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Hybrid Knowledge Bases (HKBs) successfully integrate Logic Programming (LP) and Description 
Logics (DL) under the Minimal Knowledge with Negation as Failure semantics. Both world closure 
assumptions (open and closed) can be used in the same HKB, a feature required in many domains, 
such as the legal and health-care ones. In previous work, we proposed (function-free) Probabilistic 
HKBs, whose semantics applied Sato’s distribution semantics approach to the well-founded HKB 
semantics proposed by Knorr et al. and Lyu and You. This semantics relied on the fact that the 
grounding of a function-free Probabilistic HKB (PHKB) is finite. In this article, we extend the PHKB 
language to allow function symbols, obtaining PHKBFS. Because the grounding of a PHKBFS can 
be infinite, we propose a novel semantics which does not require the PHKBFS ’s grounding to be 
finite. We show that the proposed semantics extends the previously proposed semantics and that, 
for a large class of PHKBFS, every query can be assigned a probability.

1. Introduction

Knowledge representation and reasoning in complex domains such as law [1] or health-care [27] require coping with open 
domains while adopting the closed-world assumption in order to infer negative information. To this purpose, several authors proposed 
languages combining Description Logics (DLs), that accommodate the former requirement, and Logic Programming (LP), that provide 
the latter. Among these, we can cite Description Logic Programs [25], or Hybrid Knowledge Bases (HKBs) by [36]. In particular, the 
latter combines logic program and a DL Knowledge Base following a semantics based on the logic of Minimal Knowledge with 
Negation as Failure (MKNF) [29]. This formalization exhibits desirable properties: faithfulness, the preservation of the semantics of 
both formalisms when the other is absent; tightness, the absence of layering of LP and DL; and flexibility, the possibility of viewing 
each predicate under both open- and closed-world assumptions.

However, these proposals lack an important feature when reasoning with complex, real-world, domains: the capability of dealing 
with uncertain information. Considering LP and DL separately, there are many proposals introducing probability in these logics. 
Regarding LP, in the Probabilistic Logic Programming (PLP) field [44,47] there is a plethora of approaches (e.g., PRISM [51], Logic 
Programs with Annotated Disjunctions [55], and ProbLog [20]) mostly based on the distribution semantics [51], where a program 
defines a probability distribution over normal Logic Programs, called worlds, from which the probability of a query is obtained.
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Considering DL languages, their combination with probability theory was also amply studied, with proposals exploiting graphical 
models, such as Bayesian networks [17,15], or Markov networks [24]; or reasoning with intervals of probability values, such as the 
approaches such based on Nilsson’s probabilistic logic [37] (e.g., [23,31,33,12]).

A step in the direction of creating an integrating framework featuring probabilistic LP and DL can be seen in the definition 
of semantics applying the distribution semantics of PLP to DLs, such as DISPONTE (for ``DIstribution Semantics for Probabilistic 
ONTologiEs'') [9].

Despite the number of proposals to combine probability and logics, the problem of combining complex languages exhibiting both 
open- and closed-world assumptions with probability theory received some attention only in the last few years, with works such as 
Bayesian Description Logic Programs [42], Probabilistic DL-Programs [32] and Probabilistic Hybrid Knowledge Bases [2]. However, 
as argued by [36], the first two proposals present drawbacks when compared to MKNF-based HKBs.

In Probabilistic Hybrid Knowledge Bases (PHKBs) [2], facts of the logic programs and DL axioms may be annotated with a 
probability value. PHKBs have a distribution semantics in the style of [51] based on the well-founded semantics for HKBs [27]. The 
main limitation of [2] is that the LP part cannot contain function symbols.

In this paper we extend the PHKB semantics to cope with function symbols. The resulting Probabilistic HKBFSs (PHKBFSs) contain 
both (probabilistic) LP rules and (probabilistic) DL axioms. On the line of [2], we extend the semantics based on the well-founded 
MKNF semantics with the treatment of function symbols and probability. Since LP with function symbols is Turing-complete [18], 
PHKBFSs are also Turing-complete, making them a full probabilistic programming language [8], thus greatly enhancing the expressive 
power of PHKBs.

The main motivation behind the introduction of function symbols is to increase the expressivity of the language allowing the 
representation of infinite domains and recursive data structures such as lists, trees, time, etc., similarly to what [13] did for Answer 
Set Programming.

We show that, for a large class of PHKBFS , the semantics assigns a probability to every query. We do so by proving that each 
query is associated to a measurable set using two operators, and their iterated fixpoint, leveraging the definition of the semantics for 
non-probabilistic HKB proposed by Alberti et al. [3] for function-free HKBs and by [4] for HKBs with function symbols.

The proof exploits the fact that the probability measure for PHKBFSs is the product of two measures and follows the same approach 
of the proof that the semantics assigns a probability to every query for probabilistic LP with functions symbols and continuous random 
variables [6]: in that case as well the probability measure of the program is the product of two measures, one for the discrete and 
one for the continuous part.

The paper is organized as follows. Related work is discussed in Section 2. In Section 3, we provide some background on LP and 
DLs, and their probabilistic extensions, and on MKNF-based HKBs. In Section 4, we present the iterated fixpoint definition of the 
well-founded semantics for non-probabilistic HKBs. In Section 5, we introduce Probabilistic Hybrid Knowledge Bases and we prove 
that their semantics is well-defined. We conclude and outline future work in Section 6.

2. Related work

Probabilistic extensions have been proposed for several of the languages that integrate DL and LP; in the following, we review 
some of them. In general, as argued by [36], all these languages present drawbacks when compared to MKNF-based HKBs.

In FOProbLog [11], the knowledge base is composed of disjunctive clauses, where each disjunct is a first order formula annotated 
with a probability. Probabilities act as constraints, and a model is any distribution that satisfies the constraints; in this way, the 
semantics defines a probability range for a query, while our approach returns the exact probability of the query. Another important 
difference regards negation. In FOProbLog, inference is performed by translating the knowledge base into a ProbLog program, fol
lowing Stickel’s PTTP approach [53] to build a FOL theorem prover using an LP proof procedure. However, being a FOL language, 
FOProbLog does not support default negation.

Description Logic Programs [25] is an intersection of DL and LP: in other words, they can be seen as the fragment of DL that can 
be expressed in LP or as the fragment of LP that can be expressed in DL. While this approach achieves interoperability between the 
allowed fragments of LP and DL, important expressive features are not supported: namely, default negation in LP rules, reasoning 
about unknown individuals and existential quantification in consequents. On the opposite, PHKBFSs allow the use of more expressive 
DL fragments.

In Bayesian Description Logic Programs (BDLPs) [42], each rule is annotated with two values, representing the probability that 
the head is true and false when the body is true; a BDLP encodes a Bayesian network where each ground atom is a node and rules 
represent conditional probabilities. Compared to PHKBFSs, BDLPs inherit the reduced expressiveness of the underlying language.

A translation from subsets of OWL Lite to variants of Datalog is proposed by [38], and of their probabilistic extensions to proba
bilistic Datalog by Fuhr [22]. In particular, the OWL Lite− language is translated to Datalog, while the more expressive OWL Lite𝐸𝑄

language is translated to Datalog𝐸𝑄 (i.e., Datalog with equality in heads); probabilistic extensions of both DL languages are translated 
to probabilistic Datalog. However, as argued by Lukasiewicz et al. [35], the supported DL fragments are the same as in Description 
Logic Programs [25], which limits the expressiveness of the resulting probabilistic language.

Poole’s Independent Choice Logic (ICL) [40] combines probability and logic using the notion of choice space. A choice space is 
a set of pairwise disjoint subsets of a program’s Herbrand base, called alternatives; each element of each alternative is an atomic 
choice. Intuitively, in each world only one atomic choice is true for each alternative; a probability distribution is defined over the 
elements of each alternative, inducing a probability distribution over possible worlds. Atomic choices can occur in rule bodies; at the 
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semantic level, the effect is that in each world only some rules are selected. Compared to ICL, PHKBFS semantics defines a probability 
distribution over worlds where the choices consider single facts or axioms instead of set of facts.

Lukasiewicz’s Probabilistic DL-Programs [32] integrate DL-Programs [21] with ICL: besides the choice space with its probability 
distribution, they are composed of a DL ontology and a set of non-disjunctive LP rules; probabilistic extensions of both the answer 
sets and the well-founded semantics of DL-Programs are given. In DL-Programs, the atoms that occur in DL axioms cannot be the 
head of rules; therefore, rules cannot be used to define DL predicates, and the integration is not tight. This limitation is inherited by 
Probabilistic DL-Programs, while it does not affect PHKBFSs.

Lukasiewicz et al. [35] proposed a probabilistic extension of a tight integration of DL and LP based on Disjunctive DL-Programs 
[34], which are composed of a disjunctive logic program and a set of DL-Lite axioms. Answer set and well-founded semantics are 
provided. Lukasiewicz et al. [35] extend Disjunctive DL-Programs by means of ICL where the LP part is restricted to normal logic 
programs. In particular, a probabilistic DL-program is composed of a DL-Lite ontology, a normal logic program, an ICL choice 
space and a probability distribution over the choice space. The probabilistic semantics defines tight lower and upper bounds for 
the probability of a conditional query of the form 𝑏|𝑎 where 𝑎 and 𝑏 are ground atoms, in terms of the answer sets or well-founded 
model determined by the selected atomic choices. The authors also provide an anytime algorithm to approximate the lower and upper 
bounds. As observed by Alferes et al. [5], DL-programs require the ontology to be decomposable into a positive and a negative part, 
which is satisfied by DL-Lite but restricts the applicability to general DLs; the same holds for probabilistic DL-programs compared 
to PHKBFSs. Moreover, in probabilistic DL-programs the ontology is deterministic, while in PHKBFSs DL axioms can be probabilistic.

3. Background

3.1. Logic programs

We assume familiarity with standard First Order Logic terminology (see Appendix C). In this work, we follow the common LP 
practice of denoting predicate and function symbols with alphanumeric strings starting with a lowercase letter, and variables with 
alphanumeric strings starting with an uppercase letter. A literal 𝑙 is either an atom 𝑎 (positive literal) or its default negation ∼𝑎 (negative 
literal). A normal logic program 𝑃 is a finite set of formulas, called clauses or rules, of the form

ℎ← 𝑏1,… , 𝑏𝑛

where ℎ is an atom and all the 𝑏𝑖s are literals. ℎ is called the head of the clause and the conjunction 𝑏1,… , 𝑏𝑛 is called the body. If 
the body is empty the clause is called a fact.

A term, atom, literal or clause is ground if it does not contain variables. A substitution 𝜃 is an assignment of terms to variables: 
𝜃 = {𝑉1∕𝑡1,… , 𝑉𝑛∕𝑡𝑛}. The application of a substitution 𝜃 = {𝑉1∕𝑡1,… , 𝑉𝑛∕𝑡𝑛} to a term atom, literal or clause 𝑟, indicated with 𝑟𝜃, is the 
replacement of each variable 𝑉𝑖 occurring in 𝑟 and in 𝜃 with 𝑡𝑖. 𝑟𝜃 is called an instance of 𝑟. 𝜃 is a grounding for 𝑟 if 𝑟𝜃 is ground.

