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assumptions (open and closed) can be used in the same HKB, a feature required in many domains,
such as the legal and health-care ones. In previous work, we proposed (function-free) Probabilistic
HKBs, whose semantics applied Sato’s distribution semantics approach to the well-founded HKB
semantics proposed by Knorr et al. and Lyu and You. This semantics relied on the fact that the
grounding of a function-free Probabilistic HKB (PHKB) is finite. In this article, we extend the PHKB
language to allow function symbols, obtaining PHKB®S. Because the grounding of a PHKB/S can
be infinite, we propose a novel semantics which does not require the PHKB*’s grounding to be
finite. We show that the proposed semantics extends the previously proposed semantics and that,
for a large class of PHKB', every query can be assigned a probability.

1. Introduction

Knowledge representation and reasoning in complex domains such as law [1] or health-care [27] require coping with open
domains while adopting the closed-world assumption in order to infer negative information. To this purpose, several authors proposed
languages combining Description Logics (DLs), that accommodate the former requirement, and Logic Programming (LP), that provide
the latter. Among these, we can cite Description Logic Programs [25], or Hybrid Knowledge Bases (HKBs) by [36]. In particular, the
latter combines logic program and a DL Knowledge Base following a semantics based on the logic of Minimal Knowledge with
Negation as Failure (MKNF) [29]. This formalization exhibits desirable properties: faithfulness, the preservation of the semantics of
both formalisms when the other is absent; tightness, the absence of layering of LP and DL; and flexibility, the possibility of viewing
each predicate under both open- and closed-world assumptions.

However, these proposals lack an important feature when reasoning with complex, real-world, domains: the capability of dealing
with uncertain information. Considering LP and DL separately, there are many proposals introducing probability in these logics.
Regarding LP, in the Probabilistic Logic Programming (PLP) field [44,47] there is a plethora of approaches (e.g., PRISM [51], Logic
Programs with Annotated Disjunctions [55], and ProbLog [20]) mostly based on the distribution semantics [51], where a program
defines a probability distribution over normal Logic Programs, called worlds, from which the probability of a query is obtained.
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Considering DL languages, their combination with probability theory was also amply studied, with proposals exploiting graphical
models, such as Bayesian networks [17,15], or Markov networks [24]; or reasoning with intervals of probability values, such as the
approaches such based on Nilsson’s probabilistic logic [37] (e.g., [23,31,33,12]).

A step in the direction of creating an integrating framework featuring probabilistic LP and DL can be seen in the definition
of semantics applying the distribution semantics of PLP to DLs, such as DISPONTE (for “DIstribution Semantics for Probabilistic
ONTologiEs”) [9].

Despite the number of proposals to combine probability and logics, the problem of combining complex languages exhibiting both
open- and closed-world assumptions with probability theory received some attention only in the last few years, with works such as
Bayesian Description Logic Programs [42], Probabilistic DL-Programs [32] and Probabilistic Hybrid Knowledge Bases [2]. However,
as argued by [36], the first two proposals present drawbacks when compared to MKNF-based HKBs.

In Probabilistic Hybrid Knowledge Bases (PHKBs) [2], facts of the logic programs and DL axioms may be annotated with a
probability value. PHKBs have a distribution semantics in the style of [51] based on the well-founded semantics for HKBs [27]. The
main limitation of [2] is that the LP part cannot contain function symbols.

In this paper we extend the PHKB semantics to cope with function symbols. The resulting Probabilistic HKB/Ss (PHKB'Ss) contain
both (probabilistic) LP rules and (probabilistic) DL axioms. On the line of [2], we extend the semantics based on the well-founded
MKNF semantics with the treatment of function symbols and probability. Since LP with function symbols is Turing-complete [18],
PHKB/®s are also Turing-complete, making them a full probabilistic programming language [8], thus greatly enhancing the expressive
power of PHKBs.

The main motivation behind the introduction of function symbols is to increase the expressivity of the language allowing the
representation of infinite domains and recursive data structures such as lists, trees, time, etc., similarly to what [13] did for Answer
Set Programming.

We show that, for a large class of PHKB/®, the semantics assigns a probability to every query. We do so by proving that each
query is associated to a measurable set using two operators, and their iterated fixpoint, leveraging the definition of the semantics for
non-probabilistic HKB proposed by Alberti et al. [3] for function-free HKBs and by [4] for HKBs with function symbols.

The proof exploits the fact that the probability measure for PHKBSs is the product of two measures and follows the same approach
of the proof that the semantics assigns a probability to every query for probabilistic LP with functions symbols and continuous random
variables [6]: in that case as well the probability measure of the program is the product of two measures, one for the discrete and
one for the continuous part.

The paper is organized as follows. Related work is discussed in Section 2. In Section 3, we provide some background on LP and
DLs, and their probabilistic extensions, and on MKNF-based HKBs. In Section 4, we present the iterated fixpoint definition of the
well-founded semantics for non-probabilistic HKBs. In Section 5, we introduce Probabilistic Hybrid Knowledge Bases and we prove
that their semantics is well-defined. We conclude and outline future work in Section 6.

2. Related work

Probabilistic extensions have been proposed for several of the languages that integrate DL and LP; in the following, we review
some of them. In general, as argued by [36], all these languages present drawbacks when compared to MKNF-based HKBs.

In FOProbLog [11], the knowledge base is composed of disjunctive clauses, where each disjunct is a first order formula annotated
with a probability. Probabilities act as constraints, and a model is any distribution that satisfies the constraints; in this way, the
semantics defines a probability range for a query, while our approach returns the exact probability of the query. Another important
difference regards negation. In FOProbLog, inference is performed by translating the knowledge base into a ProbLog program, fol-
lowing Stickel’s PTTP approach [53] to build a FOL theorem prover using an LP proof procedure. However, being a FOL language,
FOProbLog does not support default negation.

Description Logic Programs [25] is an intersection of DL and LP: in other words, they can be seen as the fragment of DL that can
be expressed in LP or as the fragment of LP that can be expressed in DL. While this approach achieves interoperability between the
allowed fragments of LP and DL, important expressive features are not supported: namely, default negation in LP rules, reasoning
about unknown individuals and existential quantification in consequents. On the opposite, PHKB/Ss allow the use of more expressive
DL fragments.

In Bayesian Description Logic Programs (BDLPs) [42], each rule is annotated with two values, representing the probability that
the head is true and false when the body is true; a BDLP encodes a Bayesian network where each ground atom is a node and rules
represent conditional probabilities. Compared to PHKBSs, BDLPs inherit the reduced expressiveness of the underlying language.

A translation from subsets of OWL Lite to variants of Datalog is proposed by [38], and of their probabilistic extensions to proba-
bilistic Datalog by Fuhr [22]. In particular, the OWL Lite~ language is translated to Datalog, while the more expressive OWL Lite£@
language is translated to DatalogZ@ (i.e., Datalog with equality in heads); probabilistic extensions of both DL languages are translated
to probabilistic Datalog. However, as argued by Lukasiewicz et al. [35], the supported DL fragments are the same as in Description
Logic Programs [25], which limits the expressiveness of the resulting probabilistic language.

Poole’s Independent Choice Logic (ICL) [40] combines probability and logic using the notion of choice space. A choice space is
a set of pairwise disjoint subsets of a program’s Herbrand base, called alternatives; each element of each alternative is an atomic
choice. Intuitively, in each world only one atomic choice is true for each alternative; a probability distribution is defined over the
elements of each alternative, inducing a probability distribution over possible worlds. Atomic choices can occur in rule bodies; at the
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semantic level, the effect is that in each world only some rules are selected. Compared to ICL, PHKB/S semantics defines a probability
distribution over worlds where the choices consider single facts or axioms instead of set of facts.

Lukasiewicz’s Probabilistic DL-Programs [32] integrate DL-Programs [21] with ICL: besides the choice space with its probability
distribution, they are composed of a DL ontology and a set of non-disjunctive LP rules; probabilistic extensions of both the answer
sets and the well-founded semantics of DL-Programs are given. In DL-Programs, the atoms that occur in DL axioms cannot be the
head of rules; therefore, rules cannot be used to define DL predicates, and the integration is not tight. This limitation is inherited by
Probabilistic DL-Programs, while it does not affect PHKBSs.

Lukasiewicz et al. [35] proposed a probabilistic extension of a tight integration of DL and LP based on Disjunctive DL-Programs
[34], which are composed of a disjunctive logic program and a set of DL-Lite , axioms. Answer set and well-founded semantics are
provided. Lukasiewicz et al. [35] extend Disjunctive DL-Programs by means of ICL where the LP part is restricted to normal logic
programs. In particular, a probabilistic DL-program is composed of a DL-Lite ; ontology, a normal logic program, an ICL choice
space and a probability distribution over the choice space. The probabilistic semantics defines tight lower and upper bounds for
the probability of a conditional query of the form b|a where @ and b are ground atoms, in terms of the answer sets or well-founded
model determined by the selected atomic choices. The authors also provide an anytime algorithm to approximate the lower and upper
bounds. As observed by Alferes et al. [5], DL-programs require the ontology to be decomposable into a positive and a negative part,
which is satisfied by DL-Lite 4 but restricts the applicability to general DLs; the same holds for probabilistic DL-programs compared
to PHKB'Ss. Moreover, in probabilistic DL-programs the ontology is deterministic, while in PHKB*Ss DL axioms can be probabilistic.

3. Background
3.1. Logic programs

We assume familiarity with standard First Order Logic terminology (see Appendix C). In this work, we follow the common LP
practice of denoting predicate and function symbols with alphanumeric strings starting with a lowercase letter, and variables with
alphanumeric strings starting with an uppercase letter. A literal | is either an atom a (positive literal) or its default negation ~a (negative
literal). A normal logic program P is a finite set of formulas, called clauses or rules, of the form

h<—b1,...,bn

where £ is an atom and all the b;s are literals. 4 is called the head of the clause and the conjunction b, ...,b, is called the body. If
the body is empty the clause is called a fact.

A term, atom, literal or clause is ground if it does not contain variables. A substitution 0 is an assignment of terms to variables:
0={V/t;,....,V,/t,}. The application of a substitution 6 = {V, /t,...,V, /t,} to a term atom, literal or clause r, indicated with r#0, is the
replacement of each variable V; occurring in r and in 6 with ¢,. r0 is called an instance of r. 0 is a grounding for r if r0 is ground.

The Herbrand universe U'p of a logic program P is the set of all the ground terms that can be built from the constant and function
symbols in the program, respecting the function symbols’ arities.

The grounding of a program P, indicated as ground(P), is obtained by substituting terms from the Herbrand universe U’p for the
variables in the clauses of P in all possible ways.

The Herbrand universe of a program P is finite if P does not contain function symbols, otherwise it is denumerable (if P contains
at least one constant). Therefore, if P does not contain function symbols, its grounding ground(P) is finite, while if P contains function
symbols and at least one variable and one constant, ground(P) is denumerable.

3.2. ProbLog

Among the several equivalent languages for PLP under the distribution semantics, we consider ProbLog [20], which will make
the treatment simpler.
A ProbLog program P = (R, F) consists of a finite set R of (certain) LP rules and a finite set 7 of probabilistic facts of the form

D a;,
where p; € (0,1) and g; is an atom, meaning that we have evidence of the truth of each ground instantiation a;0 of a; with probability
p; and of its falsity with probability 1 — p; (see definitions in Appendix A).
For simplicity, we assume that the atoms in probabilistic facts do not unify with the head of any rule. Note that to ensure this
property we can rewrite without loss of generality the following ProbLog program
piia.
a < body,
as
p..d.
a<d.
a < body.

