 the belief set at 𝑠 and ◦ be the 
belief change function (based on 𝐾𝑠) defined by (RI). Let 𝜙 ∈Φ0 be a formula in the domain of ◦ and suppose that ¬𝜙 ∉𝐾𝑠, that is, 
(𝑠) ⊈ ‖¬𝜙‖, i.e. (𝑠) ∩‖𝜙‖ ≠∅. We need to show that 𝐾𝑠 ⊆ 𝐾𝑠◦𝜙. Fix an arbitrary 𝜓 ∈𝐾𝑠; then (𝑠) ⊆ ‖𝜓‖. Since (𝑠) ∩‖𝜙‖ ≠∅, by 
Property (𝑃∗4) (with 𝐸 = ‖𝜙‖) ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆(𝑠) ∩‖𝜙‖. Thus (since (𝑠) ∩‖𝜙‖ ⊆(𝑠) ⊆ ‖𝜓‖), ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖, 
that is, 𝜓 ∈𝐾◦𝜙.

Conversely, consider a frame that violates Property (𝑃∗4). Then there exist 𝑠 ∈ 𝑆 and 𝐸 ⊆ 𝑆 such that (𝑠) ∩𝐸 ≠∅, 𝑠′ ∈(𝑠) and 
𝑓 (𝑠′, 𝐸) ⊈(𝑠) ∩𝐸. Let 𝑝, 𝑞 ∈ At and construct a model based on this frame where ‖𝑝‖ = 𝐸 and ‖𝑞‖ =(𝑠) ∩𝐸. Since 𝑠′ ∈(𝑠) and 
(𝑠) ∩ ‖𝑝‖ ≠∅, ¬𝑝 ∉𝐾𝑠. Since 𝑓 (𝑠′, ‖𝑝‖) ⊈(𝑠) ∩𝐸 = ‖𝑞‖,

𝑞 ∉𝐾𝑠◦𝑝. (16)

By (2) of Proposition 1, 𝑝 ∈𝐾◦𝑝. Thus, for every formula 𝜙, (𝑝 → 𝜙) ∈𝐾◦𝑝 if and only if 𝜙 ∈𝐾◦𝑝 (since, by (B) of Lemma 2, 𝐾◦𝑝
is deductively closed). Hence, by (16),

(𝑝→ 𝑞) ∉𝐾𝑠◦𝑝. (17)

Next we show that (𝑝 → 𝑞) ∈ 𝐾𝑠 so that 𝐾𝑠 ⊈ 𝐾𝑠◦𝑝, yielding a violation of axiom (∗ 4) (since ¬𝑝 ∉ 𝐾𝑠). We need to show that 
(𝑠) ⊆ ‖𝑝 → 𝑞‖ = ‖¬𝑝‖ ∪ ‖𝑞‖ = (𝑆 ⧵ ‖𝑝‖) ∪ ‖𝑞‖. First note that

(𝑠) = ((𝑠) ∩ (𝑆 ⧵𝐸)) ∪ ((𝑠) ∩𝐸). (18)

Since 𝐸 = ‖𝑝‖, 𝐵(𝑠) ∩ (𝑆 ⧵𝐸) = 𝐵(𝑠) ∩ ‖¬𝑝‖ ⊆ ‖¬𝑝‖ ⊆ ‖¬𝑝‖) ∪ ‖𝑞‖ = ‖𝑝 → 𝑞‖. Thus

𝐵(𝑠) ∩ (𝑆 ⧵𝐸) ⊆ ‖𝑝→ 𝑞‖. (19)

Since (𝑠) ∩𝐸 = ‖𝑞‖, (𝑠) ∩𝐸 ⊆ ‖¬𝑝‖ ∪ ‖𝑞‖ = ‖𝑝 → 𝑞‖. It follows from this, (19) and (18) that (𝑠) ⊆ ‖𝑝 → 𝑞‖. □

Proposition 10. The following axiom:

if ¬𝜓 ∉𝐾◦𝜙 then 𝐾◦𝜙+𝜓 ⊆ 𝐾◦(𝜙 ∧𝜓) (∗ 8)
12

is characterized by the following property of frames: ∀𝑠 ∈ 𝑆, ∀𝐸, 𝐹 ∈ 2𝑆 ,
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if ∃𝑠̂ ∈(𝑠) such that 𝑓 (𝑠̂,𝐸) ∩ 𝐹 ≠∅ then,

∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,𝐸 ∩ 𝐹 ) ⊆
⋃

𝑠′′∈(𝑠)

(
𝑓 (𝑠′′,𝐸) ∩ 𝐹

)
.

(𝑃∗8)

Proof. Fix a frame that satisfies Property (𝑃∗8), an arbitrary model based on it, a state 𝑠, and let 𝐾𝑠 the belief set at 𝑠 and ◦ be the 
belief change function (based on 𝐾𝑠) defined by (RI). Let 𝜙, 𝜓 ∈ Φ0 be two formulas such that 𝜙 ∧ 𝜓 is in the domain of ◦ (that is ‖𝜙 ∧𝜓‖ ≠∅, which implies that also ‖𝜙‖ ≠∅ and ‖𝜓‖ ≠∅) and suppose that ¬𝜓 ∉𝐾𝑠◦𝜙, that is, there exists an 𝑠̂ ∈(𝑠) such that 
𝑓 (𝑠̂, ‖𝜙‖) ∩ ‖𝜓‖ ≠∅. Then, by Property (𝑃∗8) (and noting that ‖𝜙 ∧ 𝜓‖ = ‖𝜙‖ ∩ ‖𝜓‖),

∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,‖𝜙 ∧𝜓‖) ⊆
⋃

𝑠′′∈(𝑠)

(
𝑓 (𝑠′′,‖𝜙‖) ∩ ‖𝜓‖) . (20)

We need to show that 𝐶𝑛((𝐾𝑠◦𝜙) ∪{𝜓}) ⊆ 𝐾𝑠◦(𝜙 ∧𝜓). Fix an arbitrary 𝜒 ∈ 𝐶𝑛((𝐾𝑠◦𝜙) ∪{𝜓}); then, since, by (B) of Lemma 2, 𝐾𝑠◦𝜙
is deductively closed, (𝜓 → 𝜒) ∈𝐾𝑠◦𝜙, that is,

∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,‖𝜙‖) ⊆ ‖𝜓 → 𝜒‖ = (𝑆 ⧵ ‖𝜓‖) ∪ ‖𝜒‖,
which is equivalent to

∀𝑠′ ∈(𝑠), 𝑓 (𝑠′,‖𝜙‖) ∩ ‖𝜓‖ ⊆ ‖𝜒‖,
so that ⋃

𝑠′∈(𝑠)

(
𝑓 (𝑠′,‖𝜙‖) ∩ ‖𝜓‖) ⊆ ‖𝜒‖. (21)

It follows from (20) and (21) that ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙 ∧𝜓‖) ⊆ ‖𝜒‖, that is, 𝜒 ∈𝐾◦(𝜙 ∧𝜓).

Conversely, fix a frame that violates Property (𝑃∗8). Then there exist 𝑠, 𝑠1, 𝑠2 ∈ 𝑆 and 𝐸, 𝐹 ∈ 2𝑆 such that

(a) 𝑠1 ∈(𝑠) and 𝑓 (𝑠1,𝐸) ∩ 𝐹 ≠∅,

(b) 𝑠2 ∈(𝑠) and 𝑓 (𝑠2,𝐸 ∩ 𝐹 ) ⊈
⋃

𝑠′∈(𝑠)

(
𝑓 (𝑠′,𝐸) ∩ 𝐹

)
.

(22)

Let 𝑝, 𝑞, 𝑟 ∈ At be atomic formulas and construct a model where ‖𝑝‖ = 𝐸, ‖𝑞‖ = 𝐹 and ‖𝑟‖ = ⋃
𝑠′∈(𝑠)

(
𝑓 (𝑠′,𝐸) ∩ 𝐹

)
. Then,

(A) by (a) of (22), ¬𝑞 ∉𝐾𝑠◦𝑝

(B) by (b) of (22), 𝑟 ∉𝐾◦(𝑝 ∧ 𝑞).
(23)

To obtain a violation of Axiom (∗ 8) it only remains to show that 𝑟 ∈ 𝐶𝑛((𝐾◦𝑝) ∪{𝑞}), which is equivalent to (since, by (B) of Lemma 2, 
𝐾◦𝑝 is deductively closed) (𝑞 → 𝑟) ∈ 𝐾◦𝑝; that is, we have to show that ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, ‖𝑝‖) ⊆ ‖𝑞 → 𝑟‖ = (𝑆 ⧵ ‖𝑞‖) ∪ ‖𝑟‖. Fix an 
arbitrary 𝑠′ ∈(𝑠). If 𝑓 (𝑠′, ‖𝑝‖) ∩‖𝑞‖ =∅ then 𝑓 (𝑠′, ‖𝑝‖) ⊆ (𝑆 ⧵‖𝑞‖) ⊆ (𝑆 ⧵‖𝑞‖) ∪‖𝑟‖. If 𝑓 (𝑠′, ‖𝑝‖) ∩‖𝑞‖ ≠∅ then 𝑓 (𝑠′, ‖𝑝‖) ∩‖𝑞‖ ⊆⋃
𝑠′′∈(𝑠)

(
𝑓 (𝑠′′,‖𝑝‖) ∩ ‖𝑞‖) = ‖𝑟‖; thus 𝑓 (𝑠′, ‖𝑝‖) ∩ ‖𝑞‖ ⊆ ‖𝑟‖ which is equivalent to 𝑓 (𝑠′, ‖𝑝‖) ⊆ (𝑆 ⧵ ‖𝑞‖) ∪ ‖𝑟‖. □

Definition 11. A revision frame is a frame that (besides the properties of Definition 5) satisfies the properties of Propositions 9 and 
10, namely:

(𝑃∗4) if (𝑠) ∩𝐸 ≠∅ then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸) ⊆(𝑠) ∩𝐸.
(𝑃∗8) if, ∃𝑠̂ ∈(𝑠) such that 𝑓 (𝑠̂, 𝐸) ∩ 𝐹 ≠∅ then,

∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸 ∩ 𝐹 ) ⊆
⋃

𝑠′′∈(𝑠)

(
𝑓 (𝑠′′,𝐸) ∩ 𝐹

)
.

We denote by ∗ the class of such frames.

The proof of the following proposition is given in the Appendix.

