
Xing et al. EPJ Data Science (2025) 14:66
https://doi.org/10.1140/epjds/s13688-025-00584-4

R E S E A R C H Open Access

A cross-social platform distributed anomaly
behavior detection method
Ling Xing1, Shiyu Li1†, Honghai Wu1*†, Qi Zhang2†, Huahong Ma1† and Kaikai Deng1†

Handling Editor: Sabrina Gaito

*Correspondence:
honghai2018@haust.edu.cn
1College of Information
Engineering, Henan University of
Science and Technology, Kaiyuan
Avenue, Luoyang, 471000 Henan,
China
Full list of author information is
available at the end of the article
†Equal contributors

Abstract
With the rapid development of social networks, anomaly behavior detection has
become essential for ensuring platform security and enhancing user experience.
Traditional anomaly detection methods often rely on centralized data processing,
making it difficult to address the challenges of cross-platform collaborative detection
and failing to fully leverage the temporal and graph structure information within
social networks. To improve anomaly behavior detection’s accuracy and
generalization ability, this paper proposes a Cross-Platform-Based Distributed
Anomaly Behavior Detection Method, FLAD. Specifically, the method employs the
Federated Averaging (FedAvg) algorithm for model aggregation, constructing a
decentralized anomaly behavior detection model. This approach avoids the exchange
of raw user behavior data and enhances the effectiveness of cross-platform
collaborative learning. Moreover, this paper introduces a detection model that
combines a sliding window and Graph Convolutional Network (GCN), utilizing
temporal data and the graph structure of social networks. By partitioning user
behavior data into subgraphs via a sliding window, and employing GCN and Long
Short-Term Memory (LSTM) models to learn the evolution patterns of temporal and
behavioral data, the method improves the accuracy of anomaly behavior detection.
Experimental results show that the proposed method achieves up to a 6.31% increase
in F1-score compared to baseline models on the Epinions and Digg datasets. Ablation
studies further demonstrate that the unified model, aggregated through federated
learning, significantly improves accuracy over the initial global model. In the Epinions
dataset, accuracy increased by 20.49%, and in the Digg dataset, accuracy improved by
23.13%.

Keywords: Anomaly Behavior Detection; Cross-Platform Social Networks; Federated
Learning; Graph Convolutional Network (GCN)

1 Introduction
In the digital age, social media platforms have become the core of personal and profes-
sional communication, information dissemination, and community building [1]. With the
explosive growth of social network users, the frequency of anomalous behaviors, such
as cyberbullying [2], misinformation spread [3], and unauthorized data access, has also
increased, posing significant threats to the integrity of social platforms and user safety.

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives
4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived
from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/
4.0/.

https://doi.org/10.1140/epjds/s13688-025-00584-4
https://crossmark.crossref.org/dialog/?doi=10.1140/epjds/s13688-025-00584-4&domain=pdf
mailto:honghai2018@haust.edu.cn
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Xing et al. EPJ Data Science (2025) 14:66 Page 2 of 21

Research on anomaly behavior in social networks helps enhance capabilities in areas such
as user behavior analysis [4], community detection [5–7], anomaly warning [8, 9], and
public opinion analysis [10, 11]. The diversity of social platforms enables them to attract
users and support various forms of interaction. Traditional anomaly behavior detection
methods typically rely on centralized data processing. While this approach can improve
detection accuracy, it fails to reveal malicious behaviors that occur across multiple plat-
forms fully. Since user behavior data often contains sensitive information, achieving cross-
platform collaborative training while ensuring privacy protection has become a pressing
challenge [12]. Additionally, existing detection models usually fail to fully leverage tem-
poral data and graph structure information within social networks, making it difficult to
capture the dynamic evolution of user behavior patterns accurately.

To cope with the evolving and complex anomalous behaviors in social networks, existing
methods need to meet the following three requirements. First, cross-platform modeling
capability, which can comprehensively analyze the user’s behavioral patterns on multi-
ple social platforms, and identify the anomalous behaviors that are hidden in the linkage
between the platforms. Second, privacy protection mechanism, which avoids leaking the
user’s sensitive information in the process of data transmission or centralized processing;
and third, dynamic behavioral modeling capability, which can combine graph structure
and time series information to portray the evolution of user behaviors, thus achieving
more accurate detection. The third is dynamic behavior modeling, which can combine
graph structure and timing information to portray the evolution of user behaviors, thus
achieving more accurate anomaly detection. These challenges motivate us to design a fed-
erated anomaly detection framework that jointly captures structural dependencies and
temporal dynamics while preserving cross-platform privacy.

In this context, this paper proposes a cross-platform distributed abnormal behavior de-
tection method called FLAD. This method supports collaborative training of global abnor-
mal detection by multiple social network clients through decentralized data fusion. We use
the FedAvg [13] method to initialize the global model on the server side and distribute it
to each client. The client uses local data for training and uploads the optimization param-
eters. In addition, this paper also proposes an abnormal behavior detection model based
on sliding windows and GCN. This model effectively improves the accuracy of abnormal
behavior detection by combining time series data and graph structure information in so-
cial networks. By dividing user behavior data into subgraphs using a sliding window and
embedding user behavior information using a GCN, combining an LSTM model to learn
time series information, we can capture the evolution of behavior patterns and accurately
assess abnormal behavior. The main contributions of this paper are as follows:

1. We propose a distributed collaborative training framework based on FedAvg,
enabling multiple social network clients to train a global anomaly detection model
collaboratively without sharing user behavior data through decentralized data fusion.
Using the FedAvg method, the server initializes the global model and sends it to the
client, which uses local data to train and upload optimization parameters. To protect
user privacy, the client uses noise injection technology when uploading data to
ensure data security. During the aggregation process, the server updates the global
model using weighted averaging to improve the model’s performance and
convergence speed. This framework achieves a good balance between privacy

Xing et al. EPJ Data Science (2025) 14:66 Page 3 of 21

protection and abnormal behavior detection performance, and is suitable for
large-scale social networks.

2. We propose a social network anomaly detection model based on sliding windows and
GCN. This model improves anomaly detection accuracy by combining time series
information with graph structure information. Specifically, user behavior data is
divided into subgraphs using sliding windows, user behavior information and
semantic information are embedded using GCN, and the final subgraph vector
representation is generated using vector stitching and linear transformation. The
LSTM is used to learn the time series information, capture behavior patterns’
evolution, and evaluate abnormal behavior using the deep learning model
Encoder-Decoder-Encoder. This model can effectively integrate time series and
graph structure information to adapt to the dynamic user behavior patterns in social
networks.

3. We conduct experiments on the real-world datasets Epinions and Digg. The results
show the effectiveness of our proposed distributed collaborative training framework,
where the accuracy of the unified model aggregated by federated learning is
improved compared to the initial global model. In addition, our social network
anomaly detection model based on sliding windows and GCN significantly improves
the key performance indicator F1-score compared to the baseline model.