These two programs are equivalent when we consider their models excluding a’.
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A grounded ProbLog program P = (R, F) differs from a ProbLog program because R and F are ground and may be infinite. Given a
ProbLog program P = (R, F), its grounding ground(P) is defined as (ground(R), ground(F)). Then ground(P) is a grounded ProbLog
program. In fact, if P contains function symbols, the grounding of R and ¥ may be denumerable.

With a slight abuse of notation, in the following sometimes we will use 7 to indicate the set of atoms a; that occur in probabilistic
facts. The meaning of 7 will be clear from the context.

In the following we briefly report notions about the semantics of ProbLog programs without and with function symbols. We refer
to Appendix E.1 for detailed description of the semantics of ProbLog programs without function symbols and to Appendix E.2 for that
of the semantics of ProbLog with function symbols.

3.2.1. The semantics of ProbLog programs without function symbols

For a ProbLog program P = (R,F) without functions symbols, ground(R) and ground(F) are finite. From the grounding
ground(P), we generate normal programs called worlds by including in a program the set of certain rules and a subset of the proba-
bilistic facts, in all possible ways. In other words, a world w is obtained by selecting or not each (ground) probabilistic fact. Call W)
the set of all possible worlds. Since F is finite, so is Wp.

Given a ground atom ¢, define function Q : Wp — {0,1} as

1 ifwkgqg
0 otherwise

Q(w) = { (€))

where v F g means that ¢ is true in the well-founded model of w (see Appendix D). The distribution of Q is defined by P(Q = 1)
(P(Q =0) is given by 1 — P(Q = 1)) and we indicate P(Q = 1) with P(q).
We can now compute P(g) as

rop= 3 I » JI a-»

weWp :wkqp::a€F ac€w p::ac€F a¢w

Example 1. The program

F ={0.3 :: connectionlsTransitive. 2)
0.2 :: edge(bill, stephanie). } 3)

R = {edge(bill,john). (@)
edge(john, stephanie). %)
connected(X,Y) < edge(X,Y). (6)
connected(X,Y) « connected(X, Z),edge(Z,Y), @)
connectionlsTransitive. } 8)

models the connections between users in a social network. bill and stephanie are directly connected (edge/2 predicate) with probability
0.2 because an interaction occurred between them. Two facts model that bill and john are friends, and so are john and stephanie. Two
users are connected if they are directly connected. Moreover, the probabilistic fact connectionlsTransitive models that connected /2 is
also the transitive closure of direct connection with probability 0.3.

This program has two probabilistic facts, so there are four worlds: one that contains both facts, one that contains none, and two
containing one each. The query connected(bill, stephanie) is true in three of them, i.e., those containing at least one probabilistic fact,
and false in the world that does not contain any probabilistic fact. The query’s probability is 0.2 X 0.3 + 0.8 X 0.3+ 0.2 X 0.7 = 0.44.

3.2.2. The semantics of ProbLog programs with function symbols
When the program contains functions symbols, ground (F) may be infinite.

Example 2 (Spillover - ProbLog). Let us consider the following ProbLog program P where

F ={0.8 :: mutated(t).
0.6 : : spillover(Y).}
R = {spillover_count(X, s(Y)) « virus(X), mutated(X), (a)
spillover_count(X,Y), spillover(Y).
spillover_count(X,0) < virus(X).

virus(t).}
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This program counts the number of spillover events of a mutated virus: if a virus is mutated, the spillover count is Y and a spillover
event happens, then the count is also Y + 1, represented as the function symbol s(Y') in the head of rule (a). Moreover, the program
defines a virus called ¢, asserts that spillover events happen with probability 0.6 and that ¢ is mutated with probability 0.8. The
grounding of F is

ground(F) = {0.6 :: spillover(0)
0.6 : : spillover(s(0))
9
0.6 : : spillover(t)
0.6 : : spillover(s(t))
10)

0.8 :: mutated(t).}

Let us introduce some terminology. An atomic choice indicates whether a ground probabilistic fact p : : f is selected or not and is
represented with the pair (f, k) where k € {0,1}. kK = 1 means that the fact is selected, k = 0 that it is not. A set of atomic choices
is consistent if only one alternative is selected for the same probabilistic fact, i.e., it does not contain atomic choices (f,0) and (f, 1)
for any f. A composite choice k is a consistent set of atomic choices. A selection ¢ (also called total composite choice) contains one
atomic choice for every probabilistic fact. A selection ¢ identifies a world w,, i.e., a logic program containing the rules R and fact f
for each atomic choice (f, 1) of 6. Let W) be the set of worlds, which may be uncountable [46].

The set of worlds w,. compatible with a composite choice k is o, = {w, € Wp | k C o}. Therefore, a composite choice identifies a set
of worlds. For programs with function symbols, o, may be uncountable.

To compute the probability of a ground atom we need to resort to a different concept. Given a probabilistic logic program P, a
ground atom ¢ and a composite choice kx, we say that x is an explanation of q if Vw € w,. : w F q. We say that a set of composite
choices K is covering for q if {w|we Wp AwE q} Cwg.

If g has a countable set K of countable explanations that is covering with respect to g, Q represents a random variable, since
{w|lweWp AwkE q} =wg € Qp. For brevity, we indicate P(Q = 1) with P(g) and we say that P(q) is well-defined according to the
distribution semantics. If the probability of all ground atoms in the grounding of a probabilistic logic program P is well-defined, then
P is well-defined.

Riguzzi [46,47] proved that any query to a sound ProbLog program has a countable set of countable explanations that is covering,
so it can be assigned a probability so that the program is well-defined.

3.3. Description logics

DLs are decidable fragments of First Order Logic used to model ontologies [10]. Usually their syntax is based on concepts and
roles, corresponding to unary and binary predicates, respectively. In the following, for the sake or simplicity, we briefly recall one
of the simplest DLs, .ALC. However, the semantics proposed in this paper can exploit any DL; see [7] for a complete introduction to
DLs.

ALC’s alphabet is composed of a set C of atomic concepts, a set R of atomic roles and a set I of individuals. A concept C is defined
by:

C ::=C,|L|T|(CNC)|(CuC)|~C|3R.C|VR.C

where C; € Cand R€R.

A TBox T is a finite set of concept inclusion axioms C C D, where C and D are concepts. An ABox A is a finite set of concept
membership axioms a : C and role membership axioms (a,b) : R, where C is a concept, R € R and a,b € I. An ALC knowledge base
O =T U A is the union of a TBox and an ABox.

DL axioms can be mapped to FOL formulas by the transformation z shown in Table 1 for the ALC DL [52]. x is applied to concepts
as follows:

7(A) = A(x)
7,(=C) = -z, (C)
r.(CnD)y = =n(C)An. (D)

7.(CuD) = =n(C)Vr. (D)
7,(AR.C) 3y.R(x,y) Am,(C)
., (VR.C) = Vy.R(x,y)— ﬂ'y(C)
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Table 1
Translation of ALC axioms into
FOL.
Axiom Translation
CCD Vx.7 (C) = n (D)
a:C 7,(C)

(a,b) : R R(a,b)

3.4. Probabilistic description logics

DISPONTE [9,57,48] applies the distribution semantics to probabilistic ontologies [51]. A DISPONTE knowledge base (KB) is a pair
O =(A,¢E), where A is a finite set of DL axioms, that we call certain, and £ is a finite set of probabilistic axioms of the form

D¢
where p; is a real number in [0, 1] and e; is a DL axiom.
As for ProbLog, from a DISPONTE KB we obtain non-probabilistic KBs by taking the certain axioms and adding a subset of the
probabilistic axioms in all possible ways. We call worlds the resulting KBs while W/, is the set of worlds.
Given an axiom g, define the function Q : Wy — {0,1} as in Eq. (1). The distribution of Q is defined by P(Q =1) (P(Q =0) is
given by 1 — P(Q = 1)) and we indicate P(Q = 1) with P(q).
We can now compute P(g) as

P@= Y I » II a-»

WEW 9 :wkqp::a€€:acw p::a€f agw

For a detailed description of DISPONTE, we refer to Appendix E.3.

Example 3. Consider the following KB, based on the social network domain of Example 1:

A = {influencer C social } an
& ={0.7 :: famousPerson C influencer a2
0.1 :: jack : famousPerson) 13)

This probabilistic DL KB models that we believe jack is a famous person (modelled by concept famousPerson) with probability 0.1,
and that famous people are influencers with probability 0.7. Finally, the KB models that an influencer is a social person. As in
Example 1, there are 4 worlds: one containing both axioms from &£, one containing none of them, and two containing one each.
All the 4 worlds also contain the axiom in .A. The query jack : social is true only in the one containing both axioms from &, so
P(jack : social) =0.7x0.1 =0.07.

3.5. MKNF hybrid knowledge bases

The Minimal Knowledge with Negation as Failure (MKNF) logic [29], inspired by several works [28,45] on epistemic query
answering on non-monotonic databases, supports epistemic queries on logic programs.

The MKNF formula is a First Order Logic formula (see Appendix C) augmented with the modal operators K and not, i.e., the same
of formula (C.1) with the additional alternatives Ky and not y.

Hybrid Knowledge Bases [36], which integrate DL and LP in one formalism, adopt MKNF as its semantical foundation. [36] point
out that MKNF-based Hybrid Knowledge Bases possess desirable properties that competing languages lack, at least in part: faithfulness,
i.e., the semantics of each formalism is preserved when the other is absent; tightness, i.e., the LP and DL portions of a knowledge base
do not need to be in separate layers; flexibility, i.e., both the open and closed world assumption can be employed in the definition of
the same predicate; and decidability.

Definition 1. A Hybrid Knowledge Base (HKB) is a pair H = (P, O), where P is a normal logic program (Section 3.1), possibly with
function symbols, and O is a DL KB (Section 3.3).

An HKB (P, O) is positive if no negative literals occur in P. An HKB (P, O) is ground if P is ground. The grounding of an HKB (P, O)
is given by (O, ground(P)), where the constants used in the grounding are those appearing in (P, O).

Note that, differently from the definition by Motik and Rosati [36], disjunctions are not allowed in LP rule heads.

In the rest of the paper, when we say that a HKB H| = (O, P) is a subset of a HKB H, = (O,, P,) (H, € H,), we mean that
0, C 0, and P, C P,. For a given HKB H = (P, 0), an atom in P is a DL-atom if its predicate occurs in O, a non-DL-atom otherwise.
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Definition 2 (DL-safety). An LP rule is DL-safe if each of its variables occurs in at least one positive non-DL-atom in the body; a HKB
is DL-safe if all its LP-rules are DL-safe.

A transformation can be defined from a HKB H = (P, O) to an MKNF formula by extending the standard transformation = for DL
axioms (Table 1) to support LP rules:

if r is a rule of the form h < ay,...,a,,~b;,...,~b, where all g; and b ; are atoms and X is the tuple of all variables in r, then
x(r)=VX(Ka; A...AKa, Anotb; A...A...notb, DKh)

#(P)= N\, cp 7(r)

z((P,0)) =Kn=(0O) A n(P)

HKB allow to reason with both closure assumptions, as the following example shows.

Example 4 (Viral Marketing). In a marketing campaign a company wants to grant discounts to customers in a social network, maximiz-
ing the return on their investment by avoiding to assign discounts to loner customers, who are less likely to talk to other people about
the company products, making the discount ineffective. However, due to fair competition laws, such discounts cannot be granted
to people considered influencers, in order to avoid surreptitious advertising. People are considered loner if they are not known to
be social and in our case being social means being connected to at least an influencer. This requires the closed world assumption
using, for example, default negation of LP. If direct connections (say, the social network’s friendship relation) are represented by a
directed graph whose nodes are people, connections can be modelled as the transitive closure of direct connections, which is also
easily computable in LP. However, the user may want to model that a person is connected to an unknown influencer; this is not
possible in logic programming, but it is supported in description logics. This scenario cannot be modelled by LP or DL alone; it needs
both.