Proposition 11. The class ∗ of revision frames characterizes the set of AGM belief revision functions (Definition 4), in the following sense:

(A) For every model based on a frame in ∗ and for every state 𝑠 in that model, the belief change function ◦ (based on 𝐾𝑠 = {𝜙 ∈ Φ0 ∶
(𝑠) ⊆ ‖𝜙‖}) defined by (RI) can be extended to a full-domain belief revision function ∗ that satisfies the AGM axioms (𝐾 ∗ 1)-(𝐾 ∗ 8).

(B) Let 𝐾 ⊂ Φ0 be a consistent and deductively closed set and let ∗∶ Φ0 → 2Φ0 be a belief revision function based on 𝐾 that satisfies 
the AGM axioms (𝐾 ∗ 1)-(𝐾 ∗ 8). Then there exists a frame in ∗, a model based on that frame and a state 𝑠 in that model such 
that (1) 𝐾 = 𝐾𝑠 = {𝜙 ∈ Φ0 ∶ (𝑠) ⊆ ‖𝜙‖} and (2) the partial belief change function ◦ (based on 𝐾𝑠) defined by (RI) is such that 
13

𝐾𝑠◦𝜙 =𝐾𝑠 ∗ 𝜙 for every consistent formula 𝜙.
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6. Comparing KM update and AGM revision

As noted in Remark 3, AGM axiom (𝐾 ∗ 4) can be seen as a strengthening of KM axiom (𝐾 ⋄ 2). This is clear if we compare the 
corresponding semantic properties (Propositions 2 and 9):

(i) For (𝐾 ⋄ 2): if (𝑠) ⊆ 𝐸 then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸) ⊆(𝑠).
(ii) For (𝐾 ∗ 4): if (𝑠) ∩𝐸 ≠∅ then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸) ⊆(𝑠) ∩𝐸.

By definition of frame (Definition 5), since  is serial, (𝑠) ≠∅ and thus (𝑠) ⊆ 𝐸 implies that (𝑠) ∩𝐸 =(𝑠) ≠∅. Hence if (ii) is 
satisfied then so is (i). What (i) says is that if, initially, the agent believes event 𝐸 then, conditional on 𝐸, he continues to believe 
everything that he believed initially. On the other hand, (ii) says that if, among the states that the agent initially considered possible, 
there are states where event 𝐸 is true, then those states should be given priority when conditioning on 𝐸. In other words, when 
looking for 𝐸-states that are closest to a state that is initially considered possible, the agent should give priority to those states in his 
initial belief set that are already 𝐸-states, if there are any such states. We shall call this requirement Doxastic Priority 1 (DP1)17:

𝐸-states in (𝑠) are to be selected as nearer to states in (𝑠)
than any 𝐸-states outside of (𝑠). (DP1)

(DP1) is reminiscent of a principle put forward by Stalnaker [35] in his theory of context-dependent indicative conditionals: if an 
indicative conditional is being evaluated at a world in the context set, then the world selected must, if possible, be within the context 
set as well. In our semantic framework, the set (𝑠) can be viewed as playing a role similar to the role played by the context set in 
Stalnaker’s theory of indicative conditionals.

In Remark 3 it was also noted that axiom (𝐾 ∗ 8) can be seen as a strengthening of KM axiom (𝐾 ⋄ 9). Once again, this is clear if 
we compare the corresponding semantic properties (Propositions 6 and 10):

(I) For (𝐾 ⋄ 9): if (𝑠) = {𝑠′} then, ∀𝐸, 𝐹 ∈ 2𝑆 , if 𝑓 (𝑠′, 𝐸) ∩ 𝐹 ≠∅ then 𝑓 (𝑠′, 𝐸 ∩ 𝐹 ) ⊆ 𝑓 (𝑠′, 𝐸) ∩ 𝐹 .
(II) For (𝐾 ∗ 8): if ∃𝑠̂ ∈(𝑠) such that 𝑓 (𝑠̂, 𝐸) ∩ 𝐹 ≠∅ then, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, 𝐸 ∩ 𝐹 ) ⊆

⋃
𝑠′′∈(𝑠)

(
𝑓 (𝑠′′,𝐸) ∩ 𝐹

)
.

It is clear that if (𝑠) is a singleton then (II) reduces to (I). Property (II) plays a similar role to (DP1): it says that if there are 𝐸-states 
closest to states in (𝑠) which are also 𝐹 -states then the closest 𝐸-and-𝐹 -states to states in (𝑠) must be among those. We call this 
principle Doxastic Priority 2 (DP2):

When looking for 𝐸-and-𝐹 states outside of (𝑠), the
closest 𝐸-states that are also 𝐹 -states are to be selected
as nearer to (𝑠) than any 𝐸-states outside of (𝑠) that
are not also 𝐹 -states.

(DP2)

The examples given by Katsuno and Mendelzon in [16] show that (DP1) and (DP2) are not requirements that one would want to 
impose, in general, on a theory of belief updating. However, the fact remains that if one strengthens the definition of strong update 
frame (Definition 10) by replacing (𝑃⋄2) with the stronger (𝑃∗4) and (𝑃⋄9) with the stronger (𝑃∗8), then one obtains a revision frame 
(Definition 11); in other words, the set of revision frames is a subset of the set of strong update frames. This fact suggests that, as Peppas 
et al. point out in [30, p. 98] “revision functions are nothing but a special kind of update operator”; indeed, they prove (by making 
use of a different semantics from the one considered in this paper) that, given a consistent belief set 𝐾 , for every revision function ∗
there exists an update operator ⋄ such that 𝐾 ∗ 𝜙 =𝐾 ⋄ 𝜙, ∀𝜙 ∈Φ0 [30, Theorem 2, p. 98].

7. Discussion

As noted in the Introduction, the dominant interpretation of an input to both AGM revision and KM update is in terms of reliable 
new information, so that 𝐾 ∗ 𝜙 is interpreted as the revised belief set after the information represented by the formula 𝜙 has been made 
compatible with the initial belief set 𝐾 and, similarly, 𝐾 ⋄ 𝜙 is interpreted as the updated belief set after incorporating information 
𝜙. This interpretation is apparent in the way in which (in the context of belief revision) the Success Axiom (AGM axiom (𝐾 ∗ 2) and 
KM axiom (𝐾 ⋄ 1)) is described or criticized in the literature:

“The Success postulate says that the new information 𝜙 should always be included in the new belief set. [It] places enormous faith 
on the reliability of 𝜙. The new information is perceived to be so reliable that it prevails over all previous conflicting beliefs, no 
matter what these beliefs might be.” [29, p. 319]

“In AGM revision, new information has primacy. This is mirrored in the Success postulate for revision. At each stage the system 
has total trust in the input information, and previous beliefs are discarded whenever that is needed to consistently incorporate the 
14

17 This requirement is what leads to 𝑓 (𝑠3 , ‖𝑏‖) = {𝑠2} in the model of Panel (a) of Fig. 2.
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new information. This is an unrealistic feature since in real life, cognitive agents sometimes do not accept the new information 
that they receive.” [7, p. 65]

“A system obeying [the Success axiom] is totally trusting at each stage about the input information; it is willing to give up whatever 
elements of the background theory must be abandoned to render it consistent with the new information. Once this information has 
been incorporated, however, it is at once as susceptible to revision as anything else in the current theory. Such a rule of revision 
seems to place an inordinate value on novelty, and its behavior towards what it learns seems capricious.” [5, p. 251]

By contrast, in our Kripke-Lewis semantics, the Success axiom is entirely trivial, in that it merely requires the agent to believe that “if 𝜙
is (or were) the case then 𝜙 is (or would be) the case”, which is a natural consequence of any meaningful reading of such conditional; 
indeed, as shown in Proposition 1, no additional properties are required for the axiom 𝜙 ∈𝐾◦𝜙 to be valid on an arbitrary frame.

In this section we will argue that our proposed semantics provides an alternative interpretation of both revision and update in 
terms of supposition rather than information, and that supposition and information are conceptually very different.

7.1. Supposition versus information

There are many types of belief “change”:

1. The mental simulation of scenarios that are known to be contrary to actual reality. This type of belief change has been recently 
investigated under the name of “reality-oriented mental simulation” ([2]) or “pretense imagination” ([27]).

2. The reaction to information that is accepted as entirely reliable: as [36, p. 194] puts it, an “input proposition [that] represents an 
item of information that the subject takes himself to have come to know”.

3. The mental exercise of entertaining a supposition and examining its consequences.

Several authors have noted that there seems to be a significant difference between supposing that 𝜙 and learning that 𝜙:

“Merely suppositional change is essentially different from “genuine” change due to new information.” [32, p. 410]

“There seems to be a need to distinguish actual belief revision from belief revision that is merely hypothetical. [...] Ordinary 
theories of belief change do not seem suited to handle the sort of hypothetical belief change that goes on, for example, in debates 
where the participants agree, “for the sake of argument”, on a certain common ground on which possibilities can be explored and 
disagreements can be aired. One need not actually believe what one accepts in this way.” [34, p. 1]

“In none of these contexts is supposing that 𝜙 equivalent to believing that 𝜙... Changing full beliefs calls for some sort of accounting 
or justification. Supposition does not...” [20, p.5, emphasis added]

There is also empirical evidence that, even in the case where what is being supposed or learned is compatible with the initial beliefs, 
people treat supposition and information differently: [38] found “substantial differences between the conditional probability of an 
event A supposing an event B, compared to the probability of A after having learned B. Specifically, supposing B appears to have less 
impact on the credibility of A than learning that B is true.”

The following example illustrates the difference between supposition and information.

Example 3. From my interactions with my colleague Louis I have come to believe that he is shy and sociophobic; indeed, he has 
never attended any of the frequent social gatherings organized by members of the department. Yesterday there was a big party to 
which we were all invited (including Louis). I was not able to go and I believe that Louis did not go either – because I believe that 
he is sociophobic. On the supposition that he did go to the party, I believe that he would have been anxious and uncomfortable and 
would have left after a very short time – because I believe that he is sociophobic and this is how a sociophobic person would react. 
As Levi ([20], quoted above) notes, a supposition “for the sake of the argument” does not require an explanation or a justification; 
in particular, when I reason under the supposition that he was at the party, I am not compelled to change my basic belief that he is 
sociophobic. Indeed, “he was not at the party” and “if he was at the party then he was anxious” are an expression of the same belief, 
namely that he is sociophobic. There is no change in belief involved in the supposition that he was at the party. On the other hand, 
if I were to learn – that is, if I were reliably informed – that Louis was in fact at the party, then I would need to come up with some 
explanation (perhaps he is taking medication for his anxiety, or perhaps I was wrong in my belief that he is sociophobic) and in that 
case I might not believe that he would have been anxious and would have left after a very short time.