The rest of this paper is organized as follows: Sect. 2 reviews related research on anomaly
detection; Sect. 3 introduces a cross-platform distributed anomaly detection method;
Sect. 4 briefly describes the dataset and compares it with the baseline method to verify
the effectiveness of the model; and Sect. 5 summarizes this study and looks ahead to fu-
ture research directions.

2 Related work
2.1 Anomaly detection on social networks
Social network anomaly detection identifying behaviors that deviate from normal user
activities in social networks. Traditional anomaly detection methods can be divided into
text clustering-based anomaly detection and graph neural network-based anomaly detec-
tion. The text clustering-based anomaly detection method mainly analyzes the text con-
tent posted by users, extracts feature such as keywords and uses clustering algorithms
to cluster the text content [14–17]. Outlier detection techniques are used to identify ab-
normal user groups. This method can effectively capture features in the text that deviate
from regular patterns and help identify potentially abnormal behaviors. However, text fea-
ture extraction cannot entirely capture anomalies. Anomaly detection methods based on
graph neural networks usually model social networks as graph structures, where nodes
represent users and edges represent user interactions [18–20]. The graph neural network
model can effectively learn the embedding representation of nodes to capture the complex
relationships and interaction patterns between users [21–24]. The model can extract local
and global network features on the graph structure, thereby identifying abnormal behav-
iors different from regular users in the social interaction structure, such as fake account
clusters and online fraud [25–27].

Compared with text clustering methods, graph neural network-based detection meth-
ods are more suitable for processing user interaction data and can effectively identify ab-
normal behaviors that differ from regular user groups in the social network structure.

Xing et al. EPJ Data Science (2025) 14:66 Page 4 of 21

However, most existing graph neural network-based anomaly detection methods are lim-
ited to data analysis on a single platform and do not fully consider the challenges in cross-
social network scenarios. In practice, user behaviors often span multiple platforms simul-
taneously, and malicious or fraudulent activities can propagate across different social net-
works, making cross-platform anomaly detection increasingly necessary. The data hetero-
geneity and complex interaction patterns between different platforms limit the effective-
ness of these methods in a multi-platform environment.

2.2 Federated learning
Federated learning FL is a distributed machine learning technique that allows different
data participants to collaboratively construct machine learning models without disclos-
ing the original data. Existing federated learning primarily focuses on the core problem of
aggregation, and related studies can be broadly categorized into three areas: the effective-
ness of aggregation, the object of aggregation, and the constraints of aggregation. The first
aspect is the effectiveness of aggregation. Some researchers have mitigated the model drift
problem caused by heterogeneity through regularization constraints [28], multi-task mod-
eling [29], and hierarchical parameter matching [30], with the common goal of improv-
ing the stability and convergence of federated learning in non-independent and identically
distributed (Non-IID) environments. Second, in terms of the object of aggregation, the re-
searcher proposes a personalized federal learning approach in response to the limitation
that a single global model is difficult to adapt to the individual needs of each client [31–33].
These methods achieve personalized modeling by flexibly dividing parameters between
sharing and localization, thus enhancing the adaptability and performance of federated
learning in Non-IID scenarios. Finally, in terms of the constraints of aggregation, the re-
searchers effectively guarantee the security, fairness, and robustness of federated learning
training by introducing security protocols [34], weighting mechanisms [35], and regular-
ization constraints [36] in the aggregation process.

In recent years, federated learning has extended to graph data scenarios [37–39], and
researchers have proposed graph federated learning (FGL) to achieve distributed graph
modeling using graph neural networks while preserving privacy [40–44]. He et al. [45]
proposed the FedGraphNN framework to systematically combine GNN tasks with feder-
ated learning. Zhang et al. [46] proposed FedSage+ to improve performance in heteroge-
neous graph environments through graph sampling and neighbor generation optimiza-
tion. Cai et al. [47], proposed LG-FGAD, a representative federated graph anomaly de-
tection framework tailored for static graphs, incorporating hierarchical attention mech-
anisms and global aggregation. However, realistic networks change over time and have
temporal dependencies, making traditional graph federated learning challenging in deal-
ing with dynamic and temporal relationships. For this reason, researchers further pro-
posed Dynamic Federated Graph Learning (D-FGL). Zhang et al. [48] propose Feddy, a
federated learning framework that combines dynamic graph neural networks with secure
aggregation mechanisms for efficiently modeling distributed dynamic graph data while
preserving privacy. The DFDG framework proposed by Usman et al. [49] utilizes an adap-
tive federated learning mechanism to handle the task of traffic prediction in dynamic graph
structures, aiming at efficiently modeling dynamic temporal features in a distributed envi-
ronment. Overall, the existing dynamic graph federated learning, while making progress,
is still limited to node classification and link prediction, and is under-explored for complex
timing and efficient communication.

Xing et al. EPJ Data Science (2025) 14:66 Page 5 of 21

In this context, we propose FLAD, a cross-platform distributed framework for anomaly
behavior detection in social networks. By leveraging GCNs on sliding window-based sub-
graphs and capturing sequential patterns through LSTM, our model effectively traces the
dynamic evolution of user interactions. Furthermore, FLAD employs FedAvg to enable
collaborative training across multiple platforms without exposing raw user data, thereby
preserving privacy while improving model generalization in heterogeneous, distributed
environments.

3 Methodology
3.1 Overview of the distributed collaborative system architecture
Due to the complexity of social networks and the heterogeneity of cross-platform data,
traditional centralized anomaly detection methods often face challenges related to com-
putational efficiency and data storage. To address this issue, this paper proposes a cross-
social platform distributed anomaly behavior detection method, FLAD, whose core idea is
to enhance the overall anomaly detection capability through collaboration between multi-
ple social networks. Each social network first performs local anomaly behavior detection
and then, through model parameter aggregation, achieves global anomaly detection across
platforms. The main operational mechanism involves each social network detecting lo-
cal user behavior data using an anomaly detection model based on sliding windows and
GCN, providing data support for subsequent global detection. Then, each social network
shares its local model parameters with the global model, using a decentralized information
transmission and processing approach. After the global model is updated, the parameters
are distributed back to the clients, enabling local model updates and improving the over-
all detection capability. Figure 1 illustrates the architecture of the Cross-Platform-Based
Distributed Anomaly Behavior Detection Method, FLAD.

3.2 Subgraph partitioning method based on sliding window
We first apply a sliding window approach to segment the user behavior knowledge graph
in the social network into subgraphs. For each time window, we construct a sequence of

Figure 1 Architecture Diagram of FLAD

Xing et al. EPJ Data Science (2025) 14:66 Page 6 of 21

Figure 2 Flowchart of Subgraph Partitioning Based on Sliding Window

temporal adjacency matrices and perform zero-padding for missing nodes to achieve di-
mensional alignment. Meanwhile, spectral clustering is introduced to optimize the model
parameters. Based on this, we initialize the hidden states of the nodes and dynamically
adjust their weights to ultimately generate the representation vector for each subgraph.
The detailed process is illustrated in Fig. 2.