A domain involving two users, bill and stephanie, can be modelled with the following HKB, which we will use as a running example.

loner T ineffective person(bill).

dconnected.influencer C social influencer(stephanie).

loner(X) « person(X), ~social(X). connected(X,Y) « edge(X,Y).
discount(X) < person(X), ~ineffective(X). connected(X,Y) < connected(X, Z),
edge(bill, stephanie). edge(Z,Y).

This HKB models that a loner person is ineffective for the marketing campaign, that a loner person is someone not social, and that
someone is social if they are connected with an influencer.

Suppose that we do not know any influencer of the network, but we know that bill is connected with at least one influencer; this
cannot be represented in LP alone, but in DL we can specify

bill : Aconnected.influencer

If we add this axiom to the above HKB and we remove the facts about stephanie, bill still remains eligible for discount, even if we do
not know the identity of the influencer.
The MKNF transformation of this HKB is:

Kz(O)Az(P)=
KX : (ineffective(X) C loner(X))A
VX : (social(X) C 3Y : (connected(X,Y) A influencer(Y))))A
VX : (Kperson(X) Anot social(X) D Kloner(X))A
VX : (Kperson(X) Anot ineffective(X) D Kdiscount(X))A
Kedge(bill, stephanie) A K person(stephanie) A
K person(bill) A Kinfluencer(stephanie) A
VX.,Y : (Kedge(X,Y) D Kconnected(X,Y))A
VX.,Y,Z . (Kconnected( X, Z) AKedge(Z,Y) D Kconnected(X,Y))A
VX : (Kperson(X) A Kinfluencer(X) D Ksocial(X))

The MKNF transformation defines a semantics for HKBs: MKNF formulas can have two-valued [29] and three-valued [27] se-
mantics, so the semantics of an HKB can be defined as the (two or three-valued) semantics of MKNF formula resulting from the
transformation. The three-valued MKNF semantics, which is more relevant to our work, is recalled in Appendix G.

3.6. Well founded HKB semantics

Knorr et al. [27] defined the well-founded model of an MKNF formula as the MKNF model Appendix G that, intuitively, leaves as
much as possible undefined. In particular, the authors define a “more knowledge derivable” relation between MKNF interpretation
pairs: (M, Ny) >, (M,, N,) iff M| € M, and N, C N,. An HKB’s three-valued MKNF model (M, N) that is minimal w.r.t. >, (i.e.,
if (M, N,) is also a three-valued model, then (M, N|) >, (M, N)) is defined to be a well-founded model. Not all HKBs have a unique
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Py = 0 Ny = KA(H)

P, = {edge(bill, stephanie), N, = {edge(bill, stephanie),
person(bill), person(bill),
influencer(stephanie), influencer(stephanie),
connected(bill, stephanie), loner(bill), discount(bill),
social(bill), person(stephanie), connected(bill, stephanie),
social(stephanie) } social(bill), ineffective(bill)

person(stephanie),
social(stephanie)}

P, = P, N, = {edge(bill, stephanie),
person(bill),
influencer(stephanie),
discount(bill),
connected(bill, stephanie),
social(bill), person(stephanie),
social(stephanie)}

P; = N, = {edge(bill,stephanie), N3 = N,

person(bill),
influencer(stephanie),
discount(bill),
connected(bill, stephanie),
social(bill), person(stephanie),
social(stephanie)}

P,= P, =P, N, = N; =N,

Fig. 1. Building of P, and N,, for Example 4, step by step.

well-founded model; MKNF-coherent HKBs [30] have a unique well-founded model that is characterized by a partition of the atoms
that occur in rules. We present this class below.

Knorr et al. [27] consider only DL-safe H = (P, O) because they want to disallow infinite sets of individuals. The grounding of
a DL-safe HKB without function symbols is finite. Note that, if an HKB is DL-safe it has the same two-valued MKNF models of its
grounding [36]. In the following, we assume that the HKB H is obtained by grounding.

The set of known atoms of H, KA(H), is the set of all the atoms appearing in P.

Definition 3. A partition of KA(H) is a pair (P, N) such that P C N CKA(H); (P, N) is exact if P= N.

Intuitively, P is a set of true atoms and N a set of true or undefined atoms. Given S C KA(H ), the objective knowledge of O with
respect to S is the set

OBy s ={x(O)}US a4

The operators Ry, Dy and Ty derive atoms that are consequences of a positive HKB H and a set .S’ of atoms. Ry (.S) is the set of
immediate consequences due to rules, i.e., the heads of rules in P whose bodies are composed of atoms that belong to S; Dy (.S)
is the set of immediate consequences due to axioms, i.e., the atoms from KA(H) entailed by OBy, ¢; and Ty (S) = Ry (S)U Dy (.S).
Given an HKB H and a set of atoms .S C KA(H), the following transformations, which yield positive knowledge bases, are defined:
the MKNF transformation H /S is (O, P/S), where P/S is the set of rules & < ay,...,a,, such that there exists in P a rule h «
aiy,...,a,,~by,...,~b, with {b;,...,b,} NS =@, and the MKNF-coherent transformation H//S is (O, P//S), where P//S is the set
of rules h < ay, ..., a,, such that there exists a rule h < ay, ..., a,,~by,...,~b, in P with {b,,...,b,} NS =@ and OB( ¢ ¥ ~h.

Since, as shown by [27], T} is monotonic if H is a ground positive HKB, the following transformations of sets of atoms are well
defined: ' (S) = fp(Ty / ) and F’H (S)=Ifp(Ty /) ) Using these transformations, the sequences of sets of atoms P and N are defined
as follows: Py =, Ny =KA(H), P, =Ty (N,) and N,,,, =", (P,), P,,={JP;, N, =[N;.

The pair (P,,,N,,) is called H'’s alternating fix-point partition.

Example 5. Fig. 1 shows the computation of the alternating fixpoint partition for the HKB of Example 4.
The HKBs such that the alternating fix-point partition defines a three-valued MKNF model are called MKNF-coherent [30].

Definition 4 (MKNF-coherent HKB, Definition 10 from [30]). An HKB H is MKNF-coherent if (Ip,Iy), where Ip ={I | IFOBgyp }
and Iy ={I|IF OBO,Nw }, is a three-valued MKNF model of H.

Note that we use here a slightly different definition with respect to that given by Liu and You [30] since they adopt a different
syntax in the rules’ definition, postponing the K operator to every positive literal. In this article, for simplicity, we assume the presence
of the operator.
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For MKNF-coherent HKBs, the model determined by the alternating fix-point partition as in Definition 4 is the unique well-founded
model.

Theorem 1 (Unique well-founded model of an MKNF-coherent HKB, Proposition 2 from [30]). If H is an MKNF-coherent HKB, then it has
the unique well-founded model ({1 | I F OBQPm W{IT|TE OBO,Nw})

4. Iterated fixpoint semantics for HKBs with function symbols

In the original HKB language, function symbols are not allowed. However, this is a feature that is useful in many domains, as
shown in Example 2, that describes the behavior of a virus, which can mutate and spillover may happen due to each mutation.

Alberti et al. [4] extended the HKB syntax with function symbols and presented an iterated fixpoint semantics for this new
language (HKBS). They proved that the semantics coincides with that of Knorr et al. [27] and Liu and You [30] in the case of HKBs
not including function symbols, and therefore can be considered an extension of that semantics to the case with function symbols.

Definition 5. An HKB"S H is a tuple (P,0) where P is a logic program that may contain function symbols and O is a DL KB. A
grounded HKB' differs from an HKB'S because P is ground and may be denumerable. The grounding ground(H) of an HKB"S H is
(ground(P), O) where the grounding uses all the symbols from (P, O). ground(H) is a grounded HKBS.

Definition 6. A 2-valued interpretation I for an HKB*S H is a subset of KA(H).

Two-valued interpretations form a complete lattice where the partial order is defined as I/ < J if I C J. For a set T of two-valued
interpretations, the least upper bound and greatest lower bound always exist and are respectively

ub(T) = U I
IeT
and
gb(y= (1.
IeT

The top element is KA(H) and the bottom element is @.

Definition 7. A 3-valued interpretation I for an HKB™ H is a pair (I, Iy) where I and I are subsets of KA(H). T is consistent
if I and I are disjoint, i.e., Ir NIz =0

Given a 3-valued interpretation I = (I, Ir), an atom q is true in it if a € I, false in it if a € I, undefined in it otherwise.
Moreover, let Ip =1y and I = I.

Three-valued interpretations form a complete lattice where the partial order is defined as (I, I;) < (1) ,I’T) if Iy C I} and
IpClI } For a set T of three-valued interpretations, the least upper bound and greatest lower bound always exist and are respectively

lub(T)=< U = U 1F>
Up el (pdp)eT

and

glb(T):( ﬂ Ir, ﬂ 1F>
Ur.Ip)ET Ur.Ip)ET

The top element is (KA(H ), KA(H)) and the bottom element is (@, ).
We denote by Inr;!! the set of 3-valued interpretations for an HKB™ H.

Definition 8. Given a grounded HKB H = (P,0), and a 3-valued interpretation 7 = (Ir,1p) for H, we define the operators
OpTrue‘Iq : 2KAMH) _, pKAMH) and OpFalse? : OKAMH) _; oKACH) 5

. OpTruef(Tr) ={a€KA(H) | thereisa clause a < b,...,b,,~cy,...,~c, in P such that for every i (1 <i <m) b; is true in T or
b;€Tr, and forevery j (1<j<n)c;isfalseinT}uU{a€ KA(H)|OBO’,TuT, Fa}l;
. OpFalsef(Fa) = {aeKA(H) | OBOJT E —a, or, for every clause a «< by,...,b,,,~cy, ..., ~c, in P, there is some i (1 <i < m) such

that b; is false in I or b; € Fa, or there is some j (1 <j < n) such that ¢; is true in 7} N {a € KA(H)|OBg ka()\(1,uFa) 7 @}

In words, OpTrue? (T'r) represents the true atoms that can be derived from H knowing 7 and true atoms 7'r, while OpFalsef (Fa)
represents the false atoms that can be derived from H by knowing T and false atoms Fa.
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Irg = 0 Irg = 0
Ip, = {virus(t), I, = KAWH)\ Ip, \ {safe(t)}
mutated(t),
spillover_count(t,0),
spillover_count(t,s(0)),
spillover_count(t, s(s(0))),
at_least_two_spillovers(t)
)
Iy = Ir, Ir, = KA\ Iy,
Iry = Ipy Ipy = I,

Fig. 2. Iterations of the /FP" operator for Example 6.

Given an HKB"S H and a 3-valued interpretation Z, since OpTruef and OpFalse? are monotonic in their argument (see Proposi-

tions 3 and 4 in Appendix H), they both have least and greatest fixpoints. So, it is possible to define the following iterative operator
on a 3-valued interpretation 7.

Definition 9 (lterated Fixed Point for an HKB™S). For an HKB™S H, we define IFP? : Int;® — ;7 as

IFPH(T) = (Ifp(OpTruel!), gf p(OpFalsell )

By virtue of being monotonic (see Proposition 5 in Appendix H), IFPH admits a least fixpoint for each HKB"S H, which we define
as the semantics of the HKB'S,

Definition 10 (lterated fixpoint semantics for an HKB™). Given an HKB™ H, its iterated fixpoint semantics is If p(/FPH).