In terms of our semantics, consider a model and a state 𝑠 in that model where (𝑠) ⊆ ‖𝑝 ∧ ¬𝑞‖, where 𝑝 is the atomic formula 
‘Louis is sociophobic’ and 𝑞 is the atomic formula ‘Louis was at the party’; thus, I initially believe that Louis is sociophobic and was 
not at the party. Now consider any state 𝑠′ such that 𝑠𝑠′; then 𝑠′ ⊧ 𝑝 ∧ ¬𝑞, in particular, 𝑠′ is a state where Louis is sociophobic. If I 
have a strong belief that Louis is sociophobic, it seems natural that the closest states to 𝑠′ where Louis was at the party (the closest 
𝑞-states) are still states where Louis is sociophobic and at any such state Louis would be anxious and would leave after a very short 
time; hence my belief that if Louis was at the party then he would have been anxious and would have left early. On the other hand, 
if I were to learn that Louis was at the party, then my beliefs would change and my new beliefs would be represented by a new state 
15

𝑠̂ such that (𝑠̂) ⊆ ‖𝑞‖ and possibly even (𝑠̂) ⊆ ‖¬𝑝‖.
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Some authors have argued that the AGM axioms for belief revision are suitable for modeling suppositional beliefs but not for 
belief change in response to learning new information. For example, [20, p. 117] writes “the contribution of Alchourrón, Gärdenfors 
and Makinson is best seen as a contribution to an account of reasoning for the sake of the argument and not as an account of the 
logic of belief change”. If we interpret the sentence ‘on the supposition that 𝜙, the agent believes that 𝜓 ’ as ‘the agent believes that 
if 𝜙 is (or were) the case then 𝜓 is (or would be) the case’, then our semantics and characterization results (Propositions 7 and 11) 
show that both AGM belief revision and KM belief revision can be given a consistent interpretation in terms of supposition rather 
than information.

7.2. Relevance to AI

Belief change plays a crucial role in the field of artificial intelligence (AI),18 particularly in the following areas:

• Knowledge Representation (KR) and Knowledge Base (KB) systems. Knowledge bases need to be revised when new information is 
obtained. An important issue is how to resolve logical or semantic inconsistencies, in particular, how to update a database when 
new facts are introduced that are inconsistent with its previous contents.

• Dynamic Environments. An AI system deployed in a dynamic environment (such as autonomous vehicles, robotics, or real-time 
decision-making systems) must continuously update its model of (or beliefs about) the environment to adapt to perceived changes 
in the environment.

• Reasoning about Action. An important issue in AI is how to model the reasoning of an agent about the outcomes of the actions 
that the agent itself performs. This reasoning involves determining the new state of the world after performing an action and the 
corresponding change in the agent’s beliefs.

• Planning, in particular how to deal with plan failure. Failure typically occurs when the agent receives information that points to 
a mismatch between the expected and the perceived state of the world (for example, when the agent detects that an action which 
was intended to establish a precondition of a subsequent action in the same plan fails to do so). Plan failure requires that the 
initial beliefs and the plan itself be revised.

• Machine Learning. In machine learning, especially in online learning scenarios or reinforcement learning, belief change mecha-
nisms are needed to adjust models based on new data or experiences.

• Natural Language Processing. In natural language understanding tasks, belief revision helps in resolving ambiguities or contradic-
tions that arise from interpreting human language, thereby improving the accuracy of AI systems in understanding and responding 
to natural language queries.

It is clear that in all of these areas what is needed is a theory of belief change in response to new information. If Levi is right in claiming 
that AGM belief revision ought to be viewed as a theory of suppositional beliefs, rather than of belief change prompted by new 
information, then it seems that there is a need – at least in the context of AI – for a more suitable theory. Our analysis suggests that 
both belief revision and update can in fact be given a merely suppositional interpretation. The common distinction between update 
and revision in terms of a dynamic versus a static world is just an interpretation of the axioms: as lamented by several authors, there is 
nothing in the AGM or KM frameworks that directly captures the nature (dynamic or static) of the environment and the nature of the 
informational input. For example, [17, p. 2518] remarks that “nothing in the AGM theory of belief revision implies that we should 
restrict its application to static worlds” and [8, p.118] remark that “what is essential in belief revision is not that the world is static, 
but that the language used to describe the world is static”. Perhaps, as suggested in [17], a suitable theory of belief change ought to 
be based on a language containing time-stamped atomic formulas of the form 𝑝𝑡 , interpreted as ‘𝑝 is true at time 𝑡’, so that one can 
directly capture changes in the world over time (e.g. 𝑝𝑡 ∧¬𝑝𝑡+1) as well as be explicit about whether information pertains to the past 
or the present. A first step in this direction (for belief revision only) is taken in [8].

8. Related literature

The characterization results of Propositions 7 and 11 provide an interpretation of 𝜓 ∈𝐾 ⋄ 𝜙 in the KM framework (believing 𝜓
after updating by 𝜙) and 𝜓 ∈𝐾 ∗ 𝜙 in the AGM framework (believing 𝜓 after revising by 𝜙) in terms of believing the conditional “if 
𝜙 is, or were, the case, then 𝜓 is, or would be, the case”.

That the notion of belief update is closely related to conditionals has been pointed out before in the literature. Grahne ([13]
considers a modal logic containing two bi-modal operators: the conditional operator > and the update operator ⋄ (Grahne uses the 
symbol ◦ but for consistency with our previous notation we have changed it to ⋄). The proposed axioms involve only the conditional 
operator >, while the update operator enters via two rules of inference, which Grahne calls “Ramsey’s Rules” (RR):

𝜒 → (𝜙 > 𝜓)
(𝜒 ⋄ 𝜙)→ 𝜓

and
(𝜒 ⋄ 𝜙)→ 𝜓

𝜒 → (𝜙 > 𝜓)
. (RR)

Grahne ([13, p. 97] offers the following explanation for (RR).
16

18 For a historical account of the impact and role of AGM belief revision in AI see [4].
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The intuitive interpretation of (RR) is as follows. Let original belief state be 𝜒 and let 𝜙 > 𝜓 stand for ‘If 𝜙, then 𝜓 .’ If 𝜙 > 𝜓

is accepted in state 𝜒 it means that 𝜒 → (𝜙 > 𝜓) is a theorem. Now ‘the minimal change’ of 𝜒 ‘needed to accept’ 𝜙, which is 
represented by 𝜒 ⋄ 𝜙 ‘also requires accepting’ 𝜓 , since (𝜒 ⋄ 𝜙) → 𝜓 is a theorem, according to (RR).

He also notes that, without (RR), his logic coincides with Lewis’ logic VCU for counterfactuals ([21]). Grahne proves that his proposed 
logic is sound and complete with respect to the standard semantics based on possible worlds ([14,21]) and concludes that Gärdenfors’ 
Triviality Theorem (see below) applies only to revision operators, not to update operators.

Ryan and Schobbens ([33]) point out a link between the theory of updates, the theory of counterfactuals and classical modal 
logic: they show that update is a classical existential modality, counterfactual is a classical universal modality and the accessibility 
relations corresponding to these modalities are inverses of each other. They argue that the Ramsey Rule (see (R) below) is simply an 
axiomatisation of this inverse relationship.

In the belief revision literature, the attempt to relate belief revision to conditionals led to Gärdenfors’ Triviality Theorem ([9]). In 
his approach the Boolean propositional language Φ0 is extended to a modal language, call it Φ> , which includes conditionals of the 
form 𝜙 > 𝜓 (if 𝜙 were the case then 𝜓 would be the case). In this extended language, belief sets are allowed to contain conditionals 
and indeed it is postulated [9, p.84] that

(𝜙 > 𝜓) ∈𝐾 if and only if 𝜓 ∈𝐾 ∗ 𝜙, (R)

which is intended to capture the “Ramsey test” (see Footnote 10). Gärdenfors proved that if (R) is added to the AGM postulates for 
belief revision, only trivialized revision operators (or revision operators defined on a trivialized set of belief sets) are allowed.19 Note 
that Gärdenfors’ triviality result does not apply to our framework because – as in the original AGM theory – we restricted the analysis 
to a propositional language containing only Boolean formulas.

In a series of related papers, Giordano et al. ([10–12]) establish a connection between AGM belief revision and conditionals. They 
consider a modal language obtained by adding to a propositional logic the conditional operator >, with the usual interpretation of 
𝜙 > 𝜓 as “if 𝜙 were the case, then 𝜓 would be the case”. On the semantic side they consider a selection function 𝑓 that takes as input 
a possible world 𝑤 and a formula 𝜙 and returns as output a set 𝑓 (𝑤, 𝜙) of possible worlds. They do not postulate a belief relation, but 
instead they extract the initial beliefs from the selection function as follows: letting ⊤ denote any tautology, they define “𝜙 is initially 
believed” as 𝑓 (𝑤, ⊤) ⊆ ‖𝜙‖. They correspondingly define the relation 𝑅 ⊆ 𝑊 ×𝑊 as follows: (𝑤, 𝑤′) ∈𝑅 if and only if 𝑤′ ∈ 𝑓 (𝑤, ⊤)
and impose axioms in their logic that make 𝑅 reflexive and euclidean, that is, a partition, thus imposing the logic S5 on beliefs. They 
also impose the condition (which they call BEL) that a conditional 𝜙 > 𝜓 is true at world 𝑤 if and only if it is true at every 𝑤′ such 
that (𝑤, 𝑤′) ∈𝑅. They then prove the following representation result: (1) each AGM belief revision system corresponds to a model of 
their logic and (2) every model of their logic that satisfies a strong condition, which they call the “covering condition”, determines 
an AGM belief revision system. A model satisfies the covering condition if, for every consistent formula 𝜙, ‖𝜙‖ ≠ ∅. Translating 
their semantics into our framework would require us to define (𝑠) = 𝑓 (𝑠, 𝑆) and to impose the following restriction on the selection 
function: if 𝑠′ ∈ 𝑓 (𝑠, 𝑆) then, for every 𝐸 ⊆ 𝑆 , 𝑓 (𝑠′, 𝐸) = 𝑓 (𝑠, 𝐸). This approach leaves to be desired: first of all, it rules out incorrect 
beliefs and, secondly, it rules out the possibility that for 𝑠′, 𝑠′′ ∈ (𝑠) the closest 𝐸-states to 𝑠′ might be different from the closest 
𝐸-states to 𝑠′′. A distinguishing feature of our semantics is that it allows for “small” models where it is possible for a consistent 
formula 𝜙 to be such that ‖𝜙‖ = ∅. In order to prove their representation result, Giordano et al. rule this out via their “covering 
condition”. By contrast, we are able to allow for the possibility that, in a model, ‖𝜙‖ = ∅ even if 𝜙 is consistent, because we frame 
the analysis in terms of partial belief revision functions and formulate the characterization problem in terms of the existence of an 
AGM/KM extension of a given partial belief change function. It should also be noted that the analysis of Giordano et al. is restricted 
to belief revision and does not deal with belief update.