First, the social network is formalized as a set of temporal graphs 𝒢 = {G(t)}τt=1, where
G(t) = {V (t), E(t), X(t)} represents the graph structure at time t, including the node set V (t),
the edge set E(t), and the node attribute matrix X(t) ∈ ℝ

|V (T)|×d . Given a window length
T ∈ ℤ

+ and a sliding step size S ∈ ℤ
+, the subgraphs constructed by the sliding window

are defined as {𝒲}K
k=1, where K =

⌊︁
τ–T

S
⌋︁

+ 1.
In this module, we first initialize the window size and construct the first subgraph win-

dow starting from the initial time t = 1. The content is given by Eq. (1):

𝒲1 =
T⋃︂

t=1

G(t) (1)

The nodes and edges satisfy Eq. (2) and Eq. (3), and then the window slides with a step
size S. The k-th subwindow is defined as Eq. (4):

V𝒲1 =
T⋃︂

t=1

V (t) (2)

E𝒲1 =
T⋃︂

t=1

E(t) (3)

𝒲k =
(k–1)S+T⋃︂

t=(k–1)S+1

G(t), ∀k ≥ 2 (4)

In our framework, we adopt a hybrid sliding window mechanism that combines data-
driven parameter optimization and empirically informed configuration. Specifically, the
window length T is automatically optimized using a spectral clustering-based strategy,
which adaptively segments the behavioral graph sequence based on structural similarity
and density patterns. This optimization ensures that each window captures relatively ho-
mogeneous interaction dynamics.

Meanwhile, the sliding step size S is fixed to 1 in our implementation, based on prior
empirical observations. This setting ensures maximal overlap between adjacent windows,
which helps preserve fine-grained temporal continuity and mitigate the loss of global be-
havioral context. We further discuss the impact of this choice in our ablation studies. Next,

Xing et al. EPJ Data Science (2025) 14:66 Page 7 of 21

for each window 𝒲k , we construct a temporal adjacency matrix sequence. The specific
process is given by Eq. (5):

Ak = [A(1), A(2), . . . , A(T)] ∈ℝ
T×N×N (5)

where N = max1≤t≤T |V (t)|, Missing nodes are filled with zeros to maintain dimensional
consistency. Then, we determine the window parameters through spectral clustering op-
timization. First, we compute the temporal similarity matrix by Eq. (6):

∑︂

ij

= exp(–γ ∥ϕ(G(i)) – ϕ(G(j))∥2
2) (6)

where ϕ(·) is the graph topological feature extraction function. Next, we solve the eigen-
value equation

∑︁
v = λv and take the top p largest eigenvectors to construct an embed-

ded space. Finally, we use K-means clustering to determine the optimal window length, as
given in Eq. (7):

T∗ = arg min
T

⌊τ /T⌋∑︂

i=1

∑︂

G(t)∈Ci

⃦
⃦ϕ

(︁
G(t) – μi

)︁⃦⃦2 (7)

To maintain continuity between subgraphs, we initialize hidden states for overlapping
nodes, as described in Eq. (8):

x(k+1,0)
v = σ (Wtxk,T

v + ct) (8)

where Wt ∈ℝ
dh×dh is the transition matrix, and x(k+1,T)

v represents the final state of window
k. Then, we define the temporal decay function ρ(t) = e–βΔt , which dynamically adjusts
edge weights according to Eq. (9):

Ã(t)
uv = ρ(tuv – t)A(t)

uv (9)

where tuv represents the most recent activation time of edge (u, v), and β is the decay
coefficient. To address the potential limitation of global context loss, we incorporate sev-
eral complementary mechanisms into our framework. Specifically, we fix the sliding step
size based on prior empirical evidence, which maximizes the overlap between consecu-
tive windows and helps maintain temporal continuity. Additionally, we introduce a state
propagation module that initializes each window’s node representation using the final
state from the previous window, preserving semantic consistency across subgraph se-
quences. And we utilize an LSTM-based sequential encoder to model temporal dependen-
cies across subgraphs, allowing the framework to capture long-range behavioral dynamics.
Together, these mechanisms allow our model to mitigate the fragmentation introduced by
sliding window segmentation and maintain awareness of the global temporal context.

3.3 Anomaly behavior detection based on GCN
In this section, we use GCN to perform graph embedding learning on the partitioned
user behavior subgraphs, capturing relationships and pattern changes between nodes to

Xing et al. EPJ Data Science (2025) 14:66 Page 8 of 21

Figure 3 Flowchart of Anomaly Behavior Detection Based on GCN

improve anomaly behavior detection accuracy. Additionally, to enhance sensitivity to tem-
poral variations, an LSTM network is incorporated to model time series data and iden-
tify the evolution of user behavior patterns. Considering both temporal information and
graph structure, this method improves the model’s generalization ability and accuracy in
complex social network environments. The detailed process is shown in Fig. 3.

Next, we use a commonly adopted GCN to extract user interaction features from the
constructed temporal subgraphs. In a single operation of GNN, node information propa-
gation and feature aggregation are two key steps, as shown in Eq. (10) and Eq. (11). These
steps allow the network to capture and integrate the local structural information of nodes
within the graph. By employing this approach, GNN can effectively learn node representa-
tions in the graph, providing strong feature representations for subsequent tasks. In sum-
mary, this process refines node feature representations by considering both each node and
its neighbors, enabling the model to better capture the complex structural properties of
the graph.

hl
u,nei = aggregatel+1

(︁{︁
hl

v | v ∈ Neighbor(u)
}︁)︁

(10)

hl+1
u = combinel+1

(︁
hl

u ∥ hl
u,nei

)︁
(11)

Among them, hl
u represents the hidden representation of node u at layer l, and hl

u,nei rep-
resents the aggregation of neighbor information of u at layer l. The functions aggregatel(·)
and combinel(·) correspond to the aggregation and update operations at layer l, respec-
tively.

The graph neural network first maps the graph data to the frequency domain for convo-
lution operations and then maps it back to the node space. The specific process is shown
in Eq. (12):

Z(l+1) = Act
(︂

D̃–1/2ÃD̃–1/2ZlW l
)︂

(12)

Among them, Zl represents the hidden representation of nodes at layer l in the GCN
model, Ã = A + I is the adjacency matrix with self-loops added, D̃ =

∑︁N
i=1 Ãii is the de-

gree matrix of Ã, and Act(·) is the activation function. It is important to note that when

Xing et al. EPJ Data Science (2025) 14:66 Page 9 of 21

processing dynamic network data, not only do nodes have their own intrinsic meanings
and attributes, but the edges or relationships connecting them also carry meaningful fea-
tures and attributes. By performing sequential operations of graph embedding layers and
semantic attention, hierarchical feature representations for each node can be extracted.
Specifically, the GNN layer first obtains the initial representations of all nodes, then uses
semantic attention to aggregate these representations to form the final node embeddings.
This process considers not only the information of the nodes themselves but also the at-
tributes and significance of the edges, as well as the interactions between nodes. This
enables a more comprehensive understanding of the dynamics and complexity of social
networks.