Example 6 (Spillover [4]). Let H = (P, O), where

P = {spillover_count(X, s(Y)) < virus(X), mutated(X),
spillover_count(X,Y).
spillover_count(X ,0) « virus(X).
at_least_two_spillovers(X) « virus(X), spillover_count(X, s(s(Y)))}
safe(X) < virus(X), ~at_least_two_spillovers(X)}
virus(t).}
O = {Jmutation. T C mutated
t . Imutation. T }

This HKB*S states that 7 is a virus and there is at least a mutation of ¢. If there exists at least one mutation for an individual, it is
mutated. We model the series of spillover events by means of predicate spillover_count. A virus is safe if it had at most one spillover.
Fig. 2 shows the computation of the iterated fixpoint semantics for the HKB*S H. Given the presence of the function symbol s(-),
the model is infinite.
Each 7, =(I7,,. IF,,), for m=1,2,3 is determined by the fixpoints of OpTrueZ » and OpFalseZ" a8 follows.

. OpTrueg) 10=0,

. 0pTruez T1= OpTrueg) 10U {virus(t), mutated(t)},

. 0pTrueZ 12= OpTrueZ) 1 1 U {spillover_count(t,0)},

. OpTrueg) 13= OpTrueZ 12 U {spillover_count(t, s(0))},

. OpTrueg) 14= OpTrueZ 1 3 U {spillover_count(t, s(s(0)))},
. OpTruez) 15= 0pTrueZ) 14 U {at_least_two_spillovers(t) },

and so on to the least fixpoint Ir,.

. OpFalseZ) 1 0=KA(H)
. OpFalseZ 1= 0pFalseZ 1L O\ {virus(t), mutated(t), safe(t)}
. OpFalseZ) 2= OpFalseZ] 1 1\ {spillover_count(t,0)}

10
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. OpFalse?0 13= 0pFalse?0 1 2\ {spillover_count(t, s(0)) }
. OpFalseZ 4= OpFalseZ 1 3\ {spillover_count(t, s(s(0)))}
. 0pFalseg} 5= OpFalseg] 1 4\ {at_least_two_spillovers(t) }

and so on to the greatest fixpoint I.

. OpTrueZ 10=0
. OpTrue’;I1 T1=1Ip,

which is the least fixpoint.

. OpFalseZ 1 0=KA(H)

. OpFalseZ 1= OpFalse;’1 L O\ {virus(t), mutated(t)}. In this case, safe(t) is kept because at_least_two_spillovers((t)) is true in Z,.
. OpFalsez 2= OpFalsez LT\
. OpFalse?1 13= OpFalse?1 12\
. OpFalseZ l4= OpFalse?] 1 3\ {spillover_count(t, s(s(0)))}

spillover_count(t,0)}

{
{
{spillover_count(t, s(0))}
{

to the greatest fixpoint I, = KA(H) \ Iy,.
For all m, it holds that

Omee;I2 tm= OpTrue;I1 Tm (15)
OpFalse?2 lm= 0pFalseZ Im (16)

so I, = I = Ifp(IFPH).

For function-free HKB"Ss, which are also HKBs, Knorr et al.’s alternating fixpoint partition and the iterated fixpoint (Definition 10)
coincide, modulo a set complement operation.

Theorem 2 (From [4]). Given a function-free HKB™S H = (P, 0), let fp(UFPH) = (I, I ). Then (I7,KA(H)\ I) is H’s alternating
fixpoint partition.

We call If p(I/FP) the well-founded model of H and we indicate it with WFM(H). If a is an atom and WFM(H) = (T . 1), we write
HEaifae Iy and H F~a if a € .. We call the well-founded model total if I U I, = KA(H).

5. Probabilistic hybrid knowledge bases with function symbols

In this section we define a language of Probabilstic Hybrid Knowledge Bases that extends the one by [2] by allowing function
symbols. The proofs of all the theorems of this section can be found in Appendix J.

A PHKB'® is composed of a ProbLog program (Section 3.2), possibly containing function symbols, and a DISPONTE knowledge
base (Section 3.4).

Definition 11. A PHKB"S H = (P, ) is composed of

+ a ProbLog program P = (R, F)
+ a DISPONTE knowledge base O = (A, &)

Sometimes it will be convenient to represent H with the 4-tuple (R, F, A, E).

Example 7 (Spillover, Probabilistic). Let us consider the following PHKB™S H = (P, ) as the probabilistic version of the HKB of
Example 6, where

R = spillover_count(X, s(Y)) < virus(X), mutated(X),
spillover_count(X,Y), spillover(X,Y).
spillover_count(X,0) < virus(X).
at_least_two_spillovers(X) « virus(X), spillover_count(X, s(s(Y)))

safe(X) « virus(X), ~at_least_two_spillovers(X)

11
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virus(t).
F =0.6:: spillover(X,Y)
A = dmutation. T C mutated
£=0.8 ::¢: Imutation. T
This PHKB"® models a series of spillover events. In particular, there is a probability of 80% that at least a mutation arises from ¢.

Moreover, the probability of a spillover to happen is 60%.

Definition 12. A PHKB" H = (P, ) is grounded if P is a grounded ProbLog program. The grounding ground(H) of a H = (P, ) is
H = (ground(P),©). ground(H) is a grounded PHKB/S.

Given a grounded PHKB™S H = (P, ©) with P = (R, F), the set KA(H) of known atoms in H is the set of all the atoms that occur
inR or F.

In order to define a probability measure for a PHKB"S, we can define a c-algebra for the PHKB'S as the product c-algebra (see
Definition 25 in Appendix A) of its LP and DL portions, as follows.

Definition 13. Given a grounded PHKB™ H = (P,0), let (Wp,Qp, yip) and (W, Qp, Hie) be the probability measures for 7 and ©
respectively. The probability measure for H is the product measure

Wi, Q45 130) = Wp X W, Qp ® Qoo pip -+ 1)

Definition 14. A world w of a PHKB’® 7{ is an element of Wy and is of the form w = (wp, wp), where wp = (R
(A E)-

F,) and we =

wr

In the definition above, R,, = R and A,, = A are respectively the set of rules and certain axioms contained in world w, while F,,
and &£, are respectively the set of probabilistic facts from 7 and of probabilistic axioms from & selected to be included in w without
their probability.

Definition 15 (Sound PHKB'S). A PHKB*S H is sound if and only if, for each world w of H, WFM(w) is total.

A query g is an atom from KA(H). The probability of a query can be defined as P(q) = u;({w | w € W, wE q}). In order for the
probability to be well defined, we have to prove that the set {w | w € Wy, w F q} is measurable, i.e., that it belongs to €;,. We do so
in the remainder of this section.

The semantics of PHKB'Ss is based on the Iterated Fixpoint semantics defined in Section 4, where two-/three-valued interpretations
are defined. In this section we need to define parameterized two-/three-valued interpretations. Basically, a two-valued parameterized
interpretation associates to each atom the set of composite choices that identify the sets of worlds where the atom is true, or false;
a three-valued parameterized interpretation associates to each atom two sets of composite choices, characterizing the sets of worlds
where the atom is true and false, respectively.

Definition 16 (Parameterized two-valued interpretations). Given a grounded PHKB'S }, a parameterized positive two-valued interpretation
T r is a set of pairs (a, ¢,) with a € KA(H) and ¢, € Q;,. Similarly, a parameterized negative two-valued interpretation ¥ a is a set of
pairs (a, ¢,,) with a e KA(H) and ¢, € Q.

Following this definition, the intuition is that (a, ¢,) means that a is true in the worlds of ¢,. On the other side (a, ¢.,) means
that a is false in the worlds of ¢,.

Parameterized two-valued interpretations form a complete lattice where the partial order is defined as % < 7 if V(a,¢,) €
J,(a,0,) € 7: ¢,C0,. For a set T of parameterized two-valued interpretations, the least upper bound and greatest lower bound
always exist and are respectively

Wb ={@ )  d)laeKAG))
TET (a,pg)ET
and
gbM={a () ¢)lacKAF)).
TET (a.)ET

The top element is {(a, Wp X W) | a € KA(H)} and the bottom element is {(a,#) | a € KA(H)}.

12
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Definition 17 (Parameterized three-valued interpretations). Given a grounded PHKB"S H, a parameterized three-valued interpretation ¥
is a set of triples (a,¢,, ¢.,) with a € KA(H), ¢, € Q4 and ¢, € Q;;. A parameterized three-valued interpretation £ is consistent if
Y(a, ¢, )EF P, NP, =D.

Parameterized three-valued interpretations form a complete lattice where the partial order is defined as % < £ if V(a,¢,.¢.,) €
F,(a,0,,0,)€ f: ¢$,C0,and ¢, C 0. For aset T of parameterized three-valued interpretations, the least upper bound and
greatest lower bound always exist and are respectively

wbM={@ |J de |J  bwlaeKarn)

IET (a.9y.00)EF  FET (a.dg.00)ES,

and

glb(T) = {(a, N [l $w1aeKAGD).
FET (a,94.0-)ESF FET (0.04:P0)EF

The top element is

{(a, Wp X We, Wp X W) | a € KA(H)}
and the bottom element is

{(a,9.9) | a € KA(H)}.

As in the case of the HKB semantics (Sect. 4), we will be interested in pairs of sets of axioms and atoms such that the objective
knowledge of the set of axioms w.r.t. the set of atoms (Formula (14)) entails an atom.

Definition 18 (. POpTrLleg(g r) and P0pFalse§(97 a)). For a grounded PHKB™ H = (R, F, A, £), a parameterized two-valued positive
interpretation

Tr={(a,0,)|a e KAH)},
a parameterized two-valued negative interpretation
Fa={(a,0,)acKAMH)},

and a parameterized three-valued interpretation

I ={(a, ¢4 ¢ pla € KAH)},
we define POpTrue’L(Tr) = {(a,7,) | a € KA(H)} where

Dy X Wo ifaeF
v, = Ua«—bl ,,,,, BuyrnClren ey €ER Niztm(s, V0, Nizt,.. ¢w,->
U ( U cekadn Ngec(@g V0 NWp X 01y | eeE})) otherwise
osfugj’cha

and POpFalseg(ga) ={(a,7.,) | a € KA(H)} where

w“(a’o))} XW@ ifaeF
(nm—bl,“ byseyoorreneR Uizt (@ VO3 ) Uizy @,

U GKAGH) Ngec b NWp X O(((e1) | eeE}})>
OB i p.oFa
m G%KCA‘éH) UgEG(qSAg U ehg) UEEE(WP X (U{ {(e,0)} ))) otherwise

OBy, GFa

Ya =

Proposition 1 (Monotonicity of POpTrueg and POpFalseg). POpTrueg and POpFalse?; are monotonic in their argument.
POpTrueZ; and POpFulsez; are monotonic so they both have a least fixpoint and a greatest fixpoint.

Definition 19 (Iterated fixed point for a PHKB'). For a grounded PHKBS 74, and a parameterized three-valued interpretation .#, let
PIFP'{(#) be defined as

13
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PIFP'(F) = {(a.d,.¢.) | (a.9,) € f p(POPTrue’l),

(a.¢.,) € gfp(POpFalse’y.)}.
Proposition 2 (Monotonicity of PIFP™). PIFPM is monotonic.

The monotonicity property ensures that PIFP™ has a least fixpoint. Let us denote If p(PIFP*) with WFMP(H). We call depth of P
the smallest ordinal § such that PIFP™ 1 § = WFMP(P).