The semantics given in Section 3 – namely a Lewis selection function with the addition of a Kripke belief relation – was also 
implicitly considered in [18] who proposed a different interpretation of 𝜓 ∈𝐾 ∗ 𝜙:

Let 𝑤 be a possible world in which the agent’s actual belief set is 𝐾 . Now consider the set 𝑊 ′ of worlds 𝑤′ in which our agent 
believes 𝜙 [...] we can thus reformulate the semantics of the revision operator as follows: “𝜓 ∈ 𝐾 ∗ 𝜙” is true in 𝑤 if and only 
if all those worlds 𝑤′′ among the members of 𝑊 ′ that are maximally similar to 𝑤 in Lewis’ sense are worlds in which the agent 
believes 𝜓 . [...] a rational agent has a conditional belief in 𝜓 given 𝜙 if and only if: if she believed 𝜙, then she would believe 𝜓 . [18, 
p. 121]

Thus Leitgeb suggests a very different interpretation from ours. He argues that “there are two different types of beliefs of “conditional 
character”: beliefs in conditionals and conditional beliefs.” [18, p. 115]. We focused on the former while Leitgeb opted for the latter. 
Leitgeb offers several arguments in favor of his suggested interpretation, but does not establish an exact correspondence between 
AGM belief revision functions and the semantics he has in mind. Our objective is not to argue that our proposed interpretation is “the 
correct” one, but simply to show that it works, in the sense that it provides a semantic characterization, not only of KM belief update, 
but also of AGM belief revision that is different from the standard one based on plausibility pre-orders. Proposition 11 shows that, in 
the AGM theory, 𝜓 ∈𝐾 ∗ 𝜙 can be consistently interpreted as belief in the conditional “if 𝜙 is (were) the case, then 𝜓 is (would be) 
the case”.
17

19 Gärdenfors’ triviality result gave rise to a sizeable literature; see, for example, [19,22–24].
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A semantics consisting of a Stalnaker selection function20 augmented with a belief relation was considered recently by Günther 
and Sisti in [15] who dubbed it “Stalnaker’s Ramsey Test”. However, the focus of [15] is very different from ours: the authors do no 
establish a link to the AGM theory of belief revision and do not view the proposed semantics as an alternative characterization of 
AGM belief revision. The main purpose of [15] is to argue that the “Stalnaker Ramsey Test” provides an alternative way of capturing 
Ramsey’s inferential account, which was framed in terms of variable hypotheticals.21

The interpretation of both 𝜓 ∈ 𝐾 ⋄ 𝜙 (update) and 𝜓 ∈ 𝐾 ∗ 𝜙 (revision) suggested in this paper as belief in the conditional “if 
𝜙 is (were) the case, then 𝜓 is (would be) the case” does not make a distinction between indicative and subjunctive conditionals. 
The view that a closest-world semantics is appropriate for both indicative and subjunctive conditionals has been defended by several 
authors ([6,25,37,26,35]). In our framework, the indicative form (if 𝜙 is the case then 𝜓 is the case) seems more appropriate when 
the initial belief set does not contain ¬𝜙 (that is, if the agent initially considers it possible that 𝜙) while the subjunctive form (if 𝜙
were the case then 𝜓 would be the case) seems more appropriate when the agent initially believes ¬𝜙.

9. Conclusion

We provided a characterization of KM belief update and AGM belief revision in terms of a semantics that consists of a selection 
function together with a belief relation. We have shown that KM/AGM belief update/revision functions corresponds to the functions 
that can be obtained from the class of models that we considered, by identifying the initial belief set 𝐾 with the set of formulas that 
the agent believes at a state 𝑠 (𝐾 = {𝜙 ∈Φ0 ∶(𝑠) ⊆ ‖𝜙‖}) and by identifying the updated belief set (𝐾 ⋄𝜙), or the revised belief set 
(𝐾 ∗ 𝜙), in response to input 𝜙, with the set of formulas that are the consequent of conditionals that are believed at state 𝑠 and have 
𝜙 as antecedent. Thus our analysis shows that both belief update and belief revision can be characterized in terms of belief in the 
conditional “if 𝜙 is (or were) the case then 𝜓 is (or would be) the case”. The difference between (strong) update and revision boils 
down to two stronger properties (properties of doxastic priority DP1 and DP2) that are required for belief revision but not for belief 
update. Since every revision frame is also an update frame, our analysis confirms Peppas et al.’s assessment that, for a fixed initial 
belief set 𝐾 , “revising 𝐾 is much the same as updating 𝐾” ([30, p. 95].

A natural next step is to go beyond the propositional language considered in this paper and study a modal language that includes 
a unimodal belief operator 𝔹, corresponding to the belief relation , and a bimodal conditional operator > corresponding to the 
selection function 𝑓 . The investigation of the corresponding modal logic and its potential use in modeling belief change is beyond 
the scope of this paper and is pursued in a companion paper (work in progress).
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Appendix A. Proof of Propositions 7 and 11

Proof of Proposition 7. In what follows we write ⊢ 𝜙 to denote that 𝜙 is a tautology.
(A) We need to show that the partial belief change function obtained at a state of an arbitrary model based on an update frame, can 
be extended to a full-domain belief update function. The purpose here is not to define the most natural extension, but to show that at least 
one such an extension exists. Thus we will do so in the simplest possible way.
Fix an arbitrary frame 𝐹 ∈ ⋄, an arbitrary model based on 𝐹 , an arbitrary state 𝑠 and let 𝐾𝑠 = {𝜙 ∈ Φ0 ∶ (𝑠) ⊆ ‖𝜙‖}. Let ◦ be 
the belief change function based on 𝐾𝑠 defined by (RI), that is, 𝜓 ∈𝐾𝑠◦𝜙 if and only if, ‖𝜙‖ ≠∅ and, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖. 
Consider the following full-domain extension ⋄ of ◦:

𝐾𝑠 ⋄ 𝜙 =
{

𝐾𝑠◦𝜙 if ‖𝜙‖ ≠∅
𝐶𝑛(𝜙) if ‖𝜙‖ =∅.

(24)

We want to show that the function defined in (24) is a belief update function (Definition 2), that is, that it satisfies axioms (𝐾 ⋄
0)-(𝐾 ⋄ 7).

∙ (𝐾 ⋄ 0). We need to show that 𝐾𝑠 ⋄ 𝜙 = 𝐶𝑛 
(
𝐾𝑠 ⋄ 𝜙

)
. If ‖𝜙‖ ≠∅ then this follows from (B) of Lemma 2. If ‖𝜙‖ =∅ then it follows 

from the fact that 𝐶𝑛(𝜙) = 𝐶𝑛 (𝐶𝑛(𝜙)).

20 The difference between a Stalnaker selection function and a Lewis selection function is that the former requires 𝑓 (𝑠, 𝐸) to be a singleton, that is, that there be a 
unique 𝐸-state closest to 𝑠.
21 A variable hypothetical is a subjective rule that Ramsey expresses as “If I meet a 𝜙 I shall regard it as a 𝜓” [31, p. 241]. [15, p.29] argue that the belief in the 

variable hypothetical ∀𝑥 (𝜙(𝑥)→ 𝜓(𝑥)) can be faithfully translated into Stalnaker semantics as follows: for all worlds the agent cannot exclude to be the actual, the 
18

most similar 𝜙-world is a 𝜓 -world.
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∙ (𝐾 ⋄ 1). We need to show that 𝜙 ∈𝐾𝑠 ⋄ 𝜙. If ‖𝜙‖ ≠∅ then this follows from (2) of Proposition 1. If ‖𝜙‖ = ∅ then it follows from 
the fact that 𝜙 ∈ 𝐶𝑛(𝜙).

∙ (𝐾 ⋄ 2). We need to show that if 𝜙 ∈ 𝐾𝑠 then 𝐾𝑠 ⋄ 𝜙 = 𝐾𝑠. Assume that 𝜙 ∈ 𝐾𝑠; then (𝑠) ⊆ ‖𝜙‖ and thus, since by definition of 
frame (Definition 5), (𝑠) ≠∅, ‖𝜙‖ ≠∅. Hence, by (24), 𝐾𝑠 ⋄ 𝜙 =𝐾𝑠◦𝜙 and the desired property follows from Proposition 2.

∙ (𝐾 ⋄ 3). We need to show that 𝐾𝑠 ⋄𝜙 =Φ0 if and only if 𝜙 is a contradiction. If 𝜙 is a contradiction then 𝐶𝑛(𝜙) =Φ0; furthermore, ‖𝜙‖ = ∅ and thus, by (24), 𝐾𝑠 ⋄ 𝜙 = 𝐶𝑛(𝜙). If 𝜙 is consistent and ‖𝜙‖ ≠ ∅, then, by (B) of Lemma 2, 𝐾𝑠◦𝜙 is consistent and thus 
𝐾𝑠◦𝜙 ≠ Φ0 and, by (24), 𝐾𝑠 ⋄ 𝜙 = 𝐾𝑠◦𝜙. Finally, if 𝜙 is consistent and ‖𝜙‖ = ∅, then, by (24), 𝐾𝑠 ⋄ 𝜙 = 𝐶𝑛(𝜙) and, since 𝜙 is 
consistent, 𝐶𝑛(𝜙) ≠Φ0.

∙ (𝐾 ⋄ 4). We need to show that if ⊢ (𝜙 ↔ 𝜓) then 𝐾𝑠 ⋄ 𝜙 = 𝐾𝑠 ⋄ 𝜓 . Assume that ⊢ (𝜙 ↔ 𝜓). If ‖𝜙‖ ≠ ∅ then this follows from (3) 
of Proposition 1. If ‖𝜙‖ =∅, then (since ⊢ (𝜙 ↔ 𝜓) implies that ‖𝜙‖ = ‖𝜓‖) ‖𝜓‖ =∅ and thus 𝐾𝑠 ⋄ 𝜙 = 𝐶𝑛(𝜙) and 𝐾𝑠 ⋄𝜓 = 𝐶𝑛(𝜓)
and, since ⊢ (𝜙 ↔ 𝜓), 𝐶𝑛(𝜙) = 𝐶𝑛(𝜓).