Both edge and node information should be fully utilized when constructing network
structures and attribute feature extraction mechanisms. The method uses Eq. (13) to map
the original graph to its line graph, where edges serve as the fundamental units of analysis
in this transformed network.

Rij =

⎧
⎨

⎩
1, si,from = sj,from or oi,to = oj,to

0, otherwise
(13)

Where si,from is the source node of edge i, and oi,to is the target node of edge i. Then,
Eq. (14) is used to extract the corresponding features on the line graph.

Z(l+1)
E = Act

(︂
D̃–1/2

E ẼD̃–1/2
E Zl

EW l
E

)︂
(14)

Two sets of GCNs are used to extract features from the original graph and its corre-
sponding line graph, respectively, and then integrate them. After extracting these two
types of information, the framework concatenates them and applies a linear transforma-
tion to integrate user behavioral and semantic information into the embedding process.
This enhances the implicit representation and improves both the information content and
the accuracy of the embedding.

By integrating LSTM and GCN, this method can comprehensively analyze users’ be-
havioral and semantic features over time in social networks. This not only captures the
time-varying characteristics of user behaviors but also provides a deeper understanding
of network dynamics and richer information for detecting anomalous behaviors. These
features are integrated into a global representation vector using a read function, which fur-
ther enhances the model’s ability to accurately reflect the network’s evolution over time by
incorporating temporal information. This approach is introduced to improve the model’s
performance on dynamic social network data, enabling it to identify and predict anoma-
lous behavior more effectively.

This paper utilizes a readout function to extract representation vectors of all entities,
relationships, and temporal information from the current subgraph representation space
Uv ∈ℝ

m×d , ultimately obtaining the overall representation vector of the graph st ∈ ℝ
d . At

time t, for the subgraph Gt = (Xt , At), in the initialization step, a graph neural network
is used to extract users’ behavioral and semantic features. Then, a readout function is
applied to obtain a global feature representation st . The global representation st is then
used as input to a LSTM network at time t. During the model training phase, a variation
loss function is introduced to impose constraints on the features extracted by the LSTM,

Xing et al. EPJ Data Science (2025) 14:66 Page 10 of 21

integrating dynamic feature variations in vector form. The specific process is shown in
Eq. (15):

L1 =

⃦⃦
⃦⃦
⃦

yt –
1

t – 1

t–1∑︂

i=1

yi

⃦⃦
⃦⃦
⃦

2

(15)

This loss function is designed to ensure that the model generates a representation vector
that, when combined with the time series information, is as close as possible to the average
of all previously generated vectors.

In this method, the subgraph information of the social network is first encoded into a
distributed representation vector by an encoder (Encoder1). This vector is then used to
train a decoder (Decoder) to efficiently extract key information from the global vector.
The generated vector is subsequently encoded again by an encoder (Encoder2), which has
a similar structure to Encoder1, to further optimize model performance. By comparing the
difference between the representation vectors output by Encoder1 and Encoder2, this dif-
ference can be directly utilized as a basis for detecting anomalous behavior. This approach
enables the model to efficiently identify anomalous data without requiring direct access to
previous data distributions. The specific formulations are shown in Eq. (16), Eq. (17) and
Eq. (18):

L2 = ∥Decoder(Encoder(X)) – X∥2 (16)

L3 = ∥Encoder(Decoder(Encoder(X))) – Encoder(X)∥2 (17)

Scoreanomaly = ∥Encoder(Decoder(Encoder(X))) – Encoder(X)∥2 (18)

3.4 Parameter update mechanism in federated averaging
After completing the initialization of the global model, the server distributes it as the base
model. The global model is transmitted to each social network platform through a secure
communication protocol, ensuring that every platform receives the same initial model.
The detailed process is shown in Fig. 4.

Throughout the model training process, we adopt the FedAvg [13] method to handle
large-scale data through a client-side distributed training strategy. Each client trains the
model locally and uploads the trained model parameters to the server. The server aggre-
gates the parameters from each client using a weighted averaging approach to update the
global model. Through this method, the server and clients utilize a synchronous parameter
server to update model parameters, accelerating model convergence and improving per-
formance. After completing the initialization of the global model, the server distributes it
as the base model, ensuring that each platform receives the same initial model. First, when
detecting real user behavior data in local social networks, local differential privacy is ap-
plied to perform a noise injection operation on the local user behavior data. The specific
process is given in Eq. (19).

len(bnoise
i) = ε · len(bi) (19)

Where bi represent the true behavior of user i, and bnoise
i represent the user behavior

that did not occur, which is generated through noise injection. Together, they form the

Xing et al. EPJ Data Science (2025) 14:66 Page 11 of 21

Figure 4 Flowchart of the Parameter Update Mechanism in FedAvg

behavior set Δi of user i. The parameter ε controls the proportion of noise data added. A
higher proportion improves privacy protection but impacts model performance. Through
experiments, it is found that when ε achieves a good balance between privacy protec-
tion and performance preservation, the anomaly detection performance of user behav-
ior improves. When ε ∈ (0.25, 0.35), it can simultaneously achieve privacy protection and
enhance anomaly detection performance. First, a server and m participants are defined,
where each participant owns its dataset Di. Given the server’s initialized model parame-
ters ω, the global objective function F(ω) is obtained by aggregating the objectives Fi(ω)

of each local participant. Specifically, in each training round with M social network plat-
forms participating in federated learning, the local update for participant m is computed
based on Eq. (20):

gm = ΔFM(ωz) (20)

Where ωz is the global parameter downloaded from the server in round z, and each
participant updates its local parameters according to Equation (21):

∀m,ωm
z+1 ← ωt – ηgm (21)

The server then aggregates the local parameters uploaded by all participants and per-
forms a weighted average using the FedAvg method, as shown in Eq. (22):

ωz+1 ←
M∑︂

m

nm

n
ωm

z+1 (22)

Among them, nm is the data volume of the m-th participant, and ωz+1 is assigned to each
participant in round (z + 1).

Xing et al. EPJ Data Science (2025) 14:66 Page 12 of 21

The above training process is repeated until the global model loss function reaches its
minimum, as shown in Eq. (23), and is used as the global model.

F(ω) =
N∑︂

i=1

|Di|
D

Fi(ω) (23)

Among them, D is the total size of all participants’ datasets, given by D =
∑︁N

i=1 |Di|. The
local objective function Fi(ω) is the loss function defined on the dataset Di. The aggre-
gation process essentially follows the idea of FedAvg: in each round, the client performs
several gradient descent updates on the local dataset, and then the server-side performs
weighted averaging according to the amount of data to obtain new global model param-
eters. As participants continue to perform local optimization and global aggregation, the
loss function F(ω) will gradually converge to the optimal solution. This occurs because,
in each iteration, the global aggregation optimally combines local solutions, allowing the
model to progressively approach the optimal global solution, ultimately resulting in the
unified global model after aggregation.

4 Experiments
This paper selects several baseline models from the server-side model initialization per-
spective and evaluates their performance on two real-world datasets. Additionally, an ab-
lation study is conducted on the proposed FLAD model to demonstrate the effectiveness
of the federated learning framework for anomaly behavior detection.