Given a parameterized positive two-valued interpretation 7 r = {(a, ¢,|a € KA(H)} and a world w = (wp, we) of H, the projection
of I r with respect to w is the two-valued interpretation 7 r' = {a|w € ¢, }. Given a parameterized negative two-valued interpretation
Fa={(a,¢.,la e KAH)} and a world w = (wp, we) of H, the projection of F a with respect to w is the two-valued interpretation
Fa¥ = {a|lw € ¢, }. Given a parameterized three-valued interpretation % = {(a,¢,.$.,)|la € KA(H)} and a world w = (wp, wp) of
H, the projection of F with respect to w is the three-valued interpretation F% = (%%, .7 l'," ) where 71 = {(a,¢,)|(a,p,. ¢.,) € F} and
Tr = (@bl by ) € F).

Lemma 1 (Model Equivalence). For a grounded PHKB'S H = (R, T, A, &), for every world w and iteration a, we have:

IFPY 1 o = (PIFP™ 1 )
Now we can prove that PIFPM is sound and complete.

Lemma 2 (Soundness and completeness of PIFP™). For a sound grounded PHKB™S H, let PIFPM t a = {(a, %, 9% )a € KA(H)} for all a.
For every atom a € KA(H) and world w there is an iteration a, such that for all a > ay we have:
w e ¢t < WFM(w) F a 17)

w € ¢? < WFM(w) E~a (18)
Now we can prove that every query for every sound program is well-defined.

Theorem 3 (Well-definedness of the distribution semantics). For a sound grounded PHKB™S H, for every atom a € KA(H), uy({w|w €
Wy, w E a}) is well-defined.

Example 8 (Spillover, Probabilistic Query). Let us consider the PHKB/ of Example 7 and the queries q; = safe(t) and g, =
spillover_count(t, s(0)).
Tables 2 and 3 show the computation of the first iteration of the PIFP™ operator for, respectively:

1. mutation(t,Y) and mutated(r) to show how the operators deal with DL axioms.
2. safe(r) to show how the operator work with a LP rule.

For the complete computation of the first iteration of the PIFP' operator we refer to Tables from 1.5 to 1.10 in Appendix I.
In the tables, fact f is spillover(X,Y) while axiom e is

t : ImutationT.
Each column shows the sets of composite choices associated to an atom of KA(H) at each step of the inner and outer operators. In
particular, for each atom a, the line labelled #* shows the sets of composite choices .S, and S, such that S, =wy and S, =wy
where PIFP 1 a = {(a,d,, P.n)la € KA(H)}; the lines labelled TP (resp. Fa®) show the set of composite choices S, = wg, and
S.q = wg_, such that (a,0,) € POpTrue’! 16 (resp. (a,0,) € POpFalse’t 16).

PIFPH ta PIFP" 1
A covering set of explanations for g, = safe(?) is

{0}, {(f{X/1,Y /0},0)}, {(e, D, (f{X/1,Y /O}, ),(f{ X /1,Y /5(0)},0)}}

The probability of safe(t) is (0.2 + 0.4 — (0.2 0.4)) + 0.8 X 0.6 X 0.4 = 0.52 + 0.192 = 0.712, that is the noisy-or of the two first choices
(which share the world where both are not present) plus the probability of the latter choice. A covering set of explanations for
q, = spillover_count(t, s(0)) is

{{(e, ), (f{X/1.Y/0}, D}}.
The probability of spillover_count(t, s(0)) is 0.8 X 0.6 = 0.48

14
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Table 2
Iterations of the operators for mutation(t,Y), and
mutated(t).
mutation(t,Y) mutated(t)

50 N} ['N]

gr' {{eD)) 9

g7 (leDh)) {{te, D))

g {{e. D)) {{(e.D}}

g {{e.D}} {{(e,D}}

Fa'  {{(e.0)}} {4}

Fa  {{(e,0}} {{(e,0)}}

Fa*  {{(e.0)}) {{(e,0)}}

Fd' {{(e,0)}} {{(e.0)}}

s! {{e. D}, {e0}}  {{(e, D}}, {{(e,0)}}

Table 3
Iterations of the operators for safe(t).
safe(t)
F0 [/N]
gr! [}
T [/}
TP [
grt [}
I [’}
70 {0} ((f(X/1.Y/0),00))
T {@OL X /LY /0L0)) (e, D.(F (X /LY /), D.(F (X /1Y /5(0)},0)})
T U@L (X /LY /010 (e D.(F (X /1Y O}, D.(fF1X /1Y /5(0)), 0)})
Fa' {9}
Fa* {0}
Fad {4}
Fa* {9}
Fa {9}

Fa®  ({e D.(F{X/LY [0} D.(f(X/1.Y [s)}. D})
Fd {e, D.(f{X/LY [0}, D.(f{X/1.Y [50)}, D}}

7 {0} {(f{X/1.Y /0}, 00, {(e, ). (/X /1, Y O}, 1), (f{X /1. Y /5(0)}, 0)}},
He. D). (F{X /.Y /0}, 1), (F{X/1.Y /5(0)}, D}}

6. Conclusions and future work

In this article we have presented a probabilistic extension of Hybrid Knowledge Bases with Function Symbols (HKBSs) introduced
by [4], that in turn extend Hybrid Knowledge Bases by [36] with function symbols. The semantics of HKB*Ss combines LP and DLs
while exhibiting desirable properties such as faithfulness and tightness. The resulting Probabilistic HKBfSs (PHKB/s) contain both
(probabilistic) LP rules and DL axioms. PHKB/s are equipped with a semantics based on the well-founded MKNF semantics extended
with the treatment of probability. Using this semantics, we are able to assign a probability to every query to sound programs.

In the future we plan to study restrictions to make query answering in PHKB/Ss decidable and identify necessary and sufficient
conditions that ensures the soundness of PHKB/S. We will consider programs to be finitely ground ([13,14]) or having strongly
bounded term size ([50,461) which are identified as conditions ensuring decidability of logic programs.

We also plan to equip this semantics with a reasoner for computing the probability of a query given a PHKBS, extending the
SLG(O) proof procedure [5] for MKNF HKBs, which is sound and complete for the well-founded semantics. The reasoner, as intended
at the moment, will apply the SLG(O) proof procedure [5], integrating the TRILL reasoner [58,56] as the DL oracle and PITA [49]
to cope with the PLP part of the probabilistic HKB.
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Appendix A. Probability theory

In this section, we review some background on probability theory, in particular Kolmogorov probability theory, that will be needed
in the following. Most of the definitions are taken from [16] and [47].

We define the sample space W as the set composed by the elements that are outcomes of the random process we want to model.
For instance, if we consider the toss of a coin whose outcome could be heads 4 or tails ¢, the sample space is defined as W %" = { h,t}.
If we throw 2 coins, then W2¢0ins = {(h, h), (h, 1), (, h), (,1)}. If the number of coins is infinite then W ¢S = {(01,0,,...) | 0; € {h,t}}.

Definition 20 (c-Algebra). A non-empty set Q of subsets of W is a o-algebra on the set W' iff:

s WeQ
+ Q is closed under complementation: 0 € Q = 0 =Q\ w €Q
+ Qs closed under countable union: if w; € Q = | J, w; € Q

The elements of a c-algebra Q are called measurable sets or events, Q is called event space and (W, Q) is called measurable space.
When W is finite, Q is usually the powerset of W, but, in general, it is not necessary that every subset of W must be present in Q.
For example, to model a coin toss, we can consider the set of events Q" = P(W ") and {h} an event corresponding to the outcome
heads.

Definition 21 (Minimal o-algebra). Let C be an arbitrary non-empty collection of subsets of W. The intersection of all ¢-algebras
containing all the elements of C is called the c-algebra generated by C or the minimal sigma-algebra containing C. It is denoted by
o(C). Moreover, ¢(C) always exists and is unique [16].

Now we introduce the definition of probability measure:

Definition 22 (Probability measure). Given a measurable space (W ,Q), a probability measure is a finite set function y : Q — R that
satisfies the following three axioms (called Kolmogorov axioms):

cap; p(w) >0V eQ
ca u(W)=1
* a3t p is countably additive (or c-additive): if O = {w;,w,,...} € Q is a countable collection of pairwise disjoint sets, then

”(UwEO) = Zi ”(wi)

Axioms a; and a, state that we measure the probability of an event with a number between 0 and 1. Axiom aj states that the
probability of the union of disjoint events is equal to the sum of the probability of every single event. (W, Q, p) is called a probability
space.

For example, if we consider the toss of a coin, (W¢%" Qcoin_ycoiny with ucon(@) = 0, u"({h}) = 0.5, u"({t}) =0.5 and
uc°n({h,t}) =1 is a probability space.

Definition 23 (Measurable function). Given a probability space (W ,Q, u) and a measurable space (S,%), a function X: W — S is
measurable if X~ l(c)={weW | X(w)€oc}€Q, Vo 3.

Definition 24 (Random variable). Let (W ,Q, u) be a probability space and (S,X) be a measurable space. A measurable function
X : W — S is a random variable. The elements of .S are called values of X. We indicate with P(X € o) for all o € X the probability
that a random variable X has value in o, that is, #(X ~!(5)). If S is countable, X is a discrete random variable. If S is uncountable,
X is a continuous random variable.
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The probability distribution of a discrete random variable is defined as P(X € {x}) Vx € .S and it is often abbreviated with P(X = x)
or P(x).
In the following, we will need to consider the product of measurable spaces.

Definition 25 (Product c-algebra). Given two measurable spaces (W},Q,) and (W,,Q,), the product c-algebra Q; ® Q, is defined as
Q®Q =c({w; X, |w; €Q,w, €Q,}). The result of Q; ® Q, is different from the Cartesian product ; X Q, because it is the
minimal c-algebra generated by all the possible couples of elements from Q; and Q,. Q; ® Q, is also called a tensor product.

Theorem 4 (Theorem 6.3.1 from [16]). Given two probability spaces (W, ;) and (W,,Q,, u,), there exists a unique probability space
(W,Q,u) suchthat W =W, xW,, Q=Q, ® Q, and

H@) Xwy) = py(@)) - pp(wy)

for w, € Q; and w, € Q,. Measure y is called the product measure of | and u, and is denoted also by u; X u,. Moreover, for any w € Q,
let’s define its sections as

oVw)) = {w, | (w,wy) €w} @ w,) = {w, | (w,w,) €w}.

Then, both " (w, ) and ®®(w,) are measurable according to (W5, Q,, ) and (W;,Q,, ;) respectively, i.e., oV (w;) € Q, and P (w,) €
Q. (@D (wy)) and u, (@ (w,)) are well-defined real functions, the first on W, and the second on W,.
Measure u = p; X p, for every w € Q also satisfies

H(w) = / Hy(@P(wy))d py = / a0V (w))d .

W, w,

When sample spaces are countable, integrals are replaced by summations. So if both W and W, are countable, we obtain

p@)= Y m@@w)=Y mw@Dw)dy,.

wrEW, w EW
Appendix B. Set theory

A one-to-one function f : A — B issuch thatif f(a) = f(b), then a = b, i.e., no element of B is the image of more than one element
of A. A set A is equipotent with a set B if there exists a one-to-one function from A to B. A set A is denumerable if it is equipotent
to the set of natural numbers N. A set A is countable if there exists a one-to-one correspondence between the elements of A and the
elements of some subset B of the set of natural numbers. Otherwise, A is termed uncountable. If A is countable and B = {1,2,...,n},
then A is called finite with n elements. § (empty set) is considered a finite set with O elements. We define powerset of any set A,
indicated with P(A), the set of all subsets including the empty set. For any reference space .S and subset A of .S, we denote with A¢
the complement of A, i.e., S\ A, the set of all elements of .S that do not belong to A.