The Herbrand universe 𝑃 of a logic program 𝑃 is the set of all the ground terms that can be built from the constant and function 
symbols in the program, respecting the function symbols’ arities.

The grounding of a program 𝑃 , indicated as ground(𝑃 ), is obtained by substituting terms from the Herbrand universe 𝑃 for the 
variables in the clauses of 𝑃 in all possible ways.

The Herbrand universe of a program 𝑃 is finite if 𝑃 does not contain function symbols, otherwise it is denumerable (if 𝑃 contains 
at least one constant). Therefore, if 𝑃 does not contain function symbols, its grounding ground(𝑃 ) is finite, while if 𝑃 contains function 
symbols and at least one variable and one constant, ground(𝑃 ) is denumerable.

3.2. ProbLog

Among the several equivalent languages for PLP under the distribution semantics, we consider ProbLog [20], which will make 
the treatment simpler.

A ProbLog program  = (, ) consists of a finite set  of (certain) LP rules and a finite set  of probabilistic facts of the form

𝑝𝑖 ∶∶ 𝑎𝑖,

where 𝑝𝑖 ∈ (0,1) and 𝑎𝑖 is an atom, meaning that we have evidence of the truth of each ground instantiation 𝑎𝑖𝜃 of 𝑎𝑖 with probability 
𝑝𝑖 and of its falsity with probability 1 − 𝑝𝑖 (see definitions in Appendix A).

For simplicity, we assume that the atoms in probabilistic facts do not unify with the head of any rule. Note that to ensure this 
property we can rewrite without loss of generality the following ProbLog program

𝑝 ∶∶ 𝑎.
𝑎← 𝑏𝑜𝑑𝑦,

as

𝑝 ∶∶ 𝑎′.
𝑎← 𝑎′.
𝑎← 𝑏𝑜𝑑𝑦.

These two programs are equivalent when we consider their models excluding 𝑎′.
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A grounded ProbLog program  = (, ) differs from a ProbLog program because  and  are ground and may be infinite. Given a 
ProbLog program  = (, ), its grounding 𝑔𝑟𝑜𝑢𝑛𝑑() is defined as (𝑔𝑟𝑜𝑢𝑛𝑑(), 𝑔𝑟𝑜𝑢𝑛𝑑( )). Then 𝑔𝑟𝑜𝑢𝑛𝑑() is a grounded ProbLog 
program. In fact, if  contains function symbols, the grounding of  and  may be denumerable.

With a slight abuse of notation, in the following sometimes we will use  to indicate the set of atoms 𝑎𝑖 that occur in probabilistic 
facts. The meaning of  will be clear from the context.

In the following we briefly report notions about the semantics of ProbLog programs without and with function symbols. We refer 
to Appendix E.1 for detailed description of the semantics of ProbLog programs without function symbols and to Appendix E.2 for that 
of the semantics of ProbLog with function symbols.

3.2.1. The semantics of ProbLog programs without function symbols

For a ProbLog program  = (, ) without functions symbols, 𝑔𝑟𝑜𝑢𝑛𝑑() and 𝑔𝑟𝑜𝑢𝑛𝑑( ) are finite. From the grounding 
𝑔𝑟𝑜𝑢𝑛𝑑(), we generate normal programs called worlds by including in a program the set of certain rules and a subset of the proba
bilistic facts, in all possible ways. In other words, a world 𝑤 is obtained by selecting or not each (ground) probabilistic fact. Call 𝑊
the set of all possible worlds. Since  is finite, so is 𝑊 .

Given a ground atom 𝑞, define function 𝑄 ∶𝑊 → {0,1} as

𝑄(𝑤) =
{

1 if 𝑤⊨ 𝑞
0 otherwise

(1)

where 𝑣 ⊨ 𝑞 means that 𝑞 is true in the well-founded model of 𝑤 (see Appendix D). The distribution of 𝑄 is defined by 𝑃 (𝑄 = 1)
(𝑃 (𝑄 = 0) is given by 1 − 𝑃 (𝑄 = 1)) and we indicate 𝑃 (𝑄 = 1) with 𝑃 (𝑞).

We can now compute 𝑃 (𝑞) as

𝑃 (𝑞) =
∑

𝑤∈𝑊∶𝑤⊧𝑞

∏
𝑝∶∶𝑎∈∶𝑎∈𝑤

𝑝
∏

𝑝∶∶𝑎∈∶𝑎∉𝑤
(1 − 𝑝)

Example 1. The program

 = {0.3 ∶∶ connectionIsTransitive. (2)

0.2 ∶∶ edge(bill, stephanie).} (3)

 = {edge(bill, john). (4)

edge(john, stephanie). (5)

connected(𝑋,𝑌 )← edge(𝑋,𝑌 ). (6)

connected(𝑋,𝑌 )← connected(𝑋,𝑍), edge(𝑍,𝑌 ), (7)

connectionIsTransitive.} (8)

models the connections between users in a social network. bill and stephanie are directly connected (edge∕2 predicate) with probability 
0.2 because an interaction occurred between them. Two facts model that bill and john are friends, and so are john and stephanie. Two 
users are connected if they are directly connected. Moreover, the probabilistic fact connectionIsTransitive models that 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑∕2 is 
also the transitive closure of direct connection with probability 0.3.

This program has two probabilistic facts, so there are four worlds: one that contains both facts, one that contains none, and two 
containing one each. The query connected(bill, stephanie) is true in three of them, i.e., those containing at least one probabilistic fact, 
and false in the world that does not contain any probabilistic fact. The query’s probability is 0.2 × 0.3 + 0.8 × 0.3 + 0.2 × 0.7 = 0.44.

3.2.2. The semantics of ProbLog programs with function symbols

When the program contains functions symbols, 𝑔𝑟𝑜𝑢𝑛𝑑( ) may be infinite.

Example 2 (Spillover - ProbLog). Let us consider the following ProbLog program  where

 = {0.8 ∶∶𝑚𝑢𝑡𝑎𝑡𝑒𝑑(𝑡).

0.6 ∶∶ 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑌 ).}

 = {𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟_𝑐𝑜𝑢𝑛𝑡(𝑋,𝑠(𝑌 ))← 𝑣𝑖𝑟𝑢𝑠(𝑋),𝑚𝑢𝑡𝑎𝑡𝑒𝑑(𝑋), (a)

𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟_𝑐𝑜𝑢𝑛𝑡(𝑋,𝑌 ), 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑌 ).

𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟_𝑐𝑜𝑢𝑛𝑡(𝑋,0)← 𝑣𝑖𝑟𝑢𝑠(𝑋).

𝑣𝑖𝑟𝑢𝑠(𝑡).}
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This program counts the number of spillover events of a mutated virus: if a virus is mutated, the spillover count is 𝑌 and a spillover 
event happens, then the count is also 𝑌 + 1, represented as the function symbol 𝑠(𝑌 ) in the head of rule (a). Moreover, the program 
defines a virus called 𝑡, asserts that spillover events happen with probability 0.6 and that 𝑡 is mutated with probability 0.8. The 
grounding of  is

𝑔𝑟𝑜𝑢𝑛𝑑( ) = {0.6 ∶∶ 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(0)

0.6 ∶∶ 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑠(0))

… (9)

0.6 ∶∶ 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑡)

0.6 ∶∶ 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑠(𝑡))

… (10)

0.8 ∶∶𝑚𝑢𝑡𝑎𝑡𝑒𝑑(𝑡).}

Let us introduce some terminology. An atomic choice indicates whether a ground probabilistic fact 𝑝 ∶∶ 𝑓 is selected or not and is 
represented with the pair (𝑓,𝑘) where 𝑘 ∈ {0,1}. 𝑘 = 1 means that the fact is selected, 𝑘 = 0 that it is not. A set of atomic choices 
is consistent if only one alternative is selected for the same probabilistic fact, i.e., it does not contain atomic choices (𝑓,0) and (𝑓,1)
for any 𝑓 . A composite choice 𝜅 is a consistent set of atomic choices. A selection 𝜎 (also called total composite choice) contains one 
atomic choice for every probabilistic fact. A selection 𝜎 identifies a world 𝑤𝜎 , i.e., a logic program containing the rules  and fact 𝑓
for each atomic choice (𝑓,1) of 𝜎. Let 𝑊 be the set of worlds, which may be uncountable [46].

The set of worlds 𝜔𝜅 compatible with a composite choice 𝜅 is 𝜔𝜅 = {𝑤𝜎 ∈𝑊 ∣ 𝜅 ⊆ 𝜎}. Therefore, a composite choice identifies a set 
of worlds. For programs with function symbols, 𝜔𝜅 may be uncountable.

To compute the probability of a ground atom we need to resort to a different concept. Given a probabilistic logic program  , a 
ground atom 𝑞 and a composite choice 𝜅, we say that 𝜅 is an explanation of 𝑞 if ∀𝑤 ∈ 𝜔𝜅 ∶ 𝑤 ⊧ 𝑞. We say that a set of composite 
choices 𝐾 is covering for 𝑞 if {𝑤 ∣𝑤 ∈𝑊 ∧𝑤⊨ 𝑞} ⊆ 𝜔𝐾 .

If 𝑞 has a countable set 𝐾 of countable explanations that is covering with respect to 𝑞, 𝑄 represents a random variable, since 
{𝑤 ∣𝑤 ∈𝑊 ∧𝑤⊨ 𝑞} = 𝜔𝐾 ∈Ω . For brevity, we indicate 𝑃 (𝑄 = 1) with 𝑃 (𝑞) and we say that 𝑃 (𝑞) is well-defined according to the 
distribution semantics. If the probability of all ground atoms in the grounding of a probabilistic logic program  is well-defined, then 
 is well-defined.

Riguzzi [46,47] proved that any query to a sound ProbLog program has a countable set of countable explanations that is covering, 
so it can be assigned a probability so that the program is well-defined.

3.3. Description logics

DLs are decidable fragments of First Order Logic used to model ontologies [10]. Usually their syntax is based on concepts and 
roles, corresponding to unary and binary predicates, respectively. In the following, for the sake or simplicity, we briefly recall one 
of the simplest DLs, . However, the semantics proposed in this paper can exploit any DL; see [7] for a complete introduction to 
DLs.

 ’s alphabet is composed of a set 𝐂 of atomic concepts, a set 𝐑 of atomic roles and a set 𝐈 of individuals. A concept 𝐶 is defined 
by:

𝐶 ∶∶=𝐶1|⊥|⊤|(𝐶 ⊓𝐶)|(𝐶 ⊔𝐶)|¬𝐶|∃𝑅.𝐶|∀𝑅.𝐶
where 𝐶1 ∈𝐂 and 𝑅 ∈𝐑.

A TBox 𝑇 is a finite set of concept inclusion axioms 𝐶 ⊑ 𝐷, where 𝐶 and 𝐷 are concepts. An ABox 𝐴 is a finite set of concept 
membership axioms 𝑎 ∶ 𝐶 and role membership axioms (𝑎, 𝑏) ∶ 𝑅, where 𝐶 is a concept, 𝑅 ∈ 𝐑 and 𝑎, 𝑏 ∈ 𝐈. An  knowledge base 
𝑂 = 𝑇 ∪𝐴 is the union of a TBox and an ABox.