4.1 Experiment setting
Data Set: We conduct experiments on real-world datasets, Epinions and Digg, to verify
the effectiveness of the FLAD model.

Epinions Dataset: It is a signed social network where users can express trust or dis-
trust toward others. The dataset contains 75,879 nodes and 508,837 edges, representing
user-to-user relationships and review interactions. Similar to Digg, this dataset includes
structural information, but it is not labeled.

Digg Dataset: This dataset collects social interaction data from the Digg news-sharing
platform. It consists of approximately 7,708,000 nodes and 5,900,000 edges, capturing user
activities such as sharing, commenting, and voting on news articles. The dataset includes
structural and attribute information, and it is not labeled either.

Evaluation Metric: In this paper, we use F1-score as the performance metric for our
experiment. This metric represents the harmonic mean of precision and recall, with a
maximum value of 1 and a minimum value of 0. It effectively reflects the accuracy of the
proposed algorithm. The calculation formula is given in Eq. (24):

F1-score =
2 × Precision × Recall

Precision + Recall
(24)

where Precision refers to the proportion of correctly classified positive samples among
all predicted positive samples, and Recall refers to the proportion of correctly predicted
positive samples among all actual positive samples. The formulas for Precision and Recall
are given in Eq. (25) and Eq. (26):

Precision =
TP

TP + FP
(25)

Xing et al. EPJ Data Science (2025) 14:66 Page 13 of 21

Recall =
TP

TP + FN
(26)

where TP (True Positives) represents the number of correctly predicted positive samples,
FP (False Positives) represents the number of misclassified samples predicted as positive,
and FN (False Negatives) represents the number of actual positive samples misclassified
as other classes.

Baseline Models:We select several classical graph embedding models as baseline models
and evaluate the proposed FLAD model’s performance on two real-world datasets.

• DeepWalk [50]: A classic graph representation learning algorithm that utilizes
random walks to obtain node context and applies the skip-gram algorithm for
learning node representation vectors.

• Node2Vec [51]: An improved version of the DeepWalk method that introduces biased
search strategies.

• GraphSAGE [52]: This method employs a skip-gram-based loss function to achieve
unsupervised learning.

• NetWalk [53]: This method uses reservoir sampling to preserve dynamic graph
information and leverages deep autoencoders and clique embedding for node
representation learning. In the original work, streaming means were used to score
edge anomalies.

Parameter Settings: To verify the accuracy of the proposed federated learning-based cross-
social network anomaly behavior detection model, we randomly select three-quarters of
the data as the training set, while the remaining one-quarter is used as the test set. Since the
original datasets do not contain anomaly labels, we apply anomaly injection on Epinions
and Digg to conduct our evaluations. We injected 1%, 5%, and 10% anomalous elements
into each dataset following commonly used strategies. To evaluate the experimental re-
sults, we compute the F1-score for each method. We set the dimension of the representa-
tion vector to 512, run each experiment 10 times, and report the average results as the final
performance. In these anomalous graphs, 0 to 3 edges are randomly chosen and replicated
30 times, simulating anomaly edge injections. The model is trained on the anomaly-free
training set and then tested on the test set to validate its structure and performance. This
method effectively evaluates the model’s capability and accuracy in detecting anomalies.
For the selected baseline models and representation learning algorithms, we execute these
algorithms on each graph to obtain edge vector representations. Next, a readout func-
tion is applied to extract information from these representation vectors, constructing a
comprehensive representation of the entire graph. Additionally, we set an initial iteration
count, where each iteration refines the model parameters based on the previous round’s
output to achieve optimal performance. After 50 iterations, the model better adapts to
the dataset, extracting more precise and representative graph embeddings. Furthermore,
noise is added to the parameter transmission process with values selected from 0, 0.1, 0.2,
0.3, 0.4, and 0.5, while the learning rate is set to 0.1, 0.05, and 0.01. The training process is
terminated once the predefined number of training rounds is reached.

4.2 Experiment result
The experimental results show that the F1-score of the proposed FLAD with the baseline
model is improved in both the Epinions dataset and the Digg dataset. The specific results
are shown in Fig. 5, Fig. 6, Table 1 and Table 2. Figure 5 and Table 1 show the F1-score

Xing et al. EPJ Data Science (2025) 14:66 Page 14 of 21

Figure 5 Performance Comparison Between FLAD and Baseline Models on the Epinions Dataset

Figure 6 Performance Comparison Between FLAD and Baseline Models on the Digg Dataset

Table 1 Performance Comparison Between FLAD and Baseline Models on the Epinions Dataset

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Netwalk 0.33892 0.34467 0.34862 0.35707 0.36082 0.36938 0.37289 0.38435 0.39898
Deepwalk 0.33265 0.3398 0.3536 0.36374 0.36972 0.37002 0.37602 0.38113 0.39070
Node2vec 0.31274 0.32377 0.33628 0.34946 0.3556 0.36043 0.37254 0.37847 0.38909
Graphsage 0.31344 0.342 0.35264 0.36711 0.37203 0.3784 0.38624 0.39562 0.40436
FLAD 0.34532 0.35313 0.36181 0.37008 0.38076 0.38441 0.3998 0.40602 0.41365

performance of FLAD with the baseline model in the Epinions dataset. Figure 6 and Table 2
show the F1-score performance of FLAD with the baseline model in the Digg dataset.

Experimental results on the Epinions dataset show that the FLAD model consistently
outperforms the other four baseline models (Netwalk, Deepwalk, Node2vec, Graph-
sage) for different data scales. The F1-score of all models improves with the increase
in the proportion of training data, suggesting that more data contributes to model per-

Xing et al. EPJ Data Science (2025) 14:66 Page 15 of 21

Table 2 Performance Comparison Between FLAD and Baseline Models on the Digg Dataset

Model 10% 20% 30% 40% 50% 60% 70% 80% 90%

Netwalk 0.34370 0.35117 0.35804 0.36550 0.36772 0.37363 0.37988 0.38619 0.38998
Deepwalk 0.33912 0.34637 0.35732 0.36682 0.37249 0.37695 0.37856 0.38268 0.39552
Node2vec 0.31612 0.33256 0.34335 0.35663 0.36770 0.37225 0.37863 0.38664 0.39313
Graphsage 0.32228 0.34912 0.36361 0.36802 0.37514 0.38113 0.39239 0.39887 0.40131
FLAD 0.35620 0.36109 0.36360 0.37205 0.38504 0.39024 0.39401 0.39919 0.40856

formance.FLAD is already higher than the other models initially, and the advantage of
FLAD gradually widens with the increase in the proportion of data. At 90% data propor-
tion, FLAD’s F1-score improves by 6.31% over Netwalk, 5.87% over Deepwalk, 3.68% over
Node2vec, and 2.3% over Graphsage. In particular, FLAD consistently leads at 50% and
70% data ratios.