An order on a set A is a binary relation < that is reflexive, antisymmetric and transitive. If a set A has an order relation <,
it is termed a partially ordered set, sometimes abbreviated with ordered set. A partial order < on a set A is called a total order if
Va,b€ A, a>bor b>a.In this case, A is called totally ordered. The upper bound of a subset A of some ordered set B is an element
b € B such that Va € A, a < b. If b < b’ for all upper bounds #’, then b is the least upper bound (lub). The definitions for lower bound
and greatest lower bound (glb) are similar. If glb and lub exist, they are unique. A partially ordered set (A, <) is a complete lattice if glb
and lub exist for every subset S of A. A complete lattice A always has a top element T such that Va € A, a < T and a bottom element
1 such that Va € A, 1 <a. A function f : A — B between two partially order set A and B is called monotonic if, Va,b€ A, a<b
implies that f(a) < f(b). For an in-depth treatment of this topic see [19].

Appendix C. First order logic

A signature is a triple (X,,Z 1o Zp) where X, is a set of constants, s is a set of function symbols, each with an associated natural
number called arity, and %, is a set of predicate symbols with arity, containing the equality binary predicate ~. A term is a constant,
variable, or a function symbol applied to as many terms as the symbol’s arity. A first order formula is

vy i=true|P@ty, ... 1) wlw Ay|3x ty (C.1

where P(ty,...,t,) is called an atom, P is a predicate symbol of arity »n and the #;s are terms. In the formula 3x : y, the occurrences
of variable x in y are in the scope of the Ix quantifier; a variable not in the scope of any quantifier is free; a formula with no free
variables is closed. Common syntactic shortcuts are shown in Table C.4.

Let X be a signature and A a non-empty set called universe. Then a first order interpretation I over ¥ and A maps each ¢ € X, to
an object ¢! € A, each f € 2, to a function f1 1 A" = A (where n is f’s arity) and each p € X, to a relation p! C A" (where n is p’s
arity).
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Table C.4
Syntactic shortcuts in FOL.

formula is a shortcut for

v Vi, (o Ayn)

Vx iy —(3Ax : y)

vidy, WV,

Vi =y, W DY) Ay, D)
false —true

LRt = (t),1,)

N (1, & 1y)

Appendix D. Well-founded semantics for normal logic programs

The well-founded semantics [54] assigns a three-valued model to a normal logic program. We give here the alternative definition
of the WFS of Przymusinski [43] that is based on an iterated fixpoint.

A three-valued interpretation 1 is a pair (I, I[r) where I} and I are subsets of Bp and represent, respectively, the set of true and
false atoms. So aistruein I ifae I andis falsein T if a€ I, and ~aistruein I ifae [, andisfalsein T ifae ;. If a & I and
a & I, then a assumes the third truth value, undefined.

The set I'nt3 of three-valued interpretations for a program P forms a complete lattice where the partial order < is defined as
Iy, Ip) < Uy, Jp) if It € Jp and I, C Jp. The least upper bound and greatest lower bound are defined as lub(X) = |J;cx T and
glb(X) = ﬂle x L. The bottom and top element are, respectively, (4,%) and (13p, Bp). Let In2 be the set of two-valued interpretations.

Definition 26 ( OpTruef and OpFalsef operators). For anormal program P and a three-valued interpretation 7, we define the operators
OpTrue? : Ini2 — 12 and OpFalse? : Ini2 — Ini2 as

OpTruef (Tr) = {ala is not true in 7; and there is a clause b «< /{,...,/, in P, a grounding substitution # such that a = b0 and for
every 1 <i<n either /;0 is true in 7, or /;6 € Tr};

OpFalse;’ (Fa)= {al|a is not false in T; and for every clause b < [,,...,/, in P and grounding substitution 6 such that a = b0 there is
some i (1 <i <n) such that /;0 is false in T or /,0 € Fa}.

OpTruef and OpFalsef are both monotonic [43], so they both have least and greatest fixpoints. Let us now define an iterated
fixpoint operator.

Definition 27 (Iterated fixpoint). For a normal program P, let IFP” Int3 — Int3 be defined as

IFPP(I) = T U (Ifp(OpTrue?), gf p(OpFaise?)).

IFP? is monotonic [43] and thus has a least fixpoint If p(IFP?). The well-founded model WFM(P) of P is If p(IFPP).
If WFM(P) = (I7,If) and I; U I = Bp, then the well-founded model is called total or two-valued and the program dynamically
stratified.

Appendix E. Probabilistic semantics

In this section we describe in detail the semantics of ProbLog without function symbols (Appendix E.1) and with function symbols
(Appendix E.2), and the DISPONTE semantics (Appendix E.3).

E.1. ProbLog programs’ semantics without function symbols

Let P = (R, F) a ProbLog program without functions symbols, ground(R) and ground(F) are finite. From the grounding ground (P),
we generate normal programs called worlds by including in a program the set of certain rules and a subset of the probabilistic facts,
in all possible ways. Call W), the set of all possible worlds. Since 7 is finite, so is W) and (W5, P(W5)) is a measurable space, where
P(-) is the powerset function. Thus the measurable sets or events are the sets of worlds.

Define function pp : Wp — R as

mw= [ » JI a-»
piia€F:a€w p::a€F:agw
and function pp : P(Wp) - R as
pp(w) = 2 pp(W)
Wwew
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Then (Wp,P(Wp), up) is a probability space and yup is a probability measure.
Let Q : Wp — {0,1} the function

1 ifwkg
Ow) = { 0 otherwise (E.1)

where v F ¢ means that g is true in the well-founded model of w. We assume that each world has a total well-founded model, i.e.,
each ground atom is either true or false in the world and cannot be undefined. We call programs satisfying this property sound. This
means that if w ¥ g, q is false in the well-founded model, so Q(w) = 0 only for false atoms.

Since the set of events is the powerset, then Q™' (y) € P(W}) for all y C {0, 1} so Q is a random variable. The distribution of Q is
defined by P(Q =1) (P(Q =0) is given by 1 — P(Q = 1)) and we indicate P(Q = 1) with P(q).

So, P(q) can be computed as

P(@) = up(@ {11 = pp({wlw € Wp,wE gD = Y pp(w)
weWp 1 wkq

E.2. ProbLog programs’ semantics with function symbols

When the program contains functions symbols, ground (F') may be infinite. If ' is infinite, as in Example 2, p»(w) is a denumerable
product of numbers in (0, 1) bounded away from 1, so pp(w) =0 for any w and a different probability space must be defined.
We briefly recall that:

« an atomic choice (f, k) indicates whether a ground probabilistic fact p :: f is selected (k = 1) or not (k =0);
- a set of atomic choices is consistent if only one alternative is selected for the same probabilistic fact;

+ a composite choice k is a consistent set of atomic choices;

+ a selection o contains one atomic choice for every probabilistic fact and identifies a world w,;

« Wp is the set of worlds, which may be uncountable [46];

+ the set of worlds w,. compatible with a composite choice k is w, = {w, € Wp | k C ¢} and may be uncountable.

Given a composite choice k¥ we define function pp, as

pp(K) = H Pi H 1 —p;.

(fi.Dex  (fi,0)ex

Given a set of composite choices K, the set of worlds wy compatible with K is defined as wyg = |J,.cx ®,. Two sets K| and K, of
composite choices are equivalent if wg, = wg, , that is, they identify the same set of worlds. If the union of two composite choices x| and
K, is not consistent, then x| and «, are incompatible. We define pairwise incompatible a set K of composite choices if Vx| € K,Vk, € K,
K1 # Kk, implies that x| and «, are incompatible. If K is a pairwise incompatible set of composite choices, define y,(K) =Y, cx pp(K).

Given a general set K of composite choices, we can construct a pairwise incompatible equivalent set through the technique of
splitting. In detail, if f is a fact and « is a composite choice that does not contain an atomic choice (f, k) for any k, the split of k¥ on
f can be defined as the set of composite choices Sy , = {x U {(f,0)},x U{(f,1)}}. In this way, x and S , identify the same set of
possible worlds, i.e., v, = ®, S o and S, ; is pairwise incompatible. It turns out that, given a set of composite choices, by repeatedly

!
applying splitting it is possible to obtain an equivalent mutually incompatible set of composite choices [41].

Theorem 5 (Existence of a pairwise incompatible set of composite choices [41]). Given a finite set K of composite choices, there exists a
finite set K of pairwise incompatible composite choices equivalent to K.

Theorem 6 (Equivalence of the measure of two equivalent pairwise incompatible finite set of finite composite choices [39]). If K| and K,
are both pairwise incompatible finite sets of finite composite choices such that they are equivalent, then u.(K;) = p (K,).

For a probabilistic logic program P and a ground atom ¢, we define function Q : W — {0,1} as for the case of no function
symbols, Eq. (1). As for programs without function symbols, we consider only sound programs, i.e., programs where each world has
a total well-founded model.

Given a probabilistic logic program P, we call Q) the set of sets of worlds identified by countable sets of countable composite
choices, i.e., Qp = {wg | K is a countable set of countable composite choices}.

Lemma 3 (c-algebra of a program, Lemma 2 of [47]). Qp is a o-algebra over Wp.

We can now define a function up : Qp — [0,1]. Given K = {ky,k»,...}, consider the sequence {K, |n > 1} where K, =
{k1,....x,}. K, is an increasing sequence and so lim,_,, K, exists and is equal to [J? K, = K [16]. Consider the sequence
{K, | n 21} constructed as follows: K| = {x}, and K] is obtained by the union of K’  with the splitting of each element of
K :z _, with &, It is possible to prove by induction that K is pairwise incompatible and equivalent to K.
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Since pp(x) =0 for infinite composite choices, we can compute I‘c(K,,,) for each K’;. Considering lim,,_, uC(K;), we have the
following lemma.

Lemma 4 (Existence of the limit of the measure of countable union of countable composite choices, Lemma 3 from [47]). lim,,_, ., u.(K})
exists.

We can now introduce the definition of the probability space of a program.

Theorem 7 (Probability space of a program, Theorem 8 from [47]). Given a set of composite choices K = {k|,k,,...} and a pairwise
incompatible set of composite choices K/ equivalent to {ky,...,«,}, the triple (Wp,Qp, ip) with

up(wg) = nliﬂ.}o ﬂc(K,ll)

is a probability space.

As already reported in Section 3.2.2, given a probabilistic logic program P, a ground atom g and a composite choice «, we say that
K is an explanation of g if Vw € w,. : w F q. We say that a set of composite choices K is covering for g if {w|w e Wp AwE q} Cwg.

If ¢ has a countable set K of countable explanations that is covering with respect to ¢, Q represents a random variable, since
{wlweWp AwkE q} =wg € Qp. For brevity, we indicate P(Q = 1) with P(g) and we say that P(q) is well-defined according to the
distribution semantics. If the probability of all ground atoms in the grounding of a probabilistic logic program P is well-defined, then
P is well-defined.

E.3. DISPONTE semantics

Given a DISPONTE knowledge base (KB) O = (A, £), as for ProbLog, we obtain the set of worlds Wy, where each world is built
by taking the certain axioms and adding a subset of the probabilistic axioms in all possible ways. We can define the query random
variable as for ProbLog without function symbols (Eq. (1) in Section 3.2.1), so the sample space is Wy, the event space Q4 is the
powerset of W.

Define function py : Wy — R as

o= [[ » I a-»

piia€€acw p:la€flagw

and function pgo : P(Wy) = R as

Ho(w) = Z po(w)
WEew
Then (Wy, P(Wp), ue) is a probability space and y is a probability measure.

Given an axiom g, define the function Q : Wy — {0, 1} as in Eq. (1). Since the set of events is the powerset, then o 'ne P(We)
for all y C {0,1} so Q is a random variable. The distribution of Q is defined by P(Q =1) (P(Q =0) is given by 1 — P(Q = 1)) and we
indicate P(Q = 1) with P(q).