DL axioms can be mapped to FOL formulas by the transformation 𝜋 shown in Table 1 for the  DL [52]. 𝜋 is applied to concepts 
as follows:

𝜋𝑥(𝐴) = 𝐴(𝑥)
𝜋𝑥(¬𝐶) = ¬𝜋𝑥(𝐶)

𝜋𝑥(𝐶 ⊓𝐷) = 𝜋𝑥(𝐶) ∧ 𝜋𝑥(𝐷)
𝜋𝑥(𝐶 ⊔𝐷) = 𝜋𝑥(𝐶) ∨ 𝜋𝑥(𝐷)
𝜋𝑥(∃𝑅.𝐶) = ∃𝑦.𝑅(𝑥, 𝑦) ∧ 𝜋𝑦(𝐶)
𝜋𝑥(∀𝑅.𝐶) = ∀𝑦.𝑅(𝑥, 𝑦)→ 𝜋𝑦(𝐶)
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Table 1
Translation of  axioms into 
FOL.

Axiom Translation 
𝐶 ⊑𝐷 ∀𝑥.𝜋𝑥(𝐶)→ 𝜋𝑥(𝐷)
𝑎 ∶ 𝐶 𝜋𝑎(𝐶)
(𝑎, 𝑏) ∶𝑅 𝑅(𝑎, 𝑏)

3.4. Probabilistic description logics

DISPONTE [9,57,48] applies the distribution semantics to probabilistic ontologies [51]. A DISPONTE knowledge base (KB) is a pair 
 = (,), where  is a finite set of DL axioms, that we call certain, and  is a finite set of probabilistic axioms of the form

𝑝𝑖 ∶∶ 𝑒𝑖
where 𝑝𝑖 is a real number in [0,1] and 𝑒𝑖 is a DL axiom.

As for ProbLog, from a DISPONTE KB we obtain non-probabilistic KBs by taking the certain axioms and adding a subset of the 
probabilistic axioms in all possible ways. We call worlds the resulting KBs while 𝑊 is the set of worlds.

Given an axiom 𝑞, define the function 𝑄 ∶𝑊 → {0,1} as in Eq. (1). The distribution of 𝑄 is defined by 𝑃 (𝑄 = 1) (𝑃 (𝑄 = 0) is 
given by 1 − 𝑃 (𝑄 = 1)) and we indicate 𝑃 (𝑄 = 1) with 𝑃 (𝑞).

We can now compute 𝑃 (𝑞) as

𝑃 (𝑞) =
∑

𝑤∈𝑊∶𝑤⊧𝑞

∏
𝑝∶∶𝑎∈∶𝑎∈𝑤

𝑝
∏

𝑝∶∶𝑎∈∶𝑎∉𝑤
(1 − 𝑝)

For a detailed description of DISPONTE, we refer to Appendix E.3.

Example 3. Consider the following KB, based on the social network domain of Example 1:

 = {influencer ⊑ social} (11)

 = {0.7 ∶∶ famousPerson ⊑ influencer (12)

0.1 ∶∶ jack ∶ famousPerson} (13)

This probabilistic DL KB models that we believe jack is a famous person (modelled by concept famousPerson) with probability 0.1, 
and that famous people are influencers with probability 0.7. Finally, the KB models that an influencer is a social person. As in 
Example 1, there are 4 worlds: one containing both axioms from  , one containing none of them, and two containing one each. 
All the 4 worlds also contain the axiom in . The query jack ∶ social is true only in the one containing both axioms from  , so 
𝑃 (jack ∶ social) = 0.7 × 0.1 = 0.07.

3.5. MKNF hybrid knowledge bases

The Minimal Knowledge with Negation as Failure (MKNF) logic [29], inspired by several works [28,45] on epistemic query 
answering on non-monotonic databases, supports epistemic queries on logic programs.

The MKNF formula is a First Order Logic formula (see Appendix C) augmented with the modal operators 𝐊 and 𝐧𝐨𝐭 , i.e., the same 
of formula (C.1) with the additional alternatives 𝐊 𝜓 and 𝐧𝐨𝐭𝜓 .

Hybrid Knowledge Bases [36], which integrate DL and LP in one formalism, adopt MKNF as its semantical foundation. [36] point 
out that MKNF-based Hybrid Knowledge Bases possess desirable properties that competing languages lack, at least in part: faithfulness, 
i.e., the semantics of each formalism is preserved when the other is absent; tightness, i.e., the LP and DL portions of a knowledge base 
do not need to be in separate layers; flexibility, i.e., both the open and closed world assumption can be employed in the definition of 
the same predicate; and decidability.

Definition 1. A Hybrid Knowledge Base (HKB) is a pair 𝐻 = (𝑃 ,𝑂), where 𝑃 is a normal logic program (Section 3.1), possibly with 
function symbols, and 𝑂 is a DL KB (Section 3.3).

An HKB (𝑃 ,𝑂) is positive if no negative literals occur in 𝑃 . An HKB (𝑃 ,𝑂) is ground if 𝑃 is ground. The grounding of an HKB (𝑃 ,𝑂)
is given by (𝑂,𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 )), where the constants used in the grounding are those appearing in (𝑃 ,𝑂).

Note that, differently from the definition by Motik and Rosati [36], disjunctions are not allowed in LP rule heads.
In the rest of the paper, when we say that a HKB 𝐻1 = (𝑂1, 𝑃 1) is a subset of a HKB 𝐻2 = (𝑂2, 𝑃 2) (𝐻1 ⊆ 𝐻2), we mean that 

𝑂1 ⊆𝑂2 and 𝑃 1 ⊆ 𝑃 2. For a given HKB 𝐻 = (𝑃 ,𝑂), an atom in 𝑃 is a DL-atom if its predicate occurs in 𝑂, a non-DL-atom otherwise.
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Definition 2 (DL-safety). An LP rule is DL-safe if each of its variables occurs in at least one positive non-DL-atom in the body; a HKB 
is DL-safe if all its LP-rules are DL-safe.

A transformation can be defined from a HKB 𝐻 = (𝑃 ,𝑂) to an MKNF formula by extending the standard transformation 𝜋 for DL 
axioms (Table 1) to support LP rules:

• if 𝑟 is a rule of the form ℎ← 𝑎1,… , 𝑎𝑛,∼𝑏1,… ,∼𝑏𝑚 where all 𝑎𝑖 and 𝑏𝑗 are atoms and 𝐗 is the tuple of all variables in 𝑟, then 
𝜋(𝑟) = ∀𝐗(𝐊 𝑎1 ∧…∧𝐊 𝑎𝑛 ∧ 𝐧𝐨𝐭 𝑏1 ∧…∧…𝐧𝐨𝐭 𝑏𝑚 ⊃𝐊 ℎ)

• 𝜋(𝑃 ) =
⋀
𝑟∈𝑃 𝜋(𝑟)

• 𝜋((𝑃 ,𝑂)) =𝐊 𝜋(𝑂) ∧ 𝜋(𝑃 )

HKB allow to reason with both closure assumptions, as the following example shows.

Example 4 (Viral Marketing). In a marketing campaign a company wants to grant discounts to customers in a social network, maximiz
ing the return on their investment by avoiding to assign discounts to loner customers, who are less likely to talk to other people about 
the company products, making the discount ineffective. However, due to fair competition laws, such discounts cannot be granted 
to people considered influencers, in order to avoid surreptitious advertising. People are considered loner if they are not known to 
be social and in our case being social means being connected to at least an influencer. This requires the closed world assumption 
using, for example, default negation of LP. If direct connections (say, the social network’s friendship relation) are represented by a 
directed graph whose nodes are people, connections can be modelled as the transitive closure of direct connections, which is also 
easily computable in LP. However, the user may want to model that a person is connected to an unknown influencer; this is not 
possible in logic programming, but it is supported in description logics. This scenario cannot be modelled by LP or DL alone; it needs 
both.

A domain involving two users, bill and stephanie, can be modelled with the following HKB, which we will use as a running example.

loner ⊑ ineffective person(bill).
∃connected.influencer ⊑ 𝑠𝑜𝑐𝑖𝑎𝑙 influencer(stephanie).
loner(𝑋)← person(𝑋),∼ social(𝑋). connected(𝑋,𝑌 )← edge(𝑋,𝑌 ).
discount(𝑋)← person(𝑋),∼ ineffective(𝑋). connected(𝑋,𝑌 )← connected(𝑋,𝑍),
edge(bill, stephanie). 𝑒𝑑𝑔𝑒(𝑍,𝑌 ).

This HKB models that a loner person is ineffective for the marketing campaign, that a loner person is someone not social, and that 
someone is social if they are connected with an influencer.

Suppose that we do not know any influencer of the network, but we know that bill is connected with at least one influencer; this 
cannot be represented in LP alone, but in DL we can specify

bill ∶ ∃connected.influencer

If we add this axiom to the above HKB and we remove the facts about stephanie, bill still remains eligible for discount, even if we do 
not know the identity of the influencer.

The MKNF transformation of this HKB is:

𝐊 𝜋(𝑂) ∧ 𝜋(𝑃 ) =
𝐊 (∀𝑋 ∶ (ineffective(X) ⊆ loner(𝑋))∧

∀𝑋 ∶ (social(𝑋) ⊆ ∃𝑌 ∶ (connected(𝑋,𝑌 ) ∧ influencer(𝑌 ))))∧
∀𝑋 ∶ (𝐊 person(𝑋) ∧ 𝐧𝐨𝐭 social(𝑋) ⊃𝐊 loner(𝑋))∧
∀𝑋 ∶ (𝐊 person(𝑋) ∧ 𝐧𝐨𝐭 ineffective(𝑋) ⊃𝐊 discount(𝑋))∧
𝐊 edge(bill, stephanie) ∧𝐊 person(stephanie)∧
𝐊 person(bill) ∧𝐊 influencer(stephanie)∧
∀𝑋,𝑌 ∶ (𝐊 edge(𝑋,𝑌 ) ⊃𝐊 connected(𝑋,𝑌 ))∧
∀𝑋,𝑌 ,𝑍 ∶ (𝐊 connected(𝑋,𝑍) ∧𝐊 edge(𝑍,𝑌 ) ⊃𝐊 connected(𝑋,𝑌 ))∧
∀𝑋 ∶ (𝐊 person(𝑋) ∧𝐊 influencer(𝑋) ⊃𝐊 social(𝑋))

The MKNF transformation defines a semantics for HKBs: MKNF formulas can have two-valued [29] and three-valued [27] se
mantics, so the semantics of an HKB can be defined as the (two or three-valued) semantics of MKNF formula resulting from the 
transformation. The three-valued MKNF semantics, which is more relevant to our work, is recalled in Appendix G.