∙ (𝐾 ⋄ 5). We need to show that 𝐾𝑠 ⋄ (𝜙 ∧ 𝜓) ⊆ (𝐾𝑠 ⋄ 𝜙) + 𝜓 . If ‖𝜙‖ = ∅ then ‖𝜙 ∧ 𝜓‖ = ∅ and, by (24), 𝐾𝑠 ⋄ 𝜙 = 𝐶𝑛(𝜙) – so 
that (𝐾𝑠 ⋄ 𝜙) + 𝜓 = 𝐶𝑛 (𝐶𝑛(𝜙) ∪ {𝜓}) – and 𝐾𝑠 ⋄ (𝜙 ∧ 𝜓) = 𝐶𝑛(𝜙 ∧ 𝜓). Fix an arbitrary 𝜒 ∈ 𝐶𝑛(𝜙 ∧ 𝜓). Then ⊢ (𝜙 ∧ 𝜓) → 𝜒 which 
implies that ⊢ 𝜙 → (𝜓 → 𝜒), from which it follows that 𝜙 → (𝜓 → 𝜒) ∈ 𝐶𝑛(𝜙) and thus (𝜓 → 𝜒) ∈ 𝐶𝑛(𝜙) which, in turn, is equivalent 
to 𝜒 ∈ 𝐶𝑛 (𝐶𝑛(𝜙) ∪ {𝜓}). Hence 𝐶𝑛(𝜙 ∧ 𝜓) ⊆ 𝐶𝑛 (𝐶𝑛(𝜙) ∪ {𝜓}). If ‖𝜙 ∧ 𝜓‖ ≠ ∅ then ‖𝜙‖ ≠ ∅ so that, by (24), 𝐾𝑠 ⋄ 𝜙 = 𝐾𝑠◦𝜙 and 
𝐾𝑠⋄(𝜙 ∧𝜓) =𝐾𝑠◦(𝜙 ∧𝜓) and the desired property follows from Proposition 3. Finally, if ‖𝜙‖ ≠∅ and ‖𝜙 ∧𝜓‖ =∅ then 𝐾𝑠⋄𝜙 =𝐾𝑠◦𝜙
and 𝐾𝑠 ⋄ (𝜙 ∧𝜓) = 𝐶𝑛(𝜙 ∧𝜓). Fix an arbitrary 𝜒 ∈ 𝐶𝑛(𝜙 ∧𝜓). Then ⊢ (𝜙 ∧𝜓) → 𝜒 , from which it follows that ⊢ 𝜙 → (𝜓 → 𝜒), so that 
since, by (B) of Lemma 2, 𝐾𝑠◦𝜙 is deductively closed, (𝜙 → (𝜓 → 𝜒)) ∈ 𝐾𝑠◦𝜙. From this and the fact that, by (2) of Proposition 1, 
𝜙 ∈𝐾𝑠◦𝜙, it follows that (𝜓 → 𝜒) ∈𝐾𝑠◦𝜙 which is equivalent to 𝜒 ∈ 𝐶𝑛((𝐾𝑠◦𝜙) ∪ {𝜓}). □

∙ (𝐾 ⋄6). We need to show that if 𝜓 ∈𝐾𝑠 ⋄𝜙 and 𝜙 ∈𝐾𝑠 ⋄𝜓 then 𝐾𝑠 ⋄𝜙 =𝐾𝑠 ⋄𝜓 . Assume that 𝜓 ∈𝐾𝑠 ⋄𝜙 and 𝜙 ∈𝐾𝑠 ⋄𝜓 . If ‖𝜙‖ ≠∅, 
then 𝐾𝑠⋄𝜙 =𝐾𝑠◦𝜙; furthermore, since - by hypothesis - 𝜓 ∈𝐾𝑠◦𝜙, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖) which implies that ‖𝜓‖ ≠∅ because, 
by definition of frame (Definition 5), 𝑓 (𝑠′, ‖𝜙‖) ≠∅. A similar argument shows that if ‖𝜓‖ ≠ ∅ then ‖𝜙‖ ≠∅. Thus there are only 
two cases to consider: (1) ‖𝜙‖ = ‖𝜓‖ = ∅ and (2) ‖𝜙‖ ≠ ∅ and ‖𝜓‖ ≠ ∅. Consider first the case where ‖𝜙‖ = ‖𝜓‖ = ∅. Then, by 
(24), 𝐾𝑠 ⋄𝜙 = 𝐶𝑛(𝜙) and 𝐾𝑠 ⋄𝜓 = 𝐶𝑛(𝜓). Then, since 𝜓 ∈ 𝐶𝑛(𝜙), ⊢ (𝜙 → 𝜓) and, since 𝜙 ∈ 𝐶𝑛(𝜓), ⊢ (𝜓 → 𝜙). Thus ⊢ (𝜙 ↔ 𝜓) and 
therefore 𝐶𝑛(𝜙) = 𝐶𝑛(𝜓). Next consider the case where ‖𝜙‖ ≠∅ and ‖𝜓‖ ≠∅. In this case 𝐾𝑠 ⋄ 𝜙 =𝐾𝑠◦𝜙 and 𝐾𝑠 ⋄ 𝜓 =𝐾𝑠◦𝜓 and 
the desired property follows from Proposition 4.

∙ (𝐾 ⋄ 7). We need to show that if 𝐾𝑠 is complete then (𝐾𝑠 ⋄𝜙) ∩ (𝐾𝑠 ⋄𝜓) ⊆ 𝐾𝑠 ⋄ (𝜙 ∧𝜓). If (𝐾𝑠 ⋄𝜙) ∩ (𝐾𝑠 ⋄𝜓) =∅ there is nothing to 
prove. Suppose, therefore, that (𝐾𝑠 ⋄𝜙) ∩(𝐾𝑠 ⋄𝜓) ≠∅ and let 𝜒 ∈ (𝐾𝑠 ⋄𝜙) ∩(𝐾𝑠 ⋄𝜓). If ‖𝜙‖ ≠∅ and ‖𝜓‖ ≠∅, then 𝐾𝑠 ⋄𝜙 =𝐾𝑠◦𝜙 and 
𝐾𝑠 ⋄ 𝜓 =𝐾𝑠◦𝜓 and the desired property follows from Proposition 5. If ‖𝜙‖ = ‖𝜓‖ = ∅ then ‖𝜙 ∧ 𝜓‖ = ∅ and thus 𝐾𝑠 ⋄ 𝜙 = 𝐶𝑛(𝜙), 
𝐾𝑠 ⋄ 𝜓 = 𝐶𝑛(𝜓) and 𝐾𝑠 ⋄ (𝜙 ∧ 𝜓) = 𝐶𝑛(𝜙 ∧ 𝜓). Since 𝜒 ∈ (𝐾𝑠 ⋄ 𝜙) ∩ (𝐾𝑠 ⋄ 𝜓) it follows that ⊢ (𝜙 → 𝜒) and ⊢ (𝜓 → 𝜒) so that 
⊢ ((𝜙 ∧ 𝜓) → 𝜒) and thus 𝜒 ∈ 𝐶𝑛(𝜙 ∧ 𝜓). If ‖𝜙‖ ≠∅ and ‖𝜓‖ = ∅ then ‖𝜙 ∧ 𝜓‖ = ∅ and thus 𝐾𝑠 ⋄ 𝜙 =𝐾𝑠◦𝜙, 𝐾𝑠 ⋄ 𝜓 = 𝐶𝑛(𝜓) and 
𝐾𝑠 ⋄ (𝜙 ∧ 𝜓) = 𝐶𝑛(𝜙 ∧ 𝜓). Since 𝜒 ∈ (𝐾𝑠 ⋄ 𝜓) = 𝐶𝑛(𝜓), ⊢ (𝜓 → 𝜒) so that ⊢ ((𝜙 ∧ 𝜓) → 𝜒) and thus 𝜒 ∈ 𝐶𝑛(𝜙 ∧ 𝜓). The case where ‖𝜙‖ =∅ and ‖𝜓‖ ≠∅ is similar: ⊢ (𝜙 → 𝜒) and thus ⊢ ((𝜙 ∧𝜓) → 𝜒) and 𝜒 ∈ 𝐶𝑛(𝜙 ∧𝜓).

(B) Next we prove that, for every belief update function ⋄, there is a model based on an update frame such that the belief change 
function ◦ obtained at a state in that model coincides with ⋄ on the domain of ◦ and, furthermore, the domain of ◦ is the set of 
consistent formulas. Once again, the purpose here is not to define the most natural model but to show that such a model exists. Thus we 
will construct the simplest model.
Let 𝐾 ⊂Φ0 be consistent and deductively closed and let ⋄ ∶ Φ0 → 2Φ0 be a belief update function based on 𝐾 (Definition 2). Define 
the following model ⟨𝑆,, 𝑓 , 𝑉 ⟩:
1. 𝑆 is the set of maximally consistent sets (MCS) of formulas in Φ0 .
2. The valuation 𝑉 ∶ At→ 𝑆 is defined by 𝑉 (𝑝) = {𝑠 ∈ 𝑆 ∶ 𝑝 ∈ 𝑠}, so that, for every 𝜙 ∈Φ0, the truth set of 𝜙, which - in this context 

- we denote by �𝜙� instead of ‖𝜙‖, is �𝜙� = {𝑠 ∈ 𝑆 ∶ 𝜙 ∈ 𝑠}. If Ψ ⊆Φ0, define �Ψ� = {𝑠 ∈ 𝑆 ∶ ∀𝜙 ∈Ψ, 𝜙 ∈ 𝑠}. Note that �Ψ� ≠∅
if and only if Ψ is consistent.

3. For every 𝑠 ∈ 𝑆 , define (𝑠) = �𝐾�.
4. In order to define the selection function 𝑓 , note first that �𝜙� ≠ ∅ if and only if 𝜙 is consistent. Thus we only need to define 

𝑓 (𝑠, ‖𝜙‖) for 𝜙 consistent. Let Φ𝑐𝑛 ⊆Φ0 be the set of consistent formulas and let  = {𝐸 ⊆ 𝑆 ∶𝐸 = �𝜙� for some 𝜙 ∈Φ𝑐𝑛}. Define 
𝑓 ∶ �𝐾� ×  → 2𝑆 as follows:

𝑓 (𝑠, �𝜙�) = �𝐾 ⋄ 𝜙�. (25)

First we show that the frame so defined is an update frame (Definition 9).

∙ 𝑓 (𝑠, �𝜙�) ≠∅. This follows from axiom (𝐾 ⋄ 3) since we are restricting attentions to 𝜙 ∈ Φ𝑐𝑛.