We can now compute P(q) as

P(q) = po(Q~ (1)) = po{wlw € Wo,wE g = Y pow)
weWg 1 wkq

Appendix F. Ordinal numbers, mappings and fixpoints

We denote the set of ordinal numbers with Q. Ordinal numbers extend the definition of natural numbers. The elements of Q are
called ordinals and are represented with lower case Greek letters. Q is well-ordered, i.e., is a totally ordered set and every subset of it
has a smallest element. The smallest element of Q is 0. Given two ordinals @ and f, we say that a is a predecessor of #, or equivalently
B is a successor of a, if @ < f. If a is the largest ordinal smaller than f, « is termed immediate predecessor. The immediate successor of
«a is the smallest ordinal larger than @, denoted as « + 1. Every ordinal has an immediate successor called successor ordinal. Ordinals
that have predecessors but no immediate predecessor are called limit ordinals. So, ordinal numbers can be limit ordinals or successor
ordinals.

The first elements of Q are the naturals 0, 1,2, ... After all the natural numbers comes w, the first infinite ordinal. Successors of @
are w + 1, ® +2 and so on. The generalization of the concept of sequence for ordinal number is the so-called transfinite sequence. The
technique of induction for ordinal numbers is called transfinite induction: this states that, if a property P(«) is defined for all ordinals
a, to prove that it is true for all ordinals we need to assume that P(f) is true V§ < a and then prove that P(a) is true. Transfinite
induction proofs are usually structured in two steps: prove P(a) for a both successor and limit ordinal.

Consider a lattice A. A mapping is a function f : A — A. It is monotonic if f(x) < f(y), Vx,y€ A, x<y.Ifa€ A and f(a)=a,
then a is a fixpoint. The least fixpoint is the smallest fixpoint. The greatest fixpoint can be defined analogously.
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We define increasing ordinal powers of a monotonic mapping f as f 10=L1, f 1 (a + 1) = f(f()) if a is a successor ordinal and
fTa=1lub({f 1 B| P <a})if a is a limit ordinal. Similarly, decreasing ordinal powers are defined as f | 0=T, f | a= f(f(a—1))if
a is a successor ordinal and f | a =glb({f | f | f < a}) if a is a limit ordinal. If A is a complete lattice and f a monotonic mapping,
then the set of fixpoints of f in A is also a lattice (Knaster-Tarski theorem [26]). Moreover, f has a least fixpoint (Ifp(A)) and a
greatest fixpoint (gfp(A)). See [26] for a complete analysis of the topic.

Appendix G. Three-valued MKNF semantics [27]

The truth of an MKNF formula y is defined relatively to a three-valued MKNF structure (I, M, N'), which consists of a first-order!
interpretation I over a universe A and two pairs M = (M, M;) and N = (N, N,) of sets of first-order interpretations over A where
M, C M and N; € N. M and M, can be seen as the sets possible worlds where y is true or not false, respectively, for the purpose
of evaluating the truth value of Ky. N and N, serve the same purpose for defining the truth value of not y .

Satisfaction of a closed formula by a three-valued MKNF structure is defined as follows (where p is a predicate, y is a formula,
the values true, undefined and false follow the order false < undefined < true, and ¢! represents the individual or relation in
the domain of discourse assigned to € by the interpretation I:

I, MNPy, ....1,)) trueiff (¢!, ..., 11) e p!
false iff (¢, ... ,t,l,) ¢ p!

I, M, N)(~y) true iff (I, M, N')(w) = false,
undefined iff (I, M, N')(y) = undefined,
false iff (I, M, N)(w) =true

I, M, N )y Ayr) min{(I, M, N')(w), (I, M, N')(y)}

(LMN)y D) true iff (1, M N)wy) < (1M N )W),
false otherwise

U, M, N)3x : ) max{(I, M, N')(y)[a/x]|a € A}

I, M, N)YKwy) true iff (J,(M, M), N)(w) =true forall J € M,
false iff (J,(M, M;), N')(y) = false for some J € M,
undefined otherwise

I, M, N')(not y) true iff (J, M, (N, N)))(y) = false for some J € N,
false iff (J, M, (N, N;))(w)=true forall J €N,
undefined otherwise

An MKNF interpretation over a universe A is a non-empty set of first order interpretations over A. An MKNF interpretation pair (M, N)
over a universe A consists of two MKNF interpretations M, N over A, with # C N C M. An MKNF interpretation pair (M, N) satisfies
a closed MKNF formula v iff, for each I € M, (I,(M,N),(M, N))(y) = true. If there exists an MKNF interpretation pair satisfying
v, then y is consistent. An MKNF interpretation pair (M, N) over a universe A is a three-valued MKNF model for a given closed MKNF
formula y if

* (M, N) satisfies y and
« for each MKNF interpretation pair (M’, N') over A with M C M’ and N C N’, where at least one of the inclusions is proper and
M'=N'if M = N, thereis I’ € M’ such that (I',(M’,N"),(M, N))(y) = false. In other words, M and N cannot be extended

while satisfying y; intuitively, the semantics implements minimal knowledge by requiring as many possible worlds as possible.

Appendix H. Details on iterated fixpoint semantics for HKB

Proposition 3 (From [4]). Given an HKB"" S H and a 3-valued interpretation I for H, OpTrue? and 0pFalse¥ are both monotonic in their
argument.

Proposition 4 (From [4]). Given an HKB"" SH, 0pTrue¥ and OpFalse? are monotonic in 1, i.e., if T and 1’ are three-valued interpretations
for H such that T <1, then

1. for each Tr CKA(H), OpTrue! (Tr) C omeef,(Tr)
2. for each Fa CKA(H), OpFalsellq (Fa)C OpFalse;l, (Fa).

Proposition 5 (From [4]). For each HKB" S H, IFPH is monotonic w.r.t. the order relation among 3-valued interpretations defined in
Definition 7.

1 A summary of First Order Logic is in Appendix C.
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Table 1.5
Iterations of the operators for virus(z), mutation(t,Y '), and spillover(t,0).
virus(t) mutation(t,Y) spillover(t,0)

0 /N] /N] 9,0
ar {9} {{(e,D}} H(A{X/1Y [0}, D}}
g {9 {{(e. D}} H(A{X/1Y [0}, D}}
CZR ()] {{(e.D}} H({X/nY [0}, D}}
gt {9 {{(e,D}} H({X/Y [0}, D}}
Fd {9} {{(c.0)}} (X /.Y /0}.0)}}
Fa  {f) {{(e.0)}} H(F{X/1,Y /0},00}}
Fa {9) {{(e,0)}} H({X/1,Y /0},0)}}
Fd' {9} {{(c.0)}} H({X/1,Y /0},0)}}

J! (9).9 {{e, DI} {0} HA{X/1,Y/0}, D}, ({F{X/1,Y/01,0)}}

Table 1.6
Iterations of the operators for spillover(t, s(0)), and mutated(t).
spillover(t,s(0)) mutated(t)

F0 [/N] 9.9
gr' HUAX/Y s}, D}} @
Tr (XY [sO)} D)} {{(e,D}}
gr {UX/LY /s0)), D)) {{te. D))
g X /LY [s0)) D) {{(e.D}}
Fa' {(FIX/1,Y/5(0)},0)}} {9}
Fa&&  {(FX/LY/50)},0)}) {{(c.0)}}
Fa&  {(FIX/1.Y/50)},0)}} {{(e.0)}}
Fd' ({(F{X/1Y/5(0)},0)}} {{(e,0)}}

s! HUHX /LY /s DL HUAX/6Y /501,003 (e, D}, {{(e, 0)}}

Table 1.7
Iterations of the operators for spillover_count(t,0), and spillover_count(t, s(0)).

spillover_count(t,0) spillover_count(t,s(0))

RN 0,0

gr! [7] /]

gt (@) [/

g {9 {{(e.1).(f{X/t.Y [0}, D}}

gt (9 {{(e. D.(f{X/1.Y /0}. 1)}}

Fd (#) )]

Fd  {#) {9}

Fd  (f) {{(e,0)}. {(f (X /1.Y /0},0)}}

Fdt  (#) {{(e,0)). {(f {X/1.Y /0},0)}}

AT N {{(e. D). (f{X /1Y /O}, D}}. {(e.0)}, {(f{X /1Y /0},0)}}

Appendix I. PIFPM operator iteration for Example 8

Let us consider the PHKBS of Example 7 and the queries q, = safe(t) and g, = spillover_count(t, s(0)).
Tables from 1.5 to 1.10 show the computation of the first iteration of the PIFP* operator. In the tables, fact f is spillover(X,Y)
while axiom e is

t : AmutationT.

Each column shows the sets of composite choices associated to an atom of KA(H) at each step of the inner and outer operators. In
particular, for each atom a, the line labelled #“ shows the sets of composite choices .S, and S, such that S, =wy and S, =wy
where PIFP? 1 o = {(a,d,, d.,)|la € KA(H)}; the lines labelled I I (resp. F a®) show the set of composite choices S, = wg, and

8., =, such that (a,6,) € POpTrue’! 16 (resp. (a,0,) € POpFalse’! 1 6).

PIFPH 1 PIFPH 1
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Table 1.8
Iterations

of the operators for spillover_count(t, s(s(0))).
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spillover_count(t,s(s(0)))

70 [/N}
T [
T [
I [/}
T e D, (f{X/LY [0}, 1), (F{X/1,Y [s0)}. D} }
gr {{(e, D, (f{X/1,Y [0}, D, (f{X /1Y /s(0)}, D}}
Fa' {4}
Fa® {4}
Fa {0}
Fat  {{(e. 0} {(f{X/1.Y/0},0)}}
Fa {0} {(f{X/LY/0},0)} {(e, ), (f{X/1,Y [0}, 1), (f{X /1Y [5(0)},0)}}
Fa® {0} {(f{X/L,Y/0},0)}, {(e, 1), (f{X/1.Y O}, 1),(f {X/1.Y [5(0)},0)} }
7 {{(e, D, (SAX/LY /0L D, (F{X/t,Y [s(O)}, D}},
{0}, {(f{X /1, Y /0},00}, {(e, D), (f{X/t.Y /O}, 1), (f{X/1.Y /5(0)},0)} }
Table 1.9

Iterations of the operators for ar_least_two_spillovers(r).

at_least_two_spillovers(t)

70 [N}
T [
Tt /]
I [/}
gt 8
TP U@ D(AX/LY [0V D.(FIX /1Y [0} D}
Tr @ D.(AX/LY [0V D.(F (X /1Y [0} D))
Fa' {0}
Fa* {0}
Fa {9}
Fa* {4}
Fa {0} {(f{1X/1,Y/0},00}}
Fa® {0} {(fIX/1Y/0}, 00}, {(e, 1), (f{X/t,Y [0}, 1), (F{X/1,Y [s(0)},0)}}
Fa' {0} {(f{X/LY/0}0)}. {(e. ). (f (X /t.Y [0}, 1).(f (X /1.Y /5(0)}.0)} }
7! {{(e. D). (f{X/t,Y/0}, D, (f{X/1,Y [s(0)}, D}},

{{e, 0} {(f{X/1.Y/0},0)0}, {(e, D, (f{X/t,Y O}, 1),(f{X /1Y [5(0)},0)}}

Table 1.10
Iterations of the operators for safe(r).

safe(t)
70 0,9
T [
g 9
gr [/]
gt 9
Tr [
T ({0 {(f{X/1.Y/0),0)}}
T ({(e,0), {(fF{X/1,Y/0},0)}, {(e, 1), (f {X /1, Y /O}, 1), (f { X /1, Y /5(0)},0)}}
Tt {@O))L {((F{X/LY/0},00}, {(e, 1), (f{X /.Y O}, 1), (f{X/1,Y /5(0)},0)}}
Fd' {0}
Fa* (@}
Fa {9}
Fa* {0}
Fa (@}
Fa® (e D.(FIX/LY [0}, D, (FIX/t,Y /50)}, D})
Fd {{e, D,(f{X/LY [0}, ), (f(X/1,Y [5(0)}, D})
7 {0} {(f{X/t.Y /0L 0}, {(e, D, (f{X/t,Y JOL, ), (f{ X /1, Y /5(0)},0)}},

{(e, ). (f{X/1,Y/O}, 1), (f{X/1,Y /5(0)}, D}}
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Appendix J. Proof for Section 5

Proposition 6 (Monotonicity of POmeeg and POpFalseg). POmeeg and POpFalseg are monotonic in their argument.