3.6. Well founded HKB semantics

Knorr et al. [27] defined the well-founded model of an MKNF formula as the MKNF model Appendix G that, intuitively, leaves as 
much as possible undefined. In particular, the authors define a ``more knowledge derivable'' relation between MKNF interpretation 
pairs: (𝑀1,𝑁1) ≽𝑘 (𝑀2,𝑁2) iff 𝑀1 ⊆𝑀2 and 𝑁2 ⊆𝑁1. An HKB’s three-valued MKNF model (𝑀,𝑁) that is minimal w.r.t. ≽𝑘 (i.e., 
if (𝑀1,𝑁1) is also a three-valued model, then (𝑀1,𝑁1) ≽𝑘 (𝑀,𝑁)) is defined to be a well-founded model. Not all HKBs have a unique 
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𝐏0 = ∅ 𝐍0 = 𝖪𝖠(𝐻)
𝐏1 = {edge(bill, stephanie), 𝐍1 = {edge(bill, stephanie),

person(bill), person(bill),
influencer(stephanie), influencer(stephanie),
connected(bill, stephanie), loner(bill),discount(bill),
social(bill),person(stephanie), connected(bill, stephanie),
social(stephanie)} social(bill), ineffective(bill)

person(stephanie),
social(stephanie)}

𝐏2 = 𝐏1 𝐍2 = {edge(bill, stephanie),
person(bill),
influencer(stephanie),
discount(bill),
connected(bill, stephanie),
social(bill),person(stephanie),
social(stephanie)}

𝐏3 = 𝐍2 = {edge(bill, stephanie), 𝐍3 = 𝐍2
person(bill),
influencer(stephanie),
discount(bill),
connected(bill, stephanie),
social(bill),person(stephanie),
social(stephanie)}

𝐏4 = 𝐏3 = 𝐏𝜔 𝐍4 = 𝐍3 = 𝐍𝜔

Fig. 1. Building of 𝐏𝜔 and 𝐍𝜔 for Example 4, step by step. 

well-founded model; MKNF-coherent HKBs [30] have a unique well-founded model that is characterized by a partition of the atoms 
that occur in rules. We present this class below.

Knorr et al. [27] consider only DL-safe 𝐻 = (𝑃 ,𝑂) because they want to disallow infinite sets of individuals. The grounding of 
a DL-safe HKB without function symbols is finite. Note that, if an HKB is DL-safe it has the same two-valued MKNF models of its 
grounding [36]. In the following, we assume that the HKB 𝐻 is obtained by grounding.

The set of known atoms of 𝐻 , 𝖪𝖠(𝐻), is the set of all the atoms appearing in 𝑃 .

Definition 3. A partition of 𝖪𝖠(𝐻) is a pair (𝑃 ,𝑁) such that 𝑃 ⊆𝑁 ⊆ 𝖪𝖠(𝐻); (𝑃 ,𝑁) is exact if 𝑃 =𝑁 .

Intuitively, 𝑃 is a set of true atoms and 𝑁 a set of true or undefined atoms. Given 𝑆 ⊆ 𝖪𝖠(𝐻), the objective knowledge of 𝑂 with 
respect to 𝑆 is the set

𝖮𝖡𝑂,𝑆 = {𝜋(𝑂)} ∪𝑆 (14)

The operators 𝑅𝐻 , 𝐷𝐻 and 𝑇𝐻 derive atoms that are consequences of a positive HKB 𝐻 and a set 𝑆 of atoms. 𝑅𝐻 (𝑆) is the set of 
immediate consequences due to rules, i.e., the heads of rules in 𝑃 whose bodies are composed of atoms that belong to 𝑆 ; 𝐷𝐻 (𝑆)
is the set of immediate consequences due to axioms, i.e., the atoms from 𝖪𝖠(𝐻) entailed by 𝖮𝖡𝑂,𝑆 ; and 𝑇𝐻 (𝑆) = 𝑅𝐻 (𝑆) ∪𝐷𝐻 (𝑆). 
Given an HKB 𝐻 and a set of atoms 𝑆 ⊆ 𝖪𝖠(𝐻), the following transformations, which yield positive knowledge bases, are defined: 
the MKNF transformation 𝐻∕𝑆 is (𝑂,𝑃∕𝑆), where 𝑃∕𝑆 is the set of rules ℎ ← 𝑎1,… , 𝑎𝑚 such that there exists in 𝑃 a rule ℎ←
𝑎1,… , 𝑎𝑚,∼𝑏1,… ,∼𝑏𝑛 with {𝑏1,… , 𝑏𝑛} ∩ 𝑆 = ∅, and the MKNF-coherent transformation 𝐻∕∕𝑆 is (𝑂,𝑃∕∕𝑆), where 𝑃∕∕𝑆 is the set 
of rules ℎ← 𝑎1,… , 𝑎𝑚 such that there exists a rule ℎ← 𝑎1,… , 𝑎𝑚,∼𝑏1,… ,∼𝑏𝑛 in 𝑃 with {𝑏1,… , 𝑏𝑚} ∩𝑆 = ∅ and 𝖮𝖡𝑂,𝑆 ̸⊧ ¬ℎ.

Since, as shown by [27], 𝑇𝐻 is monotonic if 𝐻 is a ground positive HKB, the following transformations of sets of atoms are well 
defined: Γ𝐻 (𝑆) = 𝗅𝖿𝗉(𝑇𝐻∕𝑆 ) and Γ′

𝐻
(𝑆) = 𝗅𝖿𝗉(𝑇𝐻∕∕𝑆 ). Using these transformations, the sequences of sets of atoms 𝐏 and 𝐍 are defined 

as follows: 𝐏0 = ∅, 𝐍0 = 𝖪𝖠(𝐻), 𝐏𝑛+1 = Γ𝐻 (𝐍𝑛) and 𝐍𝑛+1 = Γ′
𝐻
(𝐏𝑛), 𝐏𝜔 =

⋃
𝐏𝑖, 𝐍𝜔 =

⋂
𝐍𝑖.

The pair (𝐏𝜔,𝐍𝜔) is called 𝐻 ’s alternating fix-point partition.

Example 5. Fig. 1 shows the computation of the alternating fixpoint partition for the HKB of Example 4. 

The HKBs such that the alternating fix-point partition defines a three-valued MKNF model are called MKNF-coherent [30].

Definition 4 (MKNF-coherent HKB, Definition 10 from [30]). An HKB 𝐻 is MKNF-coherent if (𝐼𝑃 , 𝐼𝑁 ), where 𝐼𝑃 = {𝐼 | 𝐼 ⊧ 𝖮𝖡𝑂,𝐏𝜔}
and 𝐼𝑁 = {𝐼 | 𝐼 ⊧𝖮𝖡𝑂,𝐍𝜔}, is a three-valued MKNF model of 𝐻 .

Note that we use here a slightly different definition with respect to that given by Liu and You [30] since they adopt a different 
syntax in the rules’ definition, postponing the 𝐊 operator to every positive literal. In this article, for simplicity, we assume the presence 
of the operator.
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For MKNF-coherent HKBs, the model determined by the alternating fix-point partition as in Definition 4 is the unique well-founded 
model.

Theorem 1 (Unique well-founded model of an MKNF-coherent HKB, Proposition 2 from [30]). If 𝐻 is an MKNF-coherent HKB, then it has 
the unique well-founded model ({𝐼 | 𝐼 ⊧𝖮𝖡𝑂,𝐏𝜔},{𝐼 | 𝐼 ⊧𝖮𝖡𝑂,𝐍𝜔})
4. Iterated fixpoint semantics for HKBs with function symbols

In the original HKB language, function symbols are not allowed. However, this is a feature that is useful in many domains, as 
shown in Example 2, that describes the behavior of a virus, which can mutate and spillover may happen due to each mutation.

Alberti et al. [4] extended the HKB syntax with function symbols and presented an iterated fixpoint semantics for this new 
language (HKBFS). They proved that the semantics coincides with that of Knorr et al. [27] and Liu and You [30] in the case of HKBs 
not including function symbols, and therefore can be considered an extension of that semantics to the case with function symbols.

Definition 5. An HKBFS 𝐻 is a tuple (𝑃 ,𝑂) where 𝑃 is a logic program that may contain function symbols and 𝑂 is a DL KB. A 
grounded HKBFS differs from an HKBFS because 𝑃 is ground and may be denumerable. The grounding 𝑔𝑟𝑜𝑢𝑛𝑑(𝐻) of an HKBFS 𝐻 is 
(𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ),𝑂) where the grounding uses all the symbols from (𝑃 ,𝑂). 𝑔𝑟𝑜𝑢𝑛𝑑(𝐻) is a grounded HKBFS.

Definition 6. A 2-valued interpretation 𝐼 for an HKBFS 𝐻 is a subset of 𝖪𝖠(𝐻).

Two-valued interpretations form a complete lattice where the partial order is defined as 𝐼 ≤ 𝐽 if 𝐼 ⊆ 𝐽 . For a set 𝑇 of two-valued 
interpretations, the least upper bound and greatest lower bound always exist and are respectively

lub(𝑇 ) =
⋃
𝐼∈𝑇

𝐼

and

glb(𝑇 ) =
⋂
𝐼∈𝑇

𝐼.

The top element is 𝖪𝖠(𝐻) and the bottom element is ∅.

Definition 7. A 3-valued interpretation  for an HKBFS 𝐻 is a pair (𝐼𝑇 , 𝐼𝐹 ) where 𝐼𝑇 and 𝐼𝐹 are subsets of 𝖪𝖠(𝐻).  is consistent 
if 𝐼𝑇 and 𝐼𝐹 are disjoint, i.e., 𝐼𝑇 ∩ 𝐼𝐹 = ∅

Given a 3-valued interpretation  = (𝐼𝑇 , 𝐼𝐹 ), an atom 𝑎 is true in it if 𝑎 ∈ 𝐼𝑇 , false in it if 𝑎 ∈ 𝐼𝐹 , undefined in it otherwise. 
Moreover, let 𝑇 = 𝐼𝑇 and 𝐹 = 𝐼𝐹 .

Three-valued interpretations form a complete lattice where the partial order is defined as (𝐼𝐹 , 𝐼𝑇 ) ≤ (𝐼 ′
𝐹
, 𝐼 ′
𝑇
) if 𝐼𝑇 ⊆ 𝐼 ′𝑇 and 

𝐼𝐹 ⊆ 𝐼
′
𝐹

. For a set 𝑇 of three-valued interpretations, the least upper bound and greatest lower bound always exist and are respectively

lub(𝑇 ) =

( ⋃
(𝐼𝑇 ,𝐼𝐹 )∈𝑇

𝐼𝑇 ,
⋃

(𝐼𝑇 ,𝐼𝐹 )∈𝑇
𝐼𝐹

)
and

glb(𝑇 ) =

( ⋂
(𝐼𝑇 ,𝐼𝐹 )∈𝑇

𝐼𝑇 ,
⋂

(𝐼𝑇 ,𝐼𝐹 )∈𝑇
𝐼𝐹

)
The top element is (𝖪𝖠(𝐻),𝖪𝖠(𝐻)) and the bottom element is (∅,∅).

We denote by Int3𝐻 the set of 3-valued interpretations for an HKBFS 𝐻 .