Although FLAD performs well across all data proportions, the performance gap be-
tween FLAD and GraphSAGE slightly narrows as the data volume increases. For example,
when using 70% of the data, the difference between FLAD and GraphSAGE is 0.01356,
whereas at 80%, the gap reduces to 0.0104. This indicates that FLAD’s relative advantage
diminishes at higher data proportions. Among all baseline models, Node2Vec performs
the weakest, especially at lower data proportions, likely due to its random walk-based
strategy struggling with sparse data. In contrast, GraphSAGE, as a graph neural network-
based model, demonstrates strong performance in handling complex graph structures. It
approaches FLAD’s performance, particularly at higher data proportions. Overall, FLAD
achieves the best performance on the Epinions dataset, with its advantages becoming even
more pronounced at higher data proportions.

With the Digg dataset at 90% data scale, FLAD’s F1-score improves by 4.76% over Net-
walk, 3.30% over Deepwalk, 3.92% over Node2vec, and 1.81% over Graphsage. FLAD per-
forms consistently throughout the range of data scales. Although FLAD consistently out-
performs, the gap between it and Graphsage narrows slightly as data increases. This sug-
gests that at higher data ratios, FLAD’s relative advantage diminishes but still leads to
overall performance. Node2vec performs the weakest of all the models, especially at low
data ratios, which may be related to the fact that its strategy based on randomized wander-
ing does not work well when the data is sparse. In this experiment, the number of training
iterations of the model is set to 50, and the number of training iterations of the separate
models is set to 50. They are trained on Epinions and Digg datasets, respectively, and the
results are shown in Fig. 7.

As the number of iterations increases, both datasets show significant improvement in
accuracy, indicating that the model gradually achieves effective learning during the train-
ing process. The accuracy of the Epinions dataset (blue curve) is consistently higher than
that of the Digg dataset (orange curve), and it converges faster, with a significant improve-
ment in accuracy in the first 20 iterations. In contrast, the Digg dataset’s accuracy improves
more slowly in the early stages, but converges gradually faster in the later stages, eventually
approaching the level of the Epinions dataset. This result suggests that despite the differ-
ence in initial performance between the two data sets, the model in the Epinions dataset
demonstrates a more stable and efficient learning capability as training progresses. The
possible reason for this is that the Epinions dataset differs from the Digg dataset in terms
of the complexity of the features and data, resulting in easier learning of effective patterns

Xing et al. EPJ Data Science (2025) 14:66 Page 16 of 21

Figure 7 Relationship Between Accuracy and Number of Iterations in Model Training

Figure 8 Comparison of Accuracy Between the Initialized Global Model and the Iterated Global Model

during training. Overall, the performance of the models during training highlights the
impact of the features and complexity of the Epinions dataset on learning effectiveness.

Furthermore, our analysis suggests that the final effect of the model is correlated with
the state of the dataset itself. The Epinions and Digg datasets, although both constructed
based on real social networks, do not include the labeling of real anomalies. The anomalies
labeled in the datasets were obtained using an anomaly injection algorithm, taking into
account that a certain number of anomalous elements may also be present in the original
network. When training is performed, the model is trained on a nominal training set that
is considered to contain only normal elements. Therefore, the presence of anomalies in
the dataset itself could potentially impact the model’s effectiveness.

We conduct ablation experiments on FLAD to compare the performance of the initial-
ized global model and the unified model after aggregation via federated learning on the
Epinions and Digg datasets. The experimental results show that the accuracy of the uni-
fied model after federated learning aggregation is significantly improved on both datasets.
Specifically, on the Epinions dataset, the accuracy is improved by 20.49%, while on the
Digg dataset, the accuracy is improved by 23.13%. Figure 8 illustrates the accuracy of the
initialized global model compared to the unified model after aggregation.

Xing et al. EPJ Data Science (2025) 14:66 Page 17 of 21

Figure 9 F1-score comparison under different step sizes S on datasets

To evaluate the impact of the sliding window step size S on detection performance, we
conduct experiments on both the Epinions and Digg datasets under two settings: S = 1
and S = T/2. Figure 9 presents the F1-score variations with increasing proportions of la-
beled nodes. Across both datasets, models using S = 1 consistently outperform those using
S = T/2, demonstrating the benefit of maximum temporal overlap in preserving behav-
ioral continuity and capturing fine-grained anomaly signals. Specifically, on the Epinions
dataset, the F1-score improves from 0.345 to 0.414 under S = 1, compared to 0.290 to 0.379
under S = T/2, indicating a relative gain of approximately 8.4% at the highest labeled ratio.
Similarly, on the Digg dataset, the F1-score rises from 0.356 to 0.409 with S = 1, versus
0.300 to 0.364 with S = T/2. This consistent margin suggests that smaller step sizes are
more effective at capturing long-range dependencies and mitigating global context frag-
mentation caused by window segmentation.

This increase in accuracy may be related to repeated iterations and parameter optimiza-
tion during federated learning. In each iteration round of federated learning, the local
model is continuously updated by training on the local data, which allows the global model
to better adapt to the diversity and complexity of the data. After multiple rounds of op-
timization, the global model performs better in capturing data patterns and improving
classification performance. Overall, the iterative global model shows more stable and ef-
ficient performance, further validating the key role of iterative optimization in improving
model accuracy. In addition, we take a holistic perspective and divide the user behavior
data in the dataset by user behavior time, and randomly select a subset of 1000 to verify the
accuracy of different local social network training and compare them with the initialized
abnormal behavior detection model (k=100), the detailed results are shown in Fig. 10.

As shown, the model’s accuracy exhibits significant changes as the number of local plat-
forms involved increases. The accuracy peaks at K=50 for the Epinions dataset and the
Digg dataset. However, the accuracy leveled off as the number of participants exceeded
50 and decreased at K=1000. This phenomenon is closely related to the learning ability
of the model. When the number of participants is small, the data samples are insufficient,
resulting in limited learning ability of the model; while when the number of participants
is too large, too much data may lead to overfitting of the model, which in turn affects

Xing et al. EPJ Data Science (2025) 14:66 Page 18 of 21

Figure 10 Flowchart of Subgraph Partitioning Based on Sliding Window

the performance. Overall, the accuracies of both datasets show a similar trend, i.e., the
best performance is achieved at K=50. This result suggests that appropriately increasing
the number of local platform participants can effectively improve model performance.
However, when the number of participants is too large, the model performance may be
affected by data redundancy, leading to overfitting performance. In conclusion, the effect
of the number of local platform participants on model performance is significant, and the
reasonable selection of the number of participants during training can optimize model
performance to a certain extent, but too many participants may lead to adverse effects.
Therefore, in practical applications, choosing the appropriate number of participants is
important for improving the accuracy and avoiding model overfitting.