∙ 𝑓 (𝑠, �𝜙�) ⊆ �𝜙�. This follows from axiom (𝐾 ⋄ 1) (since 𝜙 ∈𝐾 ⋄ 𝜙, the set of MCS that satisfy all the formulas in 𝐾 ⋄ 𝜙 is a subset 
of the of MCS that satisfy 𝜙).
19

To prove Weak Centering we first prove the following lemma.
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Lemma 3. ∀𝜙 ∈Φ𝑐𝑛, �𝐾� ∩ �𝜙� = �𝐶𝑛(𝐾 ∪ {𝜙})�.

Proof. By hypothesis, 𝐾 is deductively closed. Thus, ∀𝜒 ∈Φ0,

𝜒 ∈ 𝐶𝑛(𝐾 ∪ {𝜙}) if and only if (𝜙→ 𝜒) ∈𝐾. (26)

First we show that

�𝐾� ∩ �𝜙� ⊆ �𝐶𝑛(𝐾 ∪ {𝜙})�.

Fix an arbitrary 𝑠 ∈ �𝐾� ∩ �𝜙�; we need to show that 𝑠 ∈ �𝐶𝑛(𝐾 ∪ {𝜙})�, that is, that, ∀𝜒 ∈ 𝐶𝑛(𝐾 ∪ {𝜙}), 𝜒 ∈ 𝑠. Since 𝑠 ∈ �𝜙�, 𝜙 ∈ 𝑠. 
Fix an arbitrary 𝜒 ∈ 𝐶𝑛(𝐾 ∪ {𝜙}); then, by (26), (𝜙 → 𝜒) ∈ 𝐾 ; thus, since 𝑠 ∈ �𝐾�, (𝜙 → 𝜒) ∈ 𝑠. Hence, since both 𝜙 and 𝜙 → 𝜒

belong to 𝑠 and 𝑠 is deductively closed (every MCS is deductively closed), 𝜒 ∈ 𝑠.
Next we show that

�𝐶𝑛(𝐾 ∪ {𝜙})� ⊆ �𝐾� ∩ �𝜙�.

Let 𝑠 ∈ �𝐶𝑛(𝐾 ∪ {𝜙})�. Then, since 𝜙 ∈ 𝐶𝑛(𝐾 ∪ {𝜙}), 𝜙 ∈ 𝑠, that is, 𝑠 ∈ �𝜙�. It remains to show that 𝑠 ∈ �𝐾�, that is, that, for every 
𝜒 ∈𝐾 , 𝜒 ∈ 𝑠. Fix an arbitrary 𝜒 ∈𝐾 ; then, since, by hypothesis, 𝐾 is deductively closed, (𝜙 → 𝜒) ∈𝐾 . Thus, by (26), 𝜒 ∈ 𝐶𝑛(𝐾∪{𝜙})
and thus, since 𝑠 ∈ �𝐶𝑛(𝐾 ∪ {𝜙})�, 𝜒 ∈ 𝑠. □

∙ if 𝑠 ∈ �𝜙� then 𝑠 ∈ 𝑓 (𝑠, �𝜙�). Let 𝑠 ∈ �𝐾� and 𝜙 ∈Φ𝑐𝑛. Assume that 𝑠 ∈ ‖𝜙‖; then 𝑠 ∈ �𝐾� ∩ �𝜙� so that, by Lemma 3, 𝑠 ∈ ‖𝐶𝑛(𝐾 ∪
{𝜙})‖. By Lemma 1, 𝐾 ⋄ 𝜙 ⊆ 𝐶𝑛(𝐾 ∪ {𝜙}) from which it follows that �𝐶𝑛(𝐾 ∪ {𝜙}� ⊆ �𝐾 ⋄ 𝜙�. Hence 𝑠 ∈ �𝐾 ⋄ 𝜙� and, by (25), 
�𝐾 ⋄ 𝜙� = 𝑓 (𝑠, �𝜙�).

∙ if (𝑠) ⊆ �𝜙� then, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, �𝜙�) ⊆ (𝑠). Fix an arbitrary 𝜙 ∈ Φ𝑐𝑛 and an arbitrary MCS 𝑠 and recall that, by construction, 
(𝑠) = �𝐾� and, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, �𝜙�) = �𝐾 ⋄𝜙�. Thus we need to show that if �𝐾� ⊆ �𝜙� then �𝐾 ⋄𝜙� ⊆ �𝐾�. Assume that �𝐾� ⊆ �𝜙�, 
which is equivalent to 𝜙 ∈𝐾 . Then, by (𝐾 ⋄ 2), 𝐾 ⋄ 𝜙 =𝐾 and thus �𝐾 ⋄ 𝜙� = �𝐾�.

In order to prove the next property we need the following lemma, which is similar to Lemma 3.

Lemma 4. ∀𝜙, 𝜓 ∈Φ𝑐𝑛, �𝐾 ⋄ 𝜙� ∩ �𝜓� = �𝐶𝑛((𝐾 ⋄𝜙) ∪ {𝜓})�.

Proof. By (𝐾 ⋄ 0), 𝐾 ⋄ 𝜙 is deductively closed. Thus, ∀𝜒 ∈Φ0,

𝜒 ∈ 𝐶𝑛((𝐾 ⋄ 𝜙) ∪ {𝜓}) if and only if (𝜓 → 𝜒) ∈𝐾 ⋄𝜙. (27)

First we show that

�𝐾 ⋄ 𝜙� ∩ �𝜓� ⊆ �𝐶𝑛((𝐾 ⋄𝜙) ∪ {𝜓})�.

Fix an arbitrary 𝑠 ∈ �𝐾 ⋄𝜙� ∩ �𝜙�; we need to show that 𝑠 ∈ �𝐶𝑛((𝐾 ⋄𝜙) ∪ {𝜓})�, that is, that, ∀𝜒 ∈ 𝐶𝑛((𝐾 ⋄𝜙) ∪ {𝜓}), 𝜒 ∈ 𝑠. Since 
𝑠 ∈ �𝜓�, 𝜓 ∈ 𝑠. Fix an arbitrary 𝜒 ∈ 𝐶𝑛((𝐾 ⋄𝜙) ∪ {𝜓}); then, by (29), (𝜓 → 𝜒) ∈𝐾 ⋄𝜙; thus, since 𝑠 ∈ �𝐾 ⋄𝜙�, (𝜓 → 𝜒) ∈ 𝑠. Hence, 
since both 𝜓 and 𝜓 → 𝜒 belong to 𝑠 and 𝑠 is deductively closed, 𝜒 ∈ 𝑠.
Next we show that

�𝐶𝑛((𝐾 ⋄𝜙) ∪ {𝜓})� ⊆ �𝐾 ⋄ 𝜙� ∩ �𝜓�.

Let 𝑠 ∈ �𝐶𝑛((𝐾 ⋄ 𝜙) ∪ {𝜓})�. Then, since 𝜓 ∈ 𝐶𝑛((𝐾 ⋄ 𝜙) ∪ {𝜓}), 𝜓 ∈ 𝑠, that is, 𝑠 ∈ �𝜓�. It remains to show that 𝑠 ∈ �𝐾 ⋄ 𝜙�, that is, 
that, for every 𝜒 ∈𝐾 ⋄𝜙, 𝜒 ∈ 𝑠. Fix an arbitrary 𝜒 ∈𝐾 ⋄𝜙; then, since, by axiom (𝐾 ⋄0), 𝐾 ⋄𝜙 is deductively closed, (𝜓 → 𝜒) ∈𝐾 ⋄𝜙. 
Thus, by (29), 𝜒 ∈ 𝐶𝑛((𝐾 ⋄𝜙) ∪ {𝜓}) and thus, since 𝑠 ∈ �𝐶𝑛((𝐾 ⋄ 𝜙) ∪ {𝜓})�, 𝜒 ∈ 𝑠. □

∙ If, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, �𝜙� ∩ �𝜓�) ⊆ �𝜒�, then, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, �𝜙�) ∩ �𝜓� ⊆ �𝜒�. Fix arbitrary 𝜙, 𝜓, 𝜒 ∈ Φ𝑐𝑛 and an arbitrary MCS 𝑠
and recall that, by construction, (𝑠) = �𝐾�, 𝑓 (𝑠′, �𝜙�) = �𝐾 ⋄ 𝜙� and (since �𝜙� ∩ �𝜓� = �𝜙 ∧ 𝜓�) 𝑓 (𝑠′, �𝜙� ∩ �𝜓�) = �𝐾 ⋄ (𝜙 ∧ 𝜓)�. 
Thus it is sufficient to show that �𝐾 ⋄ 𝜙� ∩ �𝜓� ⊆ �𝐾 ⋄ (𝜙 ∧ 𝜓)�. By axiom (𝐾 ⋄ 5), 𝐾 ⋄ (𝜙 ∧ 𝜓) ⊆ 𝐶𝑛((𝐾 ⋄ 𝜙) ∪ {𝜓}) from which it 
follows that

�𝐶𝑛((𝐾 ⋄𝜙) ∪ {𝜓})� ⊆ �𝐾 ⋄ (𝜙 ∧𝜓)�. (28)

By Lemma 4, �𝐾 ⋄𝜙� ∩ �𝜓� = �𝐶𝑛((𝐾 ⋄ 𝜙) ∪ {𝜓})�. It follows from this and (28) that �𝐾 ⋄ 𝜙� ∩ �𝜓� ⊆ �𝐾 ⋄ (𝜙 ∧𝜓)�.

∙ If, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, �𝜙�) ⊆ �𝜓� and 𝑓 (𝑠′, �𝜓�) ⊆ �𝜙�, then
⋃

𝑠′∈(𝑠)
𝑓 (𝑠′, �𝜙�) =

⋃
𝑠′∈(𝑠)

𝑓 (𝑠′, �𝜓�). By (25) this reduces to:

if �𝐾 ⋄ 𝜙� ⊆ �𝜓� and �𝐾 ⋄𝜓� ⊆ �𝜙� then �𝐾 ⋄ 𝜙� = �𝐾 ⋄𝜓�. (29)

By (𝐾 ⋄ 6), if 𝜓 ∈𝐾 ⋄𝜙 and 𝜙 ∈𝐾 ⋄𝜓 then 𝐾 ⋄𝜙 =𝐾 ⋄𝜓 . Since 𝜓 ∈𝐾 ⋄𝜙 if and only if �𝐾 ⋄𝜙� ⊆ �𝜓�, and 𝜙 ∈𝐾 ⋄𝜓 if and only 
20

if �𝐾 ⋄𝜓� ⊆ �𝜙�, (29) follows directly from (𝐾 ⋄ 6).
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∙ If (𝑠) = {𝑠′} then 𝑓 (𝑠′, �𝜙� ∪ �𝜓�) ⊆ 𝑓 (𝑠′, �𝜙�) ∪ 𝑓 (𝑠′, �𝜓�). First of all, note that �𝜙� ∪ �𝜓� = �𝜙 ∨ 𝜓�. By (𝐾 ⋄ 7), since �𝐾� is 
a singleton (and thus 𝐾 is complete), (𝐾 ⋄ 𝜙) ∩ (𝐾 ⋄ 𝜓) ⊆ 𝐾 ⋄ (𝜙 ∨ 𝜓), which implies that �𝐾 ⋄ (𝜙 ∨ 𝜓)� ⊆ �𝐾 ⋄ 𝜙� ∩ �𝐾 ⋄ 𝜓� ⊆
�𝐾 ⋄ 𝜙� ∪ �𝐾 ⋄𝜓�. Finally, by (25), 𝑓 (𝑠′, �𝜙�) = �𝐾 ⋄ 𝜙�, 𝑓 (𝑠′, �𝜓�) = �𝐾 ⋄𝜓� and 𝑓 (𝑠′, �𝜙 ∨𝜓�) = �𝐾 ⋄ (𝜙 ∨𝜓)�.