Definition 8. Given a grounded HKBFS 𝐻 = (𝑃 ,𝑂), and a 3-valued interpretation  = (𝐼𝑇 , 𝐼𝐹 ) for 𝐻 , we define the operators 
OpTrue𝐻 ∶ 2𝖪𝖠(𝐻) → 2𝖪𝖠(𝐻) and OpFalse𝐻 ∶ 2𝖪𝖠(𝐻) → 2𝖪𝖠(𝐻) as

• OpTrue𝐻 (𝑇 𝑟) = {𝑎 ∈ 𝖪𝖠(𝐻) | there is a clause 𝑎← 𝑏1, ..., 𝑏𝑚,∼𝑐1,… ,∼𝑐𝑛 in 𝑃 such that for every 𝑖 (1 ≤ 𝑖 ≤ 𝑚) 𝑏𝑖 is true in  or 
𝑏𝑖 ∈ 𝑇 𝑟, and for every 𝑗 (1 ≤ 𝑗 ≤ 𝑛) 𝑐𝑗 is false in } ∪ {𝑎 ∈ 𝖪𝖠(𝐻)|𝖮𝖡𝑂,𝐼𝑇 ∪𝑇 𝑟 ⊧ 𝑎};

• OpFalse𝐻 (𝐹𝑎) = {𝑎 ∈ 𝖪𝖠(𝐻) | 𝖮𝖡𝑂,𝐼𝑇 ⊧ ¬𝑎, or, for every clause 𝑎← 𝑏1, ..., 𝑏𝑚,∼𝑐1,… ,∼𝑐𝑛 in 𝑃 , there is some 𝑖 (1 ≤ 𝑖 ≤𝑚) such 
that 𝑏𝑖 is false in  or 𝑏𝑖 ∈ 𝐹𝑎, or there is some 𝑗 (1 ≤ 𝑗 ≤ 𝑛) such that 𝑐𝑗 is true in } ∩ {𝑎 ∈ 𝖪𝖠(𝐻)|𝖮𝖡𝑂,𝖪𝖠(𝐻)⧵(𝐼𝐹 ∪𝐹𝑎) ̸⊧ 𝑎}

In words, OpTrue𝐻 (𝑇 𝑟) represents the true atoms that can be derived from 𝐻 knowing  and true atoms 𝑇 𝑟, while OpFalse𝐻 (𝐹𝑎)
represents the false atoms that can be derived from 𝐻 by knowing  and false atoms 𝐹𝑎.
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𝐼𝑇 0 = ∅ 𝐼𝐹 0 = ∅
𝐼𝑇 1 = {virus(t), 𝐼𝐹 1 = 𝖪𝖠(𝐻) ⧵ 𝐼𝑇 1 ⧵ {safe(𝑡)}

mutated(t),
spillover_count(t,0),
spillover_count(t, s(0)),
spillover_count(t, s(s(0))),
at_least_two_spillovers(t)
…}

𝐼𝑇 2 = 𝐼𝑇 1 𝐼𝐹 2 = 𝖪𝖠(𝐻) ⧵ 𝐼𝑇 1
𝐼𝑇 3 = 𝐼𝑇 2 𝐼𝐹 3 = 𝐼𝐹 2

Fig. 2. Iterations of the IFP𝐻 operator for Example 6. 

Given an HKBFS 𝐻 and a 3-valued interpretation , since OpTrue𝐻 and OpFalse𝐻 are monotonic in their argument (see Proposi
tions 3 and 4 in Appendix H), they both have least and greatest fixpoints. So, it is possible to define the following iterative operator 
on a 3-valued interpretation .

Definition 9 (Iterated Fixed Point for an HKBFS). For an HKBFS 𝐻 , we define IFP𝐻 ∶ Int3𝐻 → Int3𝐻 as

IFP𝐻 () = (𝗅𝖿𝗉(OpTrue𝐻 ),𝗀𝖿𝗉(OpFalse𝐻 ))

By virtue of being monotonic (see Proposition 5 in Appendix H), IFP𝐻 admits a least fixpoint for each HKBFS 𝐻 , which we define 
as the semantics of the HKBFS .

Definition 10 (Iterated fixpoint semantics for an HKBFS). Given an HKBFS 𝐻 , its iterated fixpoint semantics is 𝗅𝖿𝗉(IFP𝐻 ).

Example 6 (Spillover [4]). Let 𝐻 = (𝑃 ,𝑂), where

𝑃 = {spillover_count(𝑋,𝑠(𝑌 ))← virus(𝑋),mutated(𝑋),

spillover_count(𝑋,𝑌 ).

spillover_count(𝑋,0)← virus(𝑋).

at_least_two_spillovers(𝑋)← 𝑣𝑖𝑟𝑢𝑠(𝑋), spillover_count(𝑋,𝑠(𝑠(𝑌 )))}

safe(𝑋)← 𝑣𝑖𝑟𝑢𝑠(𝑋),∼ at_least_two_spillovers(𝑋)}

virus(𝑡).}

𝑂 = {∃mutation.⊤ ⊑ mutated

t ∶ ∃mutation.⊤}

This HKBFS states that t is a virus and there is at least a mutation of 𝑡. If there exists at least one mutation for an individual, it is 
mutated. We model the series of spillover events by means of predicate spillover_count. A virus is safe if it had at most one spillover.

Fig. 2 shows the computation of the iterated fixpoint semantics for the HKBFS 𝐻 . Given the presence of the function symbol s(⋅), 
the model is infinite. 

Each 𝑚 = (𝐼𝑇𝑚, 𝐼𝐹𝑚), for 𝑚 = 1,2,3 is determined by the fixpoints of OpTrue𝐻𝑚−1 and OpFalse𝐻𝑚−1 as follows.

• OpTrue𝐻0 ↑ 0 = ∅,

• OpTrue𝐻0 ↑ 1 = OpTrue𝐻0 ↑ 0 ∪ {virus(𝑡),mutated(𝑡)},

• OpTrue𝐻0 ↑ 2 = OpTrue𝐻0 ↑ 1 ∪ {spillover_count(𝑡,0)},

• OpTrue𝐻0 ↑ 3 = OpTrue𝐻0 ↑ 2 ∪ {spillover_count(𝑡, 𝑠(0))},

• OpTrue𝐻0 ↑ 4 = OpTrue𝐻0 ↑ 3 ∪ {spillover_count(𝑡, 𝑠(𝑠(0)))},

• OpTrue𝐻0 ↑ 5 = OpTrue𝐻0 ↑ 4 ∪ {at_least_two_spillovers(t)},

and so on to the least fixpoint 𝐼𝑇 1.

• OpFalse𝐻0 ↓ 0 = 𝖪𝖠(𝐻)
• OpFalse𝐻0 ↓ 1 = OpFalse𝐻0 ↓ 0 ⧵ {virus(𝑡),mutated(𝑡), safe(𝑡)}
• OpFalse𝐻0 ↓ 2 = OpFalse𝐻0 ↓ 1 ⧵ {spillover_count(𝑡,0)}
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• OpFalse𝐻0 ↓ 3 = OpFalse𝐻0 ↓ 2 ⧵ {spillover_count(𝑡, 𝑠(0))}
• OpFalse𝐻0 ↓ 4 = OpFalse𝐻0 ↓ 3 ⧵ {spillover_count(𝑡, 𝑠(𝑠(0)))}
• OpFalse𝐻0 ↓ 5 = OpFalse𝐻0 ↓ 4 ⧵ {at_least_two_spillovers(t)}

and so on to the greatest fixpoint 𝐼𝐹 1.

• OpTrue𝐻1 ↑ 0 = ∅
• OpTrue𝐻1 ↑ 1 = 𝐼𝑇 1

which is the least fixpoint.

• OpFalse𝐻1 ↓ 0 = 𝖪𝖠(𝐻)
• OpFalse𝐻1 ↓ 1 = OpFalse𝐻1 ↓ 0 ⧵ {virus(𝑡),mutated(𝑡)}. In this case, safe(𝑡) is kept because at_least_two_spillovers((𝑡)) is true in 1.

• OpFalse𝐻1 ↓ 2 = OpFalse𝐻1 ↓ 1 ⧵ {spillover_count(𝑡,0)}
• OpFalse𝐻1 ↓ 3 = OpFalse𝐻1 ↓ 2 ⧵ {spillover_count(𝑡, 𝑠(0))}
• OpFalse𝐻1 ↓ 4 = OpFalse𝐻1 ↓ 3 ⧵ {spillover_count(𝑡, 𝑠(𝑠(0)))}

to the greatest fixpoint 𝐼𝐹 2 = 𝖪𝖠(𝐻) ⧵ 𝐼𝑇 1.
For all 𝑚, it holds that

OpTrue𝐻2 ↑𝑚 = OpTrue𝐻1 ↑𝑚 (15)

OpFalse𝐻2 ↓𝑚 = OpFalse𝐻1 ↓𝑚 (16)

so 2 = 3 = 𝗅𝖿𝗉(IFP𝐻 ).

For function-free HKBFSs, which are also HKBs, Knorr et al.’s alternating fixpoint partition and the iterated fixpoint (Definition 10) 
coincide, modulo a set complement operation.

Theorem 2 (From [4]). Given a function-free HKBFS 𝐻 = (𝑃 ,𝑂), let 𝗅𝖿𝗉(IFP𝐻 ) = (𝐼𝑇 , 𝐼𝐹 ). Then (𝐼𝑇 ,𝖪𝖠(𝐻) ⧵ 𝐼𝐹 ) is 𝐻 ’s alternating 
fixpoint partition.

We call 𝗅𝖿𝗉(IFP𝐻 ) the well-founded model of 𝐻 and we indicate it with 𝖶𝖥𝖬(𝐻). If 𝑎 is an atom and 𝖶𝖥𝖬(𝐻) = (𝐼𝑇 , 𝐼𝐹 ), we write 
𝐻 ⊧ 𝑎 if 𝑎 ∈ 𝐼𝑇 and 𝐻 ⊧∼𝑎 if 𝑎 ∈ 𝐼𝐹 . We call the well-founded model total if 𝐼𝑇 ∪ 𝐼𝐹 = 𝖪𝖠(𝐻).

5. Probabilistic hybrid knowledge bases with function symbols

In this section we define a language of Probabilstic Hybrid Knowledge Bases that extends the one by [2] by allowing function 
symbols. The proofs of all the theorems of this section can be found in Appendix J.

A PHKBFS is composed of a ProbLog program (Section 3.2), possibly containing function symbols, and a DISPONTE knowledge 
base (Section 3.4).

Definition 11. A PHKBFS  = ( ,) is composed of

• a ProbLog program  = (, )
• a DISPONTE knowledge base  = (,)

Sometimes it will be convenient to represent  with the 4-tuple (, ,,).
Example 7 (Spillover, Probabilistic). Let us consider the following PHKBFS  = ( ,) as the probabilistic version of the HKB of 
Example 6, where

 = 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟_𝑐𝑜𝑢𝑛𝑡(𝑋,𝑠(𝑌 ))← 𝑣𝑖𝑟𝑢𝑠(𝑋),𝑚𝑢𝑡𝑎𝑡𝑒𝑑(𝑋),

𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟_𝑐𝑜𝑢𝑛𝑡(𝑋,𝑌 ), 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑋,𝑌 ).

𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟_𝑐𝑜𝑢𝑛𝑡(𝑋,0)← 𝑣𝑖𝑟𝑢𝑠(𝑋).

at_least_two_spillovers(𝑋)← 𝑣𝑖𝑟𝑢𝑠(𝑋), spillover_count(𝑋,𝑠(𝑠(𝑌 )))

safe(𝑋)← 𝑣𝑖𝑟𝑢𝑠(𝑋),∼ at_least_two_spillovers(𝑋)
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𝑣𝑖𝑟𝑢𝑠(𝑡).