We analyze the computational complexity of our proposed framework. Our method in-
volves several modules with relatively high computational overhead; among these, the fol-
lowing components are the primary contributors and warrant further optimization. First,
the dual-path GCN encoders, designed to capture both structural and spectral representa-
tions of dynamic subgraphs, incur a complexity of𝒪(K(|E|d+ |V |d2)), where K is the num-
ber of subgraphs, and |V |, |E|, and d represent the number of nodes, edges, and feature
dimensions, respectively. Second, the temporal modeling using LSTM introduces an addi-
tional cost of 𝒪(Ktd2), especially pronounced as the time window size t increases. More-
over, federated training introduces non-negligible overhead, including client-side updates
of 𝒪(RMEP) and server-side aggregation of 𝒪(RMP), where R is the number of communi-
cation rounds, M the number of clients, E the number of local epochs, and P the number of
model parameters. While certain modules, such as subgraph similarity calculation and the
encoder-decoder reconstruction, are relatively lightweight and executed only once during
preprocessing, the overall computational cost of the system remains substantial. We ac-
knowledge that the current version of our framework imposes significant computational
demands, particularly in large-scale or resource-constrained environments. This moti-
vates our future research direction toward improving computational efficiency through
structural simplification, lightweight modeling, and adaptive computation strategies.

Xing et al. EPJ Data Science (2025) 14:66 Page 19 of 21

5 Conclusion
This paper conducts an in-depth study on the problem of anomaly behavior detection
across social networks. This paper conducts an in-depth study on the problem of anomaly
behavior detection across social networks. Aiming at the traditional centralized anoma-
lous behavior detection method, which has low processing efficiency and fails to use the
social network timing and graph structure information fully, we propose a cross-platform
distributed anomalous behavior detection method based on cross-platform. We propose a
cross-platform distributed anomaly behavior detection method. The method uses FedAvg
for model aggregation, which avoids the exchange of raw data and effectively improves the
effect of cross-platform collaborative learning. By combining sliding window and GCN,
the model proposed in this paper can better mine temporal data and graph structure in-
formation of social networks. The user behavior data is divided into subgraphs by sliding
window, and the GCN and LSTM models are used to learn the evolution laws of tem-
poral and behavioral patterns, significantly improving the accuracy of abnormal behavior
detection. We conducted experiments on our model on real datasets Epinions and Digg
and the results show the effectiveness of the initialized dynamic graph anomalous behav-
ior detection model. Our method improves up to 6.31% in the key performance metric
of the F1-score compared to the baseline model. In addition, we conducted ablation ex-
periments, and the results showed that the accuracy of the unified model completed by
federated learning aggregation improved over the initialized global model in both cases,
by 20.49% in the Epinions dataset and by 23.13% in the Digg dataset. Despite the positive
results of this study, data heterogeneity and imbalance issues may affect the performance
of the models, and future work could focus on optimizing the performance of the mod-
els in these complex environments. In addition, further improvement of computational
efficiency and reduction of communication costs are important directions for future re-
search.

Acknowledgements
This work is fully supported by the National Natural Science Foundation of China (62171180), in part by the Natural
Science Foundation of Henan Province (252300421237), Key Research and Development Special projects of Henan
Province (251111210900), in part by the Science and Technology Research Project of Henan Province (252102211014)
and the Key Scientific Research Project of Colleges and Universities in Henan Province under Grant (25A510011).

Author contributions
Ling Xing, Shiyu Li, Honghai Wu, Qi Zhang, Huahong Ma, Kaikai Deng, all authors contributed to the final manuscript. The
published data notes will be linked to the research article the data support.

Data availability
The datasets during the current study are available in the Digg and Epinions.

Materials availability
Not applicable

Code availability
The code reguired to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing
study.

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Xing et al. EPJ Data Science (2025) 14:66 Page 20 of 21

Competing interests
The authors declare no competing interests.

Author details
1College of Information Engineering, Henan University of Science and Technology, Kaiyuan Avenue, Luoyang, 471000
Henan, China. 2College of Information Engineering, Southwest University of Science and Technology, Qinglong Avenue,
Mianyang, 621010 Sichuan, China.

Received: 7 April 2025 Accepted: 21 August 2025

References
1. Xing L, Li S, Zhang Q, et al (2024) A survey on social network’s anomalous behavior detection. Complex Intell Syst

10(4):5917–5932
2. Lin H, Liu GA, Wu JJ, et al (2020) Fraud detection in dynamic interaction network. IEEE Trans Knowl Data Eng

32(10):1936–1950
3. Ma X, Liu F, Wu J, Yang J, Xue S, Sheng QZ (2024) Rethinking unsupervised graph anomaly detection with deep

learning: residuals and objectives. IEEE Trans Knowl Data Eng
4. Jin L, Chen Y, Wang T, Hui P, Vasilakos AV (2013) Understanding user behavior in online social networks: a survey. IEEE

Commun Mag 51(9):144–150
5. Su X, Xue S, Liu F, Wu J, Yang J, Zhou C, Hu W, Paris C, Nepal S, Jin D, et al (2022) A comprehensive survey on

community detection with deep learning. IEEE Trans Neural Netw Learn Syst
6. Cai B, Wang M, Chen Y, Hu Y, Liu M (2022) Mff-net: a multi-feature fusion network for community detection in

complex network. Knowl-Based Syst 252:109408
7. Xing L, Huang Y, Zhang Q, Wu H, Ma H, Zhang X (2024) A counterfactual inference-based social network

user-alignment algorithm. IEEE Trans Comput Soc Syst
8. Ruan ZY, Yu B, Shu XC, et al (2020) The impact of malicious nodes on the spreading of false information. Chaos 30(8):8
9. Vosoughi S, Roy D, Aral S (2018) The spread of true and false news online. Science 359(6380):1146–1151
10. Hu WB, Wang H, Qiu ZY, et al (2017) An event detection method for social networks based on hybrid link prediction

and quantum swarm intelligent. World Wide Web 20(4):775–795
11. Persia F, Helmer S (2018) A framework for high-level event detection in a social network context via an extension of

iseql. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC). IEEE, pp 140–147
12. Cheng S (2022) Research on data privacy protection technology of social network users based on differential

disturbance. Ain Shams Eng J 13(5):101745
13. McMahan B, Moore E, Ramage D, Hampson S, Arcas BA (2017) Communication-efficient learning of deep networks

from decentralized data. In: Proceedings of the 20th international conference on artificial intelligence and statistics
(AISTATS). PMLR, pp 1273–1282

14. Mu J, Zhang XC, Li YG, et al (2021) Deep neural network for text anomaly detection in siot. Comput Commun
178:286–296

15. Qasim R, Bangyal WH, Alqarni MA, et al (2022) A fine-tuned bert-based transfer learning approach for text
classification. J Healthcare Eng 2022:17

16. Al-Qurishi M, Hossain MS, Alrubaian M, et al (2018) Leveraging analysis of user behavior to identify malicious activities
in large-scale social networks. IEEE Trans Ind Inform 14(2):799–813

17. Drif A, Hamida ZF, Giordano S (2019) Fake news detection method based on text-features, pp 27–32
18. Deepak S, Chitturi B (2020) Deep neural approach to fake-news identification. Proc Comput Sci 167:2236–2243
19. Keshavarzi A, Kannan N, Kochut K (2021) Regpattern2vec: link prediction in knowledge graphs. In: 2021 IEEE

international IoT, electronics and mechatronics conference (IEMTRONICS). IEEE, pp 1–7
20. Lin H, Liu GA, Wu JJ, et al (2020) Fraud detection in dynamic interaction network. IEEE Trans Knowl Data Eng