Proof. Here we only consider POpTrueZ, since the proof for POpFalseg can be constructed in a similar way. We have to prove that
if Tr| < T r, then POpTrue’l(T ry) < POpTrue’ (T ry). By definition, 7| < T r, means that
Y(a,p,) €T r,(a,0,)€Try: ¢,C0,.

Let (a, q.');) be the elements of POmeeZ}(&‘ ry) and (a,og) the elements of POmeeg(g r,). To prove the monotonicity, we have to
prove that ¢/ C 6/

If a € F then ¢}, =0 = w(((41);} X Wo- If a €KA(H) \ T, then ¢/, and 6/ are given by expressions that have the same structure
and are monotonic in ¢, and 6, respectively. Since Vb € KA(H) : ¢, C 6,, then ¢/ C0'. []

Proposition 7 (Monotonicity of PIFP™). PIFP™ is monotonic.

Proof. As above, we have to prove that, in the case that ¥, < .#,, then

PIFPM(F,) < PIFPT(F,).

By definition, £ < £, means that

V(a, ¢a7 ¢r~a) € Jl’ ((1, ea’erﬂ) € JZ : ¢a g 0(1’ ¢r~a g 9*(1‘

Let (a, ¢!, ¢! ,) be the elements of PIFP(#,) and (a, 0.0’ ) the elements of PIFP™(.#,). We have to prove that ¢, Co andg’ CO,.
This is a direct consequence of the monotonicity of POpTrue?; and POpFalse?; in £, which can be proved as in Proposition 1. []

Lemma 5 (Model Equivalence). For a grounded PHKB"S H = (R, F, A, £), for every world w and iteration a, we have:

IFPY 1 a = (PIFPM 1 a)*

Proof. We prove it by double transfinite induction. If « is a successor ordinal, assume that

IFPY 1 o — 1= (PIFP" t a = )"

For any a,8, let F* be PIFP' 1 a = {(a,¢% ¢%)|a € KA(H)}, POpTrueSlm_l 16 = {(a.0%)]a € KA(H)}, POpFazsega_l 16=
{(a,0°)|la € KA(H)} and 1% = (If, %) be IFPY 1 a

Let us perform transfinite induction on the iterations of OpTrue;’%

, and OpFalse;'H. Consider a successor ordinal § and assume
w

w

that
omee;’ﬁ . 16-=1) =(Pomee§a_l 16 -1
OpFalse;Uﬁ)_] 16-=1 =(1L)0pFazse§a_1 LG =1
We now prove that
OmeeL;ﬁ;_l 16 =(P0‘1)True.7;[m_l 16
O[)False;f)_1 lé =(P0pFalse§ﬂ_l 16w

Pick an atom a € KA(H) such that w € 92. IfaeF,we 92 means that ¢ is a factin w and a € OpTrue’;H 16.

Ifag Fand we 92 where

o =( U N @ 'verh N e
i=l,...,n

a<by,....by,~€q,...~¢,€R i=1,....m
a—1 6—1
U( U N 'ue; )ﬂ(WPX@(ue,meeE})))
GCKA(H) geCG
ECE,
OB quE,GFa

This means that either
1. thereis arule a « by, ..., b,,,~c{,...,~c, € R such that weag‘l U(bg_l fori=1...mand weqbﬁ;_l for j=1...n;0or
i i J
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2. there is a subset G of KA(H) and a subset E of £ such that OB 4,z Fa, V§€G : we qbg‘l Vwe 93‘1 andVec E:e€€&,

In case 1, by the inductive assumption, then either each b; € OpTrue;) L 1@6-Dorb € I;_l andeachc; €1 ;’f_‘l soa € OpTi rue;’a_1 16.

In case 2, there exist sets G and E such that it holds that for Vg e G:.ge I;’l U OpTrue;LH 1 (6 — 1) for the inductive hypothesis,

and E C A, because w € 6%, so OB Faanda€ OpTrue;’a_l 18.

w, 127 100pTrue _ 1(5-1)
12!
In the other direction, consider a € OpTrue?H 1 6. If a € F, then a must be a fact in w because no rule of R has a in the head so
o

WE i) X Weandw e 02.
If a ¢ F then either

1. thereisarule a < by,...,b,,,~c,...,~c, € R such that, for i=1...m, b, €0pTrue;jH t@6—-1)or Zl‘i‘]‘l Faand, for j=1...n,

a=1 g,
1,7 E~cjor

2. OB, Fa

g quTrue;'Rv_ L16-1
In case 1, by the inductive assumption, w € 92‘1 U qb‘;fl fori=1..mand we qS"N;l forj=1...n,sowe 02
i i J
In case 2, pick G = 13’5_1 ] OPTFW;:,_I 1(6—1) and E =&, Then it holds that OB g F a, so w € 02.
Now suppose w € 9‘;. IfaeF,we Gfa means that a is not a fact in w and no rule has a in the head so a € OpFalse;;H lé.
If a g F then

o =( U wstuerh U e

a<by,....by.~€q,...~c,€RI=],..., m i=l1,..

(5 e x| eeEn))

GCKA(H) geG

ECE,
OB yuE,gFa
a—1 6—1
N (U(¢~g voy )U(WPX‘”H(e.Om))
GCKA(H)  g€G e€E
ECE,
OB auE,GFa

This means that

1. either
(a) for all rules a « by, ...,b,,,~c|,...,~c, €R either there exists an i such that w € q’)‘fb‘_l U GZ:' or a j such that w € qﬁf_‘l,
i i J
(b) or there is a subset G of KA(H) and a subset E of £ such that OB 4,5 s F~a,Vg€G 1 weE d)g‘] andVee E:e€€&,,
2. and for all subsets G of KA(H) and subsets E of £ such that OB 4 ,p g Fa, 3g€G 1 we q’)ﬁ’g’l Vwe Gfg’l ordecE:egé,

In case 1a, by the inductive assumption, for all rules there exists a b; such that b, € OpFalse';a_l l(@6=1Dorb; e 1;’5_1 or there exists

ac; such thatc; € I;_l.
In case 1b, for the sets G and E that satisfy the condition, it holds that forVge G : g € OpTrue;’a_l t@-1Hul ;‘1 for the inductive

hypothesis, E C £, and OB 1 Fa.

AuE,I;’i‘
In case 2, for all sets G and E such that OB g ¢ F g, it holds that for 3g€ G : g € OpTrue;'a_1 t6-1Hu I;i_l for the inductive

hypothesisor de€ E : e ¢ £, s0 OBAUSM,,KA(H)\(OpFalse‘Z",k1 L6-nuret) ¥ a.

Conjoining conditions 1a and 2 it holds that a € 5VpFalse;’;_I | 6. Similarly, conjoining conditions 1b and 2 it holds that a €
OpFalse'%r_1 1 6.

In the other direction, consider a € OpFalSEI;ZTI 1 6. If a€F, then a must not be a fact in w and w € w40} X W SO W E 6.

If a ¢ F then

1. either

(a) for all rules a « by,...,b,,,~c|,...,~c, €R there exists an i such that b, € OpFalse;’%l l@é-1Dorb e I;’fl or there exists
ajsuchtatc; € I}‘l.

(b) or OB

2. and OB

AUE,, 157! F-a,

AUE,, KAH)\(OpFalse®, | L(5=1)u1%") ¥a
l“;
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In case 1a, by the inductive assumption, for all rules there exists an i such that w € ¢‘fb‘_1 U Hfbfl or there exists a j such that w € ¢gf1.
i i J
In case 1b, pick G = I;’l and E = &,,. Then it holds that OB 4 g  F —a
In case 2, consider G = KA(H) \ (OpFalse”I”a Ld6-hHu 1;”,‘1) and E = £,,. Then it holds that OB 4, ¢ ¥ a. Since description
8
logics are monotonic, this means that OB 4,/ - ¥ a holds also for all subsets G’ of G and E’ of E. Let’s consider the supersets G” of
G and E" of E. For each pair (G”, E"") such that OB 4, i gn F a, either 3g€ G” : we d)‘:g‘l Vwe Gfg‘l orde€E" ieg&,.

Joining conditions 1a and 2 it holds that w € Ofa. Similarly, joining conditions 1b and 2 it holds that w € 95}.
Consider now § a limit ordinal, so 6% = J, ;04 and 6%, =, _; 0%
a€ OpTrue‘;kl 1 8, iff there exists a u < § such that

H<é

w

ae OpTrueZ T u.

ﬁ;_]
For the inductive hypothesis, w € 92.
~a € OpFalse® _| | 6, iff, for all u <34,
Zﬂ

w

~a € OpFalse;'a_] 1 u.

For the inductive hypothesis, w e H‘fa.
Since

w _ H w
OpTrueI;F] =(POpTrue gan 16)

ol =(P0pFalsega71 1 &)w

w
OpFaleru
holds for any 6, then

pr(OpTrue;)MI ) =(If p(POpTrue' )

gf p(OpFalse;’a‘_1 ) =(gf p(POpFalse}H Nnw

and

IFPY 1 a = (PIFPM 1 a)*

Consider now « a limit ordinal. Then ¢% = [J,., ¢§ and ¢% =, ¢fa.
a € IFPY 1 a, iff there exists a f < a such that

a€IFPY 1 p=(PIFP 1 B)

For the inductive hypothesis, w € ¢z.
~a € IFP¥ 1 a, iff, for all f < a,

~a € IFP* 1 B.
. . . 6
For the inductive hypothesis, w € ¢°,. []

Lemma 6 (Soundness and completeness of PIFPM). For a sound grounded PHKB™ H, let PIFP t a = {(a, ¢%. 9% )a € KA(H)} for all a.
For every atom a € KA(H) and world w there is an iteration ay such that for all @ > a we have:

w € ¢* & WFM(w) F a U.1)
w € ¢%, > WFM(w) F~a (J.2)

Proof. WFM(w)  a means that there exists a a; such that Va : @ > ¢y — IFP" 1 a E a. For Lemma 1, this happens if and only
if w € ¢%. Similarly, WFM(w) F~a implies that there exists a a; such that Va : @ > oy — [FP¥ 1 a F~a. As before, for Lemma 1,
wept. [

Theorem 8 (Well-definedness of the distribution semantics). For a sound grounded PHKB"S H, for every atom a € KA(H), uy({w|w €
Wy, w E a}) is well-defined.

Proof. Let PIFP" 1 6= {(a, d)g, d)fa)|a € KA(H)}, where 6 denotes the depth of the program. For Lemma 2, {w |w € Wp,wE a} = ¢z.
Each iteration of POpTrue’.
rules is countable. So qbz € Qy, {w|we Wy, wk a} is measurable and py({w | w € Wy, w E a}) is well-defined. []

and POpFalsez;H generates sets using a countable number of unions and intersection, since the set of

«
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