 = 0.6 ∶∶ 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑋,𝑌 )

 = ∃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛.⊤ ⊑ 𝑚𝑢𝑡𝑎𝑡𝑒𝑑

 = 0.8 ∶∶ t ∶ ∃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛.⊤

This PHKBFS models a series of spillover events. In particular, there is a probability of 80% that at least a mutation arises from 𝑡. 
Moreover, the probability of a spillover to happen is 60%.

Definition 12. A PHKBFS  = ( ,) is grounded if  is a grounded ProbLog program. The grounding 𝑔𝑟𝑜𝑢𝑛𝑑() of a  = ( ,) is 
 = (𝑔𝑟𝑜𝑢𝑛𝑑(),). 𝑔𝑟𝑜𝑢𝑛𝑑() is a grounded PHKBFS.

Given a grounded PHKBFS  = ( ,) with  = (, ), the set 𝖪𝖠() of known atoms in  is the set of all the atoms that occur 
in  or  .

In order to define a probability measure for a PHKBFS , we can define a 𝜎-algebra for the PHKBFS as the product 𝜎-algebra (see 
Definition 25 in Appendix A) of its LP and DL portions, as follows.

Definition 13. Given a grounded PHKBFS  = ( ,), let (𝑊 ,Ω , 𝜇 ) and (𝑊,Ω, 𝜇) be the probability measures for  and 
respectively. The probability measure for  is the product measure

(𝑊 ,Ω , 𝜇 ) = (𝑊 ×𝑊,Ω ⊗Ω, 𝜇 ⋅ 𝜇)

Definition 14. A world 𝑤 of a PHKBFS  is an element of 𝑊 and is of the form 𝑤 = (𝑤 ,𝑤), where 𝑤 = (𝑤,𝑤) and 𝑤 =
(𝑤,𝑤).

In the definition above, 𝑤 = and 𝑤 = are respectively the set of rules and certain axioms contained in world 𝑤, while 𝑤
and 𝑤 are respectively the set of probabilistic facts from  and of probabilistic axioms from  selected to be included in 𝑤 without 
their probability.

Definition 15 (Sound PHKBFS). A PHKBFS  is sound if and only if, for each world 𝑤 of , 𝖶𝖥𝖬(𝑤) is total.

A query 𝑞 is an atom from 𝖪𝖠(). The probability of a query can be defined as 𝑃 (𝑞) = 𝜇 ({𝑤 ∣𝑤 ∈𝑊 ,𝑤 ⊧ 𝑞}). In order for the 
probability to be well defined, we have to prove that the set {𝑤 ∣𝑤 ∈𝑊 ,𝑤 ⊧ 𝑞} is measurable, i.e., that it belongs to Ω . We do so 
in the remainder of this section.

The semantics of PHKBFSs is based on the Iterated Fixpoint semantics defined in Section 4, where two-/three-valued interpretations 
are defined. In this section we need to define parameterized two-/three-valued interpretations. Basically, a two-valued parameterized 
interpretation associates to each atom the set of composite choices that identify the sets of worlds where the atom is true, or false; 
a three-valued parameterized interpretation associates to each atom two sets of composite choices, characterizing the sets of worlds 
where the atom is true and false, respectively.

Definition 16 (Parameterized two-valued interpretations). Given a grounded PHKBFS , a parameterized positive two-valued interpretation 
𝒯𝑟 is a set of pairs (𝑎,𝜙𝑎) with 𝑎 ∈ 𝖪𝖠() and 𝜙𝑎 ∈ Ω . Similarly, a parameterized negative two-valued interpretation ℱ𝑎 is a set of 
pairs (𝑎,𝜙∼ 𝑎) with 𝑎 ∈ 𝖪𝖠() and 𝜙∼ 𝑎 ∈Ω .

Following this definition, the intuition is that (𝑎,𝜙𝑎) means that 𝑎 is true in the worlds of 𝜙𝑎. On the other side (𝑎,𝜙∼ 𝑎) means 
that 𝑎 is false in the worlds of 𝜙∼ 𝑎.

Parameterized two-valued interpretations form a complete lattice where the partial order is defined as ℐ ≤ 𝒥 if ∀(𝑎,𝜙𝑎) ∈
ℐ, (𝑎, 𝜃𝑎) ∈ 𝒥: 𝜙𝑎 ⊆ 𝜃𝑎. For a set 𝑇 of parameterized two-valued interpretations, the least upper bound and greatest lower bound 
always exist and are respectively

lub(𝑇 ) = {(𝑎,
⋃

ℐ∈𝑇 ,(𝑎,𝜙𝑎)∈ℐ
𝜙𝑎) ∣ 𝑎 ∈ 𝖪𝖠()}

and

glb(𝑇 ) = {(𝑎,
⋂

ℐ∈𝑇 ,(𝑎,𝜙𝑎)∈ℐ
𝜙𝑎) ∣ 𝑎 ∈ 𝖪𝖠()}.

The top element is {(𝑎,𝑊 ×𝑊) ∣ 𝑎 ∈ 𝖪𝖠()} and the bottom element is {(𝑎,∅) ∣ 𝑎 ∈ 𝖪𝖠()}.
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Definition 17 (Parameterized three-valued interpretations). Given a grounded PHKBFS , a parameterized three-valued interpretation 𝓘
is a set of triples (𝑎,𝜙𝑎,𝜙∼ 𝑎) with 𝑎 ∈ 𝖪𝖠(), 𝜙𝑎 ∈Ω and 𝜙∼ 𝑎 ∈Ω . A parameterized three-valued interpretation 𝓘 is consistent if 
∀(𝑎,𝜙𝑎,𝜙∼ 𝑎) ∈𝓘 ∶ 𝜙𝑎 ∩ 𝜙∼ 𝑎 =∅.

Parameterized three-valued interpretations form a complete lattice where the partial order is defined as 𝓘 ≤𝓙 if ∀(𝑎,𝜙𝑎,𝜙∼ 𝑎) ∈
𝓘, (𝑎, 𝜃𝑎, 𝜃∼ 𝑎) ∈ 𝓙: 𝜙𝑎 ⊆ 𝜃𝑎 and 𝜙∼ 𝑎 ⊆ 𝜃∼ 𝑎. For a set 𝑇 of parameterized three-valued interpretations, the least upper bound and 
greatest lower bound always exist and are respectively

lub(𝑇 ) = {(𝑎,
⋃

𝓘∈𝑇 ,(𝑎,𝜙𝑎,𝜙∼ 𝑎)∈𝓘
𝜙𝑎,

⋃
𝓘∈𝑇 ,(𝑎,𝜙𝑎,𝜙∼ 𝑎)∈𝓘,

𝜙∼ 𝑎) ∣ 𝑎 ∈ 𝖪𝖠()}

and

glb(𝑇 ) = {(𝑎,
⋂

𝓘∈𝑇 ,(𝑎,𝜙𝑎,𝜙∼ 𝑎)∈𝓘
𝜙𝑎,

⋂
𝓘∈𝑇 ,(𝑎,𝜙𝑎,𝜙∼ 𝑎)∈𝓘

𝜙∼ 𝑎) ∣ 𝑎 ∈ 𝖪𝖠()}.

The top element is

{(𝑎,𝑊 ×𝑊,𝑊 ×𝑊) ∣ 𝑎 ∈ 𝖪𝖠()}

and the bottom element is

{(𝑎,∅,∅) ∣ 𝑎 ∈ 𝖪𝖠()}.

As in the case of the HKB semantics (Sect. 4), we will be interested in pairs of sets of axioms and atoms such that the objective 
knowledge of the set of axioms w.r.t. the set of atoms (Formula (14)) entails an atom.

Definition 18 (POpTrue𝓘(𝒯𝑟) and POpFalse𝓘(ℱ𝑎)). For a grounded PHKBFS  = (, ,,), a parameterized two-valued positive 
interpretation

𝒯𝑟 = {(𝑎, 𝜃𝑎)|𝑎 ∈ 𝖪𝖠()},

a parameterized two-valued negative interpretation

ℱ𝑎 = {(𝑎, 𝜃∼ 𝑎)|𝑎 ∈ 𝖪𝖠()},

and a parameterized three-valued interpretation

𝓘 = {(𝑎,𝜙𝑎,𝜙∼ 𝑎)|𝑎 ∈ 𝖪𝖠()},

we define POpTrue𝓘(𝒯𝑟) = {(𝑎, 𝛾𝑎) ∣ 𝑎 ∈ 𝖪𝖠()} where

𝛾𝑎 =

⎧⎪⎪⎨⎪⎪⎩

𝜔{{(𝑎,1)}} ×𝑊 if 𝑎 ∈ (⋃
𝑎←𝑏1 ,…,𝑏𝑚,∼ 𝑐1 ,…∼ 𝑐𝑛∈

⋂
𝑖=1,…,𝑚(𝜙𝑏𝑖 ∪ 𝜃𝑏𝑖 )

⋂
𝑖=1,…,𝑛 𝜙∼ 𝑐𝑖

)
⋃(⋃

𝐺⊆𝖪𝖠()
𝐸⊆ ,

𝖮𝖡∪𝐸,𝐺⊧𝑎

⋂
𝑔∈𝐺(𝜙𝑔 ∪ 𝜃𝑔)

⋂
(𝑊 ×𝜔{(𝑒,1) | 𝑒∈𝐸})) otherwise

and POpFalse𝓘(ℱ𝑎) = {(𝑎, 𝛾∼ 𝑎) ∣ 𝑎 ∈ 𝖪𝖠()} where

𝛾∼ 𝑎 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜔{{(𝑎,0)}} ×𝑊 if 𝑎 ∈ (⋂
𝑎←𝑏1 ,…,𝑏𝑚,∼ 𝑐1 ,…∼ 𝑐𝑛∈

⋃
𝑖=1,…,𝑚(𝜙∼ 𝑏𝑖 ∪ 𝜃∼ 𝑏𝑖 )

⋃
𝑖=1,…,𝑛 𝜙𝑐𝑖⋃

𝐺⊆𝖪𝖠()
𝐸⊆ ,

𝖮𝖡∪𝐸,𝐺⊧¬𝑎

⋂
𝑔∈𝐺 𝜙𝑔

⋂
(𝑊 ×𝜔{{(𝑒,1) | 𝑒∈𝐸}}))

⋂
𝐺⊆𝖪𝖠()
𝐸⊆ ,

𝖮𝖡∪𝐸,𝐺⊧𝑎

(⋃
𝑔∈𝐺(𝜙∼ 𝑔 ∪ 𝜃∼ 𝑔)

⋃
𝑒∈𝐸 (𝑊 ×𝜔{{(𝑒,0)}})

)
otherwise

Proposition 1 (Monotonicity of POpTrue𝓘 and POpFalse𝓘). POpTrue𝓘 and POpFalse𝓘 are monotonic in their argument.

POpTrue𝓘 and POpFalse𝓘 are monotonic so they both have a least fixpoint and a greatest fixpoint.

Definition 19 (Iterated fixed point for a PHKBFS). For a grounded PHKBFS , and a parameterized three-valued interpretation 𝓘, let 
PIFP (𝓘) be defined as
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PIFP (𝓘) = {(𝑎,𝜙𝑎,𝜙∼ 𝑎) ∣ (𝑎,𝜙𝑎) ∈ 𝗅𝖿𝗉(POpTrue𝓘),

(𝑎,𝜙∼ 𝑎) ∈ 𝗀𝖿𝗉(POpFalse𝓘)}.