So far we have shown that the model that we have constructed is based on an update frame (Definition 9). It remains to show 
that the belief update function ⋄ that we started with coincides with the partial belief change function ◦ defined by (RI) relative 
to some MCS 𝑠. Since, in the model that we constructed, for any two MCS’s 𝑠 and 𝑠′, (𝑠) = (𝑠′), we can take an arbitrary MCS, 
call it 𝑠̂. Let 𝐾𝑠̂ = {𝜙 ∈ Φ0 ∶ (𝑠̂) ⊂ �𝜙�}. By construction, (𝑠̂) = �𝐾� and thus 𝐾𝑠̂ = 𝐾 . Let ◦ be the belief change function based 
on 𝐾𝑠̂ = 𝐾 defined by (RI). We need to show that (since the domain of ◦ is Φ𝑐𝑛), ∀𝜙 ∈ Φ𝑐𝑛, 𝐾 ⋄ 𝜙 = 𝐾◦𝜙. First we show that 
𝐾 ⋄ 𝜙 ⊆ 𝐾◦𝜙. Let 𝜓 ∈ 𝐾 ⋄ 𝜙; then 𝜓 ∈ 𝑠 for all 𝑠 ∈ �𝐾 ⋄ 𝜙�, that is, �𝐾 ⋄ 𝜙� ⊆ �𝜓�. By (25), ∀𝑠 ∈ (𝑠̂), 𝑓 (𝑠, �𝜙�) = �𝐾 ⋄ 𝜙�. Thus, 
∀𝑠 ∈ (𝑠̂), 𝑓 (𝑠, �𝜙�) ⊆ �𝜓�, that is, 𝜓 ∈𝐾◦𝜙. Next we show that 𝐾◦𝜙 ⊆ 𝐾 ⋄ 𝜙. Let 𝜓 ∈𝐾◦𝜙, that is, ∀𝑠 ∈ (𝑠̂), 𝑓 (𝑠, �𝜙�) ⊆ �𝜓�. By 
(25), ∀𝑠 ∈(𝑠̂), 𝑓 (𝑠, �𝜙�) = �𝐾 ⋄ 𝜙�. Thus �𝐾 ⋄ 𝜙� ⊆ �𝜓�, that is, ∀𝑠 ∈ �𝐾 ⋄𝜙�, 𝜓 ∈ 𝑠. Hence 𝜓 ∈𝐾 ⋄ 𝜙. □

Proof of Proposition 11. Recall that ⊢ 𝜙 means that 𝜙 is a tautology.
(A) We need to show that the partial belief change function obtained at a state of an arbitrary model based on a revision frame, can 
be extended to a full-domain AGM belief revision function. We note again that the purpose here is not to define the most natural 
extension, but to show that such an extension is in fact possible.
Fix an arbitrary frame 𝐹 ∈ ∗, an arbitrary model based on 𝐹 , an arbitrary state 𝑠 and let 𝐾𝑠 = {𝜙 ∈ Φ0 ∶ (𝑠) ⊆ ‖𝜙‖}. Let ◦ be 
the belief change function based on 𝐾𝑠 defined by (RI), that is, 𝜓 ∈𝐾𝑠◦𝜙 if and only if, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, ‖𝜙‖) ⊆ ‖𝜓‖. Consider the 
following full-domain extension ∗ of ◦:

𝐾𝑠 ∗ 𝜙 =
{

𝐾𝑠◦𝜙 if ‖𝜙‖ ≠∅
𝐶𝑛(𝜙) if ‖𝜙‖ =∅.

(30)

We want to show that the function defined in (30) satisfies axioms (𝐾 ∗ 1)-(𝐾 ∗ 8).

∙ (𝐾 ∗ 1). We need to show that 𝐾𝑠 ∗ 𝜙 = 𝐶𝑛 
(
𝐾𝑠 ∗ 𝜙

)
. If ‖𝜙‖ ≠∅ then this follows from (B) of Lemma 2. If ‖𝜙‖ =∅ then it follows 

from the fact that 𝐶𝑛(𝜙) = 𝐶𝑛 (𝐶𝑛(𝜙)).

∙ (𝐾 ∗ 2). We need to show that 𝜙 ∈𝐾𝑠 ∗ 𝜙. If ‖𝜙‖ ≠∅ then this follows from (2) of Proposition 1. If ‖𝜙‖ = ∅ then it follows from 
the fact that 𝜙 ∈ 𝐶𝑛(𝜙).

∙ (𝐾 ∗ 3). We need to show that 𝐾𝑠 ∗ 𝜙 ⊆ 𝐶𝑛(𝐾𝑠 ∪ {𝜙}). If ‖𝜙‖ ≠ ∅ then this follows from (1) of Proposition 1. If ‖𝜙‖ = ∅ then ‖¬𝜙‖ = 𝑆 and thus (𝑠) ⊆ ‖¬𝜙‖, that is, ¬𝜙 ∈𝐾𝑠 which implies that 𝐶𝑛(𝐾𝑠 ∪ {𝜙}) =Φ0.

∙ (𝐾 ∗ 4). We need to show that if ¬𝜙 ∉𝐾𝑠 then 𝐾𝑠 ⊆ 𝐾𝑠 ∗ 𝜙. Since ¬𝜙 ∉𝐾𝑠, (𝑠) ∩ ‖𝜙‖ ≠∅ so that ‖𝜙‖ ≠∅ and thus, by Proposi-
tion 9, 𝐾𝑠 ⊆ 𝐾𝑠 ∗ 𝜙.

∙ (𝐾 ∗ 5). We need to show that 𝐾𝑠 ∗ 𝜙 =Φ0 if and only if ⊢ ¬𝜙. If ⊢ ¬𝜙 then 𝐶𝑛(𝜙) =Φ0; furthermore, ‖𝜙‖ =∅ and thus, by (30), 
𝐾𝑠 ∗ 𝜙 = 𝐶𝑛(𝜙). If 𝜙 is consistent and ‖𝜙‖ ≠ ∅, then, by (B) of Lemma 2, 𝐾𝑠◦𝜙 is consistent and thus 𝐾𝑠◦𝜙 ≠ Φ0 and, by (30), 
𝐾 ∗ 𝜙 =𝐾◦𝜙. Finally, if 𝜙 is consistent and ‖𝜙‖ =∅, then, by (30), 𝐾𝑠 ∗ 𝜙 = 𝐶𝑛(𝜙) and, since 𝜙 is consistent, 𝐶𝑛(𝜙) ≠Φ0.

∙ (𝐾 ∗ 6). We need to show that if ⊢ (𝜙 ↔ 𝜓) then 𝐾𝑠 ∗ 𝜙 = 𝐾𝑠 ∗ 𝜓 . Assume that ⊢ (𝜙 ↔ 𝜓). If ‖𝜙‖ ≠ ∅ then this follows from (3) 
of Proposition 1. If ‖𝜙‖ =∅, then (since ⊢ (𝜙 ↔ 𝜓) implies that ‖𝜙‖ = ‖𝜓‖) ‖𝜓‖ =∅ and thus 𝐾𝑠 ∗ 𝜙 = 𝐶𝑛(𝜙) and 𝐾𝑠 ∗ 𝜓 = 𝐶𝑛(𝜓)
and, since ⊢ (𝜙 ↔ 𝜓), 𝐶𝑛(𝜙) = 𝐶𝑛(𝜓).

∙ (𝐾 ∗ 7). We need to show that 𝐾𝑠 ∗ (𝜙 ∧ 𝜓) ⊆ (𝐾𝑠 ∗ 𝜙) + 𝜓 . If ‖𝜙‖ = ∅ then ‖𝜙 ∧ 𝜓‖ = ∅ and, by (30), 𝐾𝑠 ∗ 𝜙 = 𝐶𝑛(𝜙) – so 
that (𝐾𝑠 ∗ 𝜙) + 𝜓 = 𝐶𝑛 (𝐶𝑛(𝜙) ∪ {𝜓}) – and 𝐾𝑠 ∗ (𝜙 ∧ 𝜓) = 𝐶𝑛(𝜙 ∧ 𝜓). Fix an arbitrary 𝜒 ∈ 𝐶𝑛(𝜙 ∧ 𝜓). Then ⊢ (𝜙 ∧ 𝜓) → 𝜒 which 
implies that ⊢ 𝜙 → (𝜓 → 𝜒), from which it follows that 𝜙 → (𝜓 → 𝜒) ∈ 𝐶𝑛(𝜙) and thus (𝜓 → 𝜒) ∈ 𝐶𝑛(𝜙) which, in turn, is equivalent 
to 𝜒 ∈ 𝐶𝑛 (𝐶𝑛(𝜙) ∪ {𝜓}). Hence 𝐶𝑛(𝜙 ∧ 𝜓) ⊆ 𝐶𝑛 (𝐶𝑛(𝜙) ∪ {𝜓}). If ‖𝜙 ∧ 𝜓‖ ≠ ∅ then ‖𝜙‖ ≠ ∅ so that, by (30), 𝐾𝑠 ∗ 𝜙 = 𝐾𝑠◦𝜙
and 𝐾𝑠 ∗ (𝜙 ∧ 𝜓) = 𝐾𝑠◦(𝜙 ∧ 𝜓) and the desired property follows from Proposition 3. Finally, if ‖𝜙‖ ≠ ∅ and ‖𝜙 ∧ 𝜓‖ = ∅ then 
𝐾𝑠 ∗ 𝜙 = 𝐾𝑠◦𝜙 and 𝐾𝑠 ∗ (𝜙 ∧ 𝜓) = 𝐶𝑛(𝜙 ∧ 𝜓). Fix an arbitrary 𝜒 ∈ 𝐶𝑛(𝜙 ∧ 𝜓). Then ⊢ (𝜙 ∧ 𝜓) → 𝜒 , from which it follows that 
⊢ 𝜙 → (𝜓 → 𝜒), so that since, by (B) of Lemma 2, 𝐾𝑠◦𝜙 is deductively closed, (𝜙 → (𝜓 → 𝜒)) ∈𝐾𝑠◦𝜙. From this and the fact that, by 
(2) of Proposition 1, 𝜙 ∈𝐾𝑠◦𝜙, it follows that (𝜓 → 𝜒) ∈𝐾𝑠◦𝜙 which is equivalent to 𝜒 ∈ 𝐶𝑛((𝐾𝑠◦𝜙) ∪ {𝜓}). □

∙ (𝐾 ∗ 8). We need to show that if ¬𝜓 ∉𝐾𝑠 ∗ 𝜙 then (𝐾𝑠 ∗ 𝜙) + 𝜓 ⊆ 𝐾𝑠 ∗ (𝜙 ∧ 𝜓). If ‖𝜙‖ = ∅ then, as shown in the proof of (𝐾 ∗ 7), 
𝐾 ∗ (𝜙 ∧𝜓) = (𝐾 ∗ 𝜙) +𝜓 . If ‖𝜙‖ ≠∅, then the result follows from Proposition 10.