32(10):1936–1950
21. Bahri L, Carminati B, Ferrari E (2018) Knowledge-based approaches for identity management in online social

networks. Wiley Interdiscip Rev Data Min Knowl Discov 8(5):10
22. Fan HY, Zhang FB, Li ZY, et al (2020) Anomalydae: dual autoencoder for anomaly detection on attributed networks. In:

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). IEEE, pp 5685–5689
23. Zhang L, Wu B, Dong P (2025) Attribute graph anomaly detection utilizing memory networks enhanced by

multi-embedding comparison. Neurocomputing 129762
24. Guo J, Tang S, Li J, Pan K, Wu L (2023) Rustgraph: robust anomaly detection in dynamic graphs by jointly learning

structural-temporal dependency. IEEE Trans Knowl Data Eng 36(7):3472–3485
25. Xue LG, Chen Y, Luo MN, et al (2020) An anomaly detection framework for time-evolving attributed networks.

Neurocomputing 407:39–49
26. Yasami Y, Safaei F (2018) Detecting chaotic behaviors in dynamic complex social networks using a feature

diffusion-aware model. Chaos 28(6):9
27. Lei T, Ou M, Gong C, Li J, Yang K (2024) An unsupervised deep global–local views model for anomaly detection in

attributed networks. Knowl-Based Syst 300:112185
28. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) Federated optimization in heterogeneous networks.

Proc Mach Learn Syst 2:429–450
29. Smith V, Chiang C-K, Sanjabi M, Talwalkar AS (2017) Federated multi-task learning. Adv Neural Inf Process Syst 30
30. Wang H, Yurochkin M, Sun Y, Papailiopoulos D, Khazaeni Y (2020) Federated learning with matched averaging. arXiv

preprint. arXiv:2002.06440
31. Arivazhagan MG, Aggarwal V, Singh AK, Choudhary S (2019) Federated learning with personalization layers. arXiv

preprint. arXiv:1912.00818
32. T. Dinh C, Tran N, Nguyen J (2020) Personalized federated learning with Moreau envelopes. Adv Neural Inf Process

Syst 33:21394–21405
33. Li X, Jiang M, Zhang X, Kamp M, Dou Q (2021) Fedbn: federated learning on non-iid features via local batch

normalization. arXiv preprint. arXiv:2102.07623

https://arxiv.org/abs/2002.06440
https://arxiv.org/abs/1912.00818
https://arxiv.org/abs/2102.07623

Xing et al. EPJ Data Science (2025) 14:66 Page 21 of 21

34. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A, Seth K (2017) Practical secure
aggregation for privacy-preserving machine learning. In: Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp 1175–1191

35. Li T, Sanjabi M, Beirami A, Smith V (2019) Fair resource allocation in federated learning. arXiv preprint. arXiv:1905.
10497

36. Acar DAE, Zhao Y, Navarro RM, Mattina M, Whatmough PN, Saligrama V (2021) Federated learning based on dynamic
regularization. arXiv preprint. arXiv:2111.04263

37. Zhou X, Liang W, Kevin I, Wang K, Yada K, Yang LT, Ma J, Jin Q (2025) Decentralized federated graph learning with
lightweight zero trust architecture for next-generation networking security. IEEE J Sel Areas Commun

38. Zhou J, Wu J, Ni J, Wang Y, Pan Y, Su Z (2025) Protecting your attention during distributed graph learning: efficient
privacy-preserving federated graph attention network. IEEE Trans Inf Forensics Secur

39. Li Z, Li C, Li M, Yang L, Weng J (2025) Federated graph transformer with mixture attentions for secure graph
knowledge fusions. Inf Fusion: 102954

40. Chen C, Hu W, Xu Z, Zheng Z (2021) Fedgl: federated graph learning framework with global self-supervision. arXiv
preprint. arXiv:2105.03170

41. Chen F, Li P, Miyazaki T, Wu C (2021) Fedgraph: federated graph learning with intelligent sampling. IEEE Trans Parallel
Distrib Syst

42. Ni X, Xu X, Lyu L, Meng C, Wang W (2021) A vertical federated learning framework for graph convolutional network.
arXiv preprint. arXiv:2106.11593

43. Pei Y, Mao R, Liu Y, Chen C, Xu S, Qiang F, Tech BE (2021) Decentralized federated graph neural networks. In: IJCAI
workshops

44. Zhang K, Yang C, Li X, Sun L, Yiu SM (2021) Subgraph federated learning with missing neighbor generation. In:
NeurIPS (federated learning for graphs workshop)

45. He C, Balasubramanian K, Ceyani E, Yang C, Xie H, Sun L, He L, Yang L, Yu PS, Rong Y, et al (2021) Fedgraphnn: a
federated learning system and benchmark for graph neural networks. arXiv preprint. arXiv:2104.07145

46. Zhang K, Yang C, Li X, Sun L, Yiu SM (2021) Subgraph federated learning with missing neighbor generation. Adv
Neural Inf Process Syst 34:6671–6682

47. Cai J, Zhang Y, Fan J, Ng S-K (2024) Lg-fgad: an effective federated graph anomaly detection framework. In:
Proceedings of the international joint conference on artificial intelligence

48. Jiang M, Jung T, Karl R, Zhao T (2022) Federated dynamic graph neural networks with secure aggregation for
video-based distributed surveillance. ACM Trans Intell Syst Technol 13(4):1–23

49. Usman M, Lee Y (2025) Dfdg: adaptive federated learning for dynamic graph-based traffic forecasting. Knowl-Based
Syst: 114019

50. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Proceedings of the 20th
ACM SIGKDD international conference on knowledge discovery and data mining, pp 701–710

51. Grover A, Leskovec J (2016) node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pp 855–864

52. Hamilton W, Ying Z, Leskovec J (2017) Inductive representation learning on large graphs. Adv Neural Inf Process Syst
30

53. Yu W, Cheng W, Aggarwal CC, Zhang K, Chen H, Wang W (2018) Netwalk: a flexible deep embedding approach for
anomaly detection in dynamic networks. In: Proceedings of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pp 2672–2681

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://arxiv.org/abs/1905.10497
https://arxiv.org/abs/1905.10497
https://arxiv.org/abs/2111.04263
https://arxiv.org/abs/2105.03170
https://arxiv.org/abs/2106.11593
https://arxiv.org/abs/2104.07145

	A cross-social platform distributed anomaly behavior detection method
	Abstract
	Keywords

	Introduction
	Related work
	Anomaly detection on social networks
	Federated learning

	Methodology
	Overview of the distributed collaborative system architecture
	Subgraph partitioning method based on sliding window
	Anomaly behavior detection based on GCN
	Parameter update mechanism in federated averaging

	Experiments
	Experiment setting
	Experiment result

	Conclusion
	References