Proposition 2 (Monotonicity of PIFP). PIFP is monotonic.

The monotonicity property ensures that PIFP has a least fixpoint. Let us denote 𝗅𝖿𝗉(PIFP ) with 𝖶𝖥𝖬𝖯(). We call depth of 𝑃
the smallest ordinal 𝛿 such that PIFP ↑ 𝛿 =𝖶𝖥𝖬𝖯(𝑃 ).

Given a parameterized positive two-valued interpretation 𝒯𝑟 = {(𝑎,𝜙𝑎|𝑎 ∈ 𝖪𝖠()} and a world 𝑤 = (𝑤 ,𝑤) of , the projection 
of 𝒯𝑟 with respect to 𝑤 is the two-valued interpretation 𝒯𝑟𝑤 = {𝑎|𝑤 ∈ 𝜙𝑎}. Given a parameterized negative two-valued interpretation 
ℱ𝑎 = {(𝑎,𝜙∼ 𝑎|𝑎 ∈ 𝖪𝖠()} and a world 𝑤 = (𝑤 ,𝑤) of , the projection of ℱ𝑎 with respect to 𝑤 is the two-valued interpretation 
ℱ𝑎𝑤 = {𝑎|𝑤 ∈ 𝜙∼ 𝑎}. Given a parameterized three-valued interpretation 𝓘 = {(𝑎,𝜙𝑎,𝜙∼ 𝑎)|𝑎 ∈ 𝖪𝖠()} and a world 𝑤 = (𝑤 ,𝑤) of 
, the projection of 𝓘 with respect to 𝑤 is the three-valued interpretation 𝓘𝑤 = (ℐ𝑤

𝑇
,ℐ𝑤

𝐹
) where ℐ𝑇 = {(𝑎,𝜙𝑎)|(𝑎,𝜙𝑎,𝜙∼ 𝑎) ∈𝓘} and 

ℐ𝐹 = {(𝑎,𝜙∼ 𝑎)|(𝑎,𝜙𝑎,𝜙∼ 𝑎) ∈𝓘}.

Lemma 1 (Model Equivalence). For a grounded PHKBFS  = (, ,,), for every world 𝑤 and iteration 𝛼, we have:

IFP𝑤 ↑ 𝛼 = (PIFP ↑ 𝛼)𝑤

Now we can prove that PIFP is sound and complete.

Lemma 2 (Soundness and completeness of PIFP). For a sound grounded PHKBFS , let PIFP ↑ 𝛼 = {(𝑎,𝜙𝛼
𝑎
,𝜙𝛼∼ 𝑎)|𝑎 ∈ 𝖪𝖠()} for all 𝛼. 

For every atom 𝑎∈ 𝖪𝖠() and world 𝑤 there is an iteration 𝛼0 such that for all 𝛼 > 𝛼0 we have:

𝑤 ∈ 𝜙𝛼
𝑎
↔𝖶𝖥𝖬(𝑤) ⊨ 𝑎 (17)

𝑤 ∈ 𝜙𝛼∼ 𝑎 ↔𝖶𝖥𝖬(𝑤) ⊨∼ 𝑎 (18)

Now we can prove that every query for every sound program is well-defined.

Theorem 3 (Well-definedness of the distribution semantics). For a sound grounded PHKBFS , for every atom 𝑎 ∈ 𝖪𝖠(), 𝜇 ({𝑤 ∣𝑤 ∈
𝑊 ,𝑤 ⊨ 𝑎}) is well-defined.

Example 8 (Spillover, Probabilistic Query). Let us consider the PHKBFS of Example 7 and the queries 𝑞1 = safe(𝑡) and 𝑞2 =
spillover_count(t, 𝑠(0)).

Tables 2 and 3 show the computation of the first iteration of the PIFP operator for, respectively:

1. mutation(t, 𝑌 ) and mutated(t) to show how the operators deal with DL axioms.
2. safe(t) to show how the operator work with a LP rule.

For the complete computation of the first iteration of the PIFP operator we refer to Tables from I.5 to I.10 in Appendix I.
In the tables, fact 𝑓 is 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑋,𝑌 ) while axiom 𝑒 is

t ∶ ∃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛⊤.

Each column shows the sets of composite choices associated to an atom of 𝖪𝖠() at each step of the inner and outer operators. In 
particular, for each atom 𝑎, the line labelled 𝓘𝛼 shows the sets of composite choices 𝑆𝑎 and 𝑆∼ 𝑎 such that 𝑆𝑎 = 𝜔𝜙𝑎 and 𝑆∼ 𝑎 = 𝜔𝜙∼ 𝑎
where 𝖯𝖨𝖥𝖯 ↑ 𝛼 = {(𝑎,𝜙𝑎,𝜙∼ 𝑎)|𝑎 ∈ 𝖪𝖠()}; the lines labelled 𝒯𝑟𝛿 (resp. ℱ𝑎𝛿) show the set of composite choices 𝑆𝑎 = 𝜔𝜃𝑎 and 
𝑆∼ 𝑎 = 𝜔𝜃∼ 𝑎 such that (𝑎, 𝜃𝑎) ∈ POpTrue

𝖯𝖨𝖥𝖯↑𝛼
↑ 𝛿 (resp. (𝑎, 𝜃𝑎) ∈ POpFalse

𝖯𝖨𝖥𝖯↑𝛼
↑ 𝛿).

A covering set of explanations for 𝑞1 = safe(𝑡) is

{{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}

The probability of safe(𝑡) is (0.2+ 0.4− (0.2 × 0.4)) + 0.8 × 0.6 × 0.4 = 0.52+ 0.192 = 0.712, that is the noisy-or of the two first choices 
(which share the world where both are not present) plus the probability of the latter choice. A covering set of explanations for 
𝑞2 = spillover_count(t, 𝑠(0)) is

{{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}}.

The probability of spillover_count(t, 𝑠(0)) is 0.8 × 0.6 = 0.48
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Table 2
Iterations of the operators for mutation(t, 𝑌 ), and 
mutated(t).

mutation(t,Y) mutated(t) 
𝓘0 ∅,∅ ∅,∅

𝒯𝑟1 {{(𝑒,1)}} ∅
𝒯𝑟2 {{(𝑒,1)}} {{(𝑒,1)}}
𝒯𝑟3 {{(𝑒,1)}} {{(𝑒,1)}}
𝒯𝑟4 {{(𝑒,1)}} {{(𝑒,1)}}

ℱ𝑎1 {{(𝑒,0)}} {∅}
ℱ𝑎2 {{(𝑒,0)}} {{(𝑒,0)}}
ℱ𝑎3 {{(𝑒,0)}} {{(𝑒,0)}}
ℱ𝑎4 {{(𝑒,0)}} {{(𝑒,0)}}

𝓘1 {{(𝑒,1)}},{{(𝑒,0)}} {{(𝑒,1)}},{{(𝑒,0)}}

Table 3
Iterations of the operators for safe(t).

safe(t) 
𝓘0 ∅,∅

𝒯𝑟1 ∅
𝒯𝑟2 ∅
𝒯𝑟3 ∅
𝒯𝑟4 ∅
𝒯𝑟5 ∅
𝒯𝑟6 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}
𝒯𝑟7 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}
𝒯𝑟8 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}

ℱ𝑎1 {∅}
ℱ𝑎2 {∅}
ℱ𝑎3 {∅}
ℱ𝑎4 {∅}
ℱ𝑎5 {∅}
ℱ𝑎6 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}
ℱ𝑎7 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}

𝓘1 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}, 
{{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}

6. Conclusions and future work

In this article we have presented a probabilistic extension of Hybrid Knowledge Bases with Function Symbols (HKBFSs) introduced 
by [4], that in turn extend Hybrid Knowledge Bases by [36] with function symbols. The semantics of HKBFSs combines LP and DLs 
while exhibiting desirable properties such as faithfulness and tightness. The resulting Probabilistic HKBFSs (PHKBFSs) contain both 
(probabilistic) LP rules and DL axioms. PHKBFSs are equipped with a semantics based on the well-founded MKNF semantics extended 
with the treatment of probability. Using this semantics, we are able to assign a probability to every query to sound programs.

In the future we plan to study restrictions to make query answering in PHKBFSs decidable and identify necessary and sufficient 
conditions that ensures the soundness of PHKBFS . We will consider programs to be finitely ground ([13,14]) or having strongly 
bounded term size ([50,46]) which are identified as conditions ensuring decidability of logic programs.

We also plan to equip this semantics with a reasoner for computing the probability of a query given a PHKBFS , extending the 
𝐒𝐋𝐆() proof procedure [5] for MKNF HKBs, which is sound and complete for the well-founded semantics. The reasoner, as intended 
at the moment, will apply the 𝐒𝐋𝐆() proof procedure [5], integrating the TRILL reasoner [58,56] as the DL oracle and PITA [49] 
to cope with the PLP part of the probabilistic HKB.

CRediT authorship contribution statement

Marco Alberti: Writing -- review & editing, Writing -- original draft, Investigation, Formal analysis, Conceptualization. Evelina 
Lamma: Writing -- review & editing, Writing -- original draft, Formal analysis, Conceptualization. Fabrizio Riguzzi: Writing -- review 
& editing, Writing -- original draft, Investigation, Formal analysis, Conceptualization. Riccardo Zese: Writing -- review & editing, 
Writing -- original draft, Investigation, Formal analysis, Conceptualization.



Artificial Intelligence 346 (2025) 104361

16

M. Alberti, E. Lamma, F. Riguzzi et al. 

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgements

This work has been partially supported by the Spoke 1 ``FutureHPC & BigData'' of the Italian Research Center on High
Performance Computing, Big Data and Quantum Computing (ICSC) funded by MUR Missione 4 - Next Generation EU (NGEU) -
CUP F77G22000120006 and by ``FAIR -- Future Artificial Intelligence Research'' cascade project of Partenariato Esteso PE00000013 -- 
Spoke 8 ``Pervasive AI'' funded by MUR PNRR - M4C2 - Investimento 1.3 (Decreto Direttoriale MUR n. 341 of 15th March 2022) - Next 
Generation EU (NGEU) - CUP J33C22002830006. Marco Alberti, Fabrizio Riguzzi and Riccardo Zese are members of the ``Gruppo 
Nazionale Calcolo Scientifico - Istituto Nazionale di Alta Matematica'' (GNCS-INdAM).

Appendix A. Probability theory

In this section, we review some background on probability theory, in particular Kolmogorov probability theory, that will be needed 
in the following. Most of the definitions are taken from [16] and [47].

We define the sample space 𝑊 as the set composed by the elements that are outcomes of the random process we want to model. 
For instance, if we consider the toss of a coin whose outcome could be heads ℎ or tails 𝑡, the sample space is defined as 𝑊 𝑐𝑜𝑖𝑛 = {ℎ, 𝑡}. 
If we throw 2 coins, then 𝑊 2𝑐𝑜𝑖𝑛𝑠 = {(ℎ,ℎ), (ℎ, 𝑡), (𝑡, ℎ), (𝑡, 𝑡)}. If the number of coins is infinite then 𝑊 𝑐𝑜𝑖𝑛𝑠 = {(𝑜1, 𝑜2,…) ∣ 𝑜𝑖 ∈ {ℎ, 𝑡}}.