(B) Next we prove that, for every AGM belief revision function ∗, there is a model based on a revision frame such that the belief 
change function ◦ obtained at a state in that model coincides with ∗ on the domain of ◦ and, furthermore, the domain of ◦ is the set 
of consistent formulas. Once again, the purpose here is not to define the most natural model but to show that such a model exists.
Let 𝐾 ⊂Φ0 be consistent and deductively closed and let ∗∶ Φ0 → 2Φ0 be an AGM belief revision function based on 𝐾 (Definition 4). 
Define the following model ⟨𝑆,, 𝑓 , 𝑉 ⟩:
21

1. 𝑆 is the set of maximally consistent sets (MCS) of formulas in Φ0 .
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2. The valuation 𝑉 ∶ At→ 𝑆 is defined by 𝑉 (𝑝) = {𝑠 ∈ 𝑆 ∶ 𝑝 ∈ 𝑠}, so that, for every 𝜙 ∈Φ0, the truth set of 𝜙, which - in this context 
- we denote by �𝜙� instead of ‖𝜙‖, is �𝜙� = {𝑠 ∈ 𝑆 ∶ 𝜙 ∈ 𝑠}. If Ψ ⊆Φ0, define �Ψ� = {𝑠 ∈ 𝑆 ∶ ∀𝜙 ∈Ψ, 𝜙 ∈ 𝑠}.

3. For every 𝑠 ∈ 𝑆 and define (𝑠) = �𝐾�.
4. In order to define the selection function 𝑓 , note first that �𝜙� ≠ ∅ if and only if 𝜙 is consistent. Thus we only need to define 

𝑓 (𝑠, ‖𝜙‖) for 𝜙 consistent. Let Φ𝑐𝑛 ⊆Φ0 be the set of consistent formulas and let  = {𝐸 ⊆ 𝑆 ∶𝐸 = �𝜙� for some 𝜙 ∈Φ𝑐𝑛}. Define 
𝑓 ∶ �𝐾� ×  → 2𝑆 as follows:

𝑓 (𝑠, �𝜙�) = �𝐾 ∗ 𝜙�. (31)

First we show that the frame so defined is a revision frame (Definition 11).

∙ 𝑓 (𝑠, �𝜙�) ≠∅. This follows from axiom (𝐾 ∗ 5) since we are restricting attentions to 𝜙 ∈ Φ𝑐𝑛.

∙ 𝑓 (𝑠, �𝜙�) ⊆ �𝜙�. This follows from axiom (𝐾 ∗ 2) (since 𝜙 ∈𝐾 ∗ 𝜙, �𝐾 ∗ 𝜙� ⊆ �𝜙� and, by (31), 𝑓 (𝑠, �𝜙�) = �𝐾 ∗ 𝜙�.

∙ If 𝑠 ∈ �𝜙� then 𝑠 ∈ 𝑓 (𝑠, �𝜙�). Let 𝑠 ∈ �𝐾� and 𝜙 ∈Φ𝑐𝑛. Assume that 𝑠 ∈ ‖𝜙‖; then 𝑠 ∈ �𝐾� ∩ �𝜙� so that, by Lemma 3, 𝑠 ∈ ‖𝐶𝑛(𝐾 ∪
{𝜙})‖. By Lemma 1, 𝐾 ∗ 𝜙 ⊆ 𝐶𝑛(𝐾 ∪ {𝜙}) from which it follows that �𝐶𝑛(𝐾 ∪ {𝜙}� ⊆ �𝐾 ∗ 𝜙�. Hence 𝑠 ∈ �𝐾 ∗ 𝜙� = 𝑓 (𝑠, �𝜙�).

∙ if (𝑠) ∩ �𝜙� ≠ ∅ then, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, �𝜙�) ⊆ (𝑠) ∩ �𝜙�. Fix an arbitrary 𝜙 ∈ Φ𝑐𝑛 and an arbitrary MCS 𝑠 and recall that, by 
construction, (𝑠) = �𝐾� and, ∀𝑠′ ∈(𝑠), 𝑓 (𝑠′, �𝜙�) = �𝐾 ∗ 𝜙�. Thus we need to show that if �𝐾� ∩ �𝜙� ≠∅ then �𝐾 ∗ 𝜙� ⊆ �𝐾� ∩ �𝜙�. 
Assume that �𝐾� ∩ �𝜙� ≠∅, which is equivalent to ¬𝜙 ∉𝐾 . Then, by (𝐾 ∗ 4), 𝐾 ⊆ 𝐾 ∗ 𝜙 which implies that �𝐾 ∗ 𝜙� ⊆ �𝐾� and thus 
�𝐾 ∗ 𝜙� ∩ �𝜙� ⊆ �𝐾� ∩ �𝜙�. Furthermore, by (𝐾 ∗ 2), �𝐾 ∗ 𝜙� ⊆ �𝜙�, so that �𝐾 ∗ 𝜙� = �𝐾 ∗ 𝜙� ∩ �𝜙�.

∙ if, ∃𝑠̂ ∈ (𝑠) such that 𝑓 (𝑠̂, 𝐸) ∩ 𝐹 ≠ ∅ then, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, 𝐸 ∩ 𝐹 ) ⊆
⋃

𝑠′′∈(𝑠)
(𝑓 (𝑠′′, 𝐸) ∩ 𝐹 ). Fix arbitrary 𝜙, 𝜓, 𝜒 ∈ Φ𝑐𝑛 and 

an arbitrary MCS 𝑠 and recall that, by construction, (𝑠) = �𝐾�, ∀𝑠′ ∈ (𝑠), 𝑓 (𝑠′, �𝜙�) = �𝐾 ∗ 𝜙� and (since �𝜙� ∩ �𝜓� = �𝜙 ∧ 𝜓�) 
𝑓 (𝑠′, �𝜙� ∩ �𝜓�) = �𝐾 ∗ (𝜙 ∧ 𝜓)�. Thus we need to show that if �𝐾 ∗ 𝜙� ∩ �𝜓� ≠∅ then �𝐾 ∗ (𝜙 ∧ 𝜓)� ⊆ �𝐾 ∗ 𝜙� ∩ �𝜓�. Assume that 
�𝐾 ∗ 𝜙� ∩ �𝜓� ≠∅. Then �𝐾 ∗ 𝜙� ⊈ �¬𝜓�, that is, ¬𝜓 ∉𝐾 ∗ 𝜙. Hence, by (𝐾 ∗ 8), (𝐾 ∗ 𝜙) + 𝜓 ⊆ 𝐾 ∗ (𝜙 ∧ 𝜓), from which it follows 
that �𝐾 ∗ (𝜙 ∧𝜓)� ⊆ �(𝐾 ∗ 𝜙) +𝜓�. Finally, by Lemma 4,22 �(𝐾 ∗ 𝜙) +𝜓� = �𝐾 ∗ 𝜙� ∩ �𝜓�.

So far we have shown that the model that we have constructed is based on a revision frame (Definition 11). It remains to show that 
the belief revision function ∗ that we started with coincides with the partial belief change function ◦ defined by (RI) relative to some 
MCS 𝑠. Since, in the model that we constructed, for any two MCS’s 𝑠 and 𝑠′, (𝑠) = (𝑠′), we can take an arbitrary MCS, call it 𝑠̂. 
Let 𝐾𝑠̂ = {𝜙 ∈Φ0 ∶(𝑠̂) ⊂ �𝜙�}. By construction, (𝑠̂) = �𝐾� and thus 𝐾𝑠̂ =𝐾 . Let ◦ be the belief change function based on 𝐾𝑠̂ =𝐾

defined by (RI). We need to show that, ∀𝜙 ∈Φ𝑐𝑛, 𝐾 ∗ 𝜙 =𝐾◦𝜙.
First we show that 𝐾 ∗ 𝜙 ⊆ 𝐾◦𝜙. Let 𝜓 ∈ 𝐾 ∗ 𝜙; then 𝜓 ∈ 𝑠 for all 𝑠 ∈ �𝐾 ∗ 𝜙�, that is, �𝐾 ∗ 𝜙� ⊆ �𝜓�. By (31), ∀𝑠 ∈ (𝑠̂), 

𝑓 (𝑠, �𝜙�) = �𝐾 ∗ 𝜙�. Thus, ∀𝑠 ∈(𝑠̂), 𝑓 (𝑠, �𝜙�) ⊆ �𝜓�, that is, 𝜓 ∈𝐾◦𝜙.
Next we show that 𝐾◦𝜙 ⊆ 𝐾 ∗ 𝜙. Let 𝜓 ∈𝐾◦𝜙, that is, ∀𝑠 ∈ (𝑠̂), 𝑓 (𝑠, �𝜙�) ⊆ �𝜓�. By (31), ∀𝑠 ∈(𝑠̂), 𝑓 (𝑠, �𝜙�) = �𝐾 ∗ 𝜙�. Thus 

�𝐾 ∗ 𝜙� ⊆ �𝜓�, that is, ∀𝑠 ∈ �𝐾 ∗ 𝜙�, 𝜓 ∈ 𝑠. Hence 𝜓 ∈𝐾 ∗ 𝜙. □
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