Definition 20 (𝜎-Algebra). A non-empty set Ω of subsets of 𝑊 is a 𝜎-algebra on the set 𝑊 iff:

• 𝑊 ∈Ω
• Ω is closed under complementation: 𝜔 ∈Ω⇒ 𝜔𝑐 =Ω ⧵𝜔 ∈Ω
• Ω is closed under countable union: if 𝜔𝑖 ∈Ω⇒

⋃
𝑖 𝑤𝑖 ∈Ω

The elements of a 𝜎-algebra Ω are called measurable sets or events, Ω is called event space and (𝑊 ,Ω) is called measurable space. 
When 𝑊 is finite, Ω is usually the powerset of 𝑊 , but, in general, it is not necessary that every subset of 𝑊 must be present in Ω. 
For example, to model a coin toss, we can consider the set of events Ω𝑐𝑜𝑖𝑛 = ℙ(𝑊 𝑐𝑜𝑖𝑛) and {ℎ} an event corresponding to the outcome 
heads.

Definition 21 (Minimal 𝜎-algebra). Let  be an arbitrary non-empty collection of subsets of W. The intersection of all 𝜎-algebras 
containing all the elements of  is called the 𝜎-algebra generated by  or the minimal 𝑠𝑖𝑔𝑚𝑎-algebra containing . It is denoted by 
𝜎(). Moreover, 𝜎() always exists and is unique [16].

Now we introduce the definition of probability measure:

Definition 22 (Probability measure). Given a measurable space (𝑊 ,Ω), a probability measure is a finite set function 𝜇 ∶ Ω→ℝ that 
satisfies the following three axioms (called Kolmogorov axioms):

• 𝑎1: 𝜇(𝜔) ≥ 0 ∀ 𝜔 ∈Ω
• 𝑎2: 𝜇(𝑊 ) = 1
• 𝑎3: 𝜇 is countably additive (or 𝜎-additive): if O = {𝜔1,𝜔2,…} ⊆ Ω is a countable collection of pairwise disjoint sets, then 
𝜇(
⋃
𝜔∈𝑂) =

∑
𝑖 𝜇(𝜔𝑖)

Axioms 𝑎1 and 𝑎2 state that we measure the probability of an event with a number between 0 and 1. Axiom 𝑎3 states that the 
probability of the union of disjoint events is equal to the sum of the probability of every single event. (𝑊 ,Ω, 𝜇) is called a probability 
space.

For example, if we consider the toss of a coin, (𝑊 𝑐𝑜𝑖𝑛,Ω𝑐𝑜𝑖𝑛, 𝜇𝑐𝑜𝑖𝑛) with 𝜇𝑐𝑜𝑖𝑛(∅) = 0, 𝜇𝑐𝑜𝑖𝑛({ℎ}) = 0.5, 𝜇𝑐𝑜𝑖𝑛({𝑡}) = 0.5 and 
𝜇𝑐𝑜𝑖𝑛({ℎ, 𝑡}) = 1 is a probability space.

Definition 23 (Measurable function). Given a probability space (𝑊 ,Ω, 𝜇) and a measurable space (𝑆,Σ), a function X: W → S is 
measurable if 𝑋−1(𝜎) = {𝑤 ∈𝑊 ∣𝑋(𝑤) ∈ 𝜎} ∈ Ω, ∀𝜎 ∈ Σ.

Definition 24 (Random variable). Let (𝑊 ,Ω, 𝜇) be a probability space and (𝑆,Σ) be a measurable space. A measurable function 
𝑋 ∶𝑊 → 𝑆 is a random variable. The elements of 𝑆 are called values of 𝑋. We indicate with 𝑃 (𝑋 ∈ 𝜎) for all 𝜎 ∈ Σ the probability 
that a random variable 𝑋 has value in 𝜎, that is, 𝜇(𝑋−1(𝜎)). If 𝑆 is countable, 𝑋 is a discrete random variable. If 𝑆 is uncountable, 
𝑋 is a continuous random variable.
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The probability distribution of a discrete random variable is defined as 𝑃 (𝑋 ∈ {𝑥}) ∀𝑥 ∈ 𝑆 and it is often abbreviated with 𝑃 (𝑋 = 𝑥)
or 𝑃 (𝑥).

In the following, we will need to consider the product of measurable spaces.

Definition 25 (Product 𝜎-algebra). Given two measurable spaces (𝑊1,Ω1) and (𝑊2,Ω2), the product 𝜎-algebra Ω1⊗Ω2 is defined as 
Ω1 ⊗Ω2 = 𝜎({𝜔1 × 𝜔2 ∣ 𝜔1 ∈ Ω1,𝜔2 ∈ Ω2}). The result of Ω1 ⊗Ω2 is different from the Cartesian product Ω1 × Ω2 because it is the 
minimal 𝜎-algebra generated by all the possible couples of elements from Ω1 and Ω2. Ω1 ⊗Ω2 is also called a tensor product.

Theorem 4 (Theorem 6.3.1 from   [16]). Given two probability spaces (𝑊1,Ω1, 𝜇1) and (𝑊2,Ω2, 𝜇2), there exists a unique probability space 
(𝑊 ,Ω, 𝜇) such that 𝑊 =𝑊1 ×𝑊2, Ω=Ω1 ⊗Ω2 and

𝜇(𝜔1 ×𝜔2) = 𝜇1(𝜔1) ⋅ 𝜇2(𝜔2)

for 𝜔1 ∈ Ω1 and 𝜔2 ∈ Ω2. Measure 𝜇 is called the product measure of 𝜇1 and 𝜇2 and is denoted also by 𝜇1 ×𝜇2. Moreover, for any 𝜔∈Ω, 
let’s define its sections as

𝜔(1)(𝑤1) = {𝑤2 ∣ (𝑤1,𝑤2) ∈ 𝜔} 𝜔(2)(𝑤2) = {𝑤1 ∣ (𝑤1,𝑤2) ∈ 𝜔}.

Then, both 𝜔(1)(𝑤1) and 𝜔(2)(𝑤2) are measurable according to (𝑊2,Ω2, 𝜇2) and (𝑊1,Ω1, 𝜇1) respectively, i.e., 𝜔(1)(𝑤1) ∈ Ω2 and 𝜔(2)(𝑤2) ∈
Ω1. 𝜇2(𝜔(1)(𝑤1)) and 𝜇1(𝜔(2)(𝑤2)) are well-defined real functions, the first on 𝑊1 and the second on 𝑊2.

Measure 𝜇 = 𝜇1 × 𝜇2 for every 𝜔∈Ω also satisfies

𝜇(𝜔) = ∫
𝑊2

𝜇1(𝜔(2)(𝑤2))𝑑𝜇2 = ∫
𝑊1

𝜇2(𝜔(1)(𝑤1))𝑑𝜇1.

When sample spaces are countable, integrals are replaced by summations. So if both 𝑊1 and 𝑊2 are countable, we obtain

𝜇(𝜔) =
∑

𝑤2∈𝑊2

𝜇1(𝜔(2)(𝑤2)) =
∑

𝑤1∈𝑊1

𝜇2(𝜔(1)(𝑤1))𝑑𝜇1.

Appendix B. Set theory

A one-to-one function 𝑓 ∶𝐴→𝐵 is such that if 𝑓 (𝑎) = 𝑓 (𝑏), then 𝑎 = 𝑏, i.e., no element of 𝐵 is the image of more than one element 
of 𝐴. A set 𝐴 is equipotent with a set 𝐵 if there exists a one-to-one function from 𝐴 to 𝐵. A set 𝐴 is denumerable if it is equipotent 
to the set of natural numbers ℕ. A set 𝐴 is countable if there exists a one-to-one correspondence between the elements of 𝐴 and the 
elements of some subset 𝐵 of the set of natural numbers. Otherwise, 𝐴 is termed uncountable. If 𝐴 is countable and 𝐵 = {1,2,… , 𝑛}, 
then 𝐴 is called finite with 𝑛 elements. ∅ (empty set) is considered a finite set with 0 elements. We define powerset of any set 𝐴, 
indicated with ℙ(𝐴), the set of all subsets including the empty set. For any reference space 𝑆 and subset 𝐴 of 𝑆 , we denote with 𝐴𝑐
the complement of 𝐴, i.e., 𝑆 ⧵𝐴, the set of all elements of 𝑆 that do not belong to 𝐴.

An order on a set 𝐴 is a binary relation ≤ that is reflexive, antisymmetric and transitive. If a set 𝐴 has an order relation ≤, 
it is termed a partially ordered set, sometimes abbreviated with ordered set. A partial order ≤ on a set 𝐴 is called a total order if 
∀𝑎, 𝑏 ∈ 𝐴, 𝑎 ≥ 𝑏 or 𝑏 ≥ 𝑎. In this case, 𝐴 is called totally ordered. The upper bound of a subset 𝐴 of some ordered set 𝐵 is an element 
𝑏 ∈ 𝐵 such that ∀𝑎 ∈ 𝐴, 𝑎 ≤ 𝑏. If 𝑏 ≤ 𝑏′ for all upper bounds 𝑏′, then 𝑏 is the least upper bound (lub). The definitions for lower bound 
and greatest lower bound (glb) are similar. If glb and lub exist, they are unique. A partially ordered set (𝐴,≤) is a complete lattice if glb 
and lub exist for every subset 𝑆 of 𝐴. A complete lattice 𝐴 always has a top element ⊤ such that ∀𝑎 ∈𝐴, 𝑎 ≤ ⊤ and a bottom element 
⊥ such that ∀𝑎 ∈ 𝐴, ⊥ ≤ 𝑎. A function 𝑓 ∶ 𝐴→ 𝐵 between two partially order set 𝐴 and 𝐵 is called monotonic if, ∀𝑎, 𝑏 ∈ 𝐴, 𝑎 ≤ 𝑏
implies that 𝑓 (𝑎) ≤ 𝑓 (𝑏). For an in-depth treatment of this topic see [19].

Appendix C. First order logic

A signature is a triple (Σ𝑐 ,Σ𝑓 ,Σ𝑝) where Σ𝑐 is a set of constants, Σ𝑓 is a set of function symbols, each with an associated natural 
number called arity, and Σ𝑝 is a set of predicate symbols with arity, containing the equality binary predicate ≈. A term is a constant, 
variable, or a function symbol applied to as many terms as the symbol’s arity. A first order formula is

𝜓 ∶∶= 𝚝𝚛𝚞𝚎|𝑃 (𝑡1,… , 𝑡𝑛)|¬𝜓|𝜓 ∧𝜓|∃𝑥 ∶ 𝜓 (C.1)

where 𝑃 (𝑡1,… , 𝑡𝑛) is called an atom, 𝑃 is a predicate symbol of arity 𝑛 and the 𝑡𝑖s are terms. In the formula ∃𝑥 ∶ 𝜓 , the occurrences 
of variable 𝑥 in 𝜓 are in the scope of the ∃𝑥 quantifier; a variable not in the scope of any quantifier is free; a formula with no free 
variables is closed. Common syntactic shortcuts are shown in Table C.4.

Let Σ be a signature and Δ a non-empty set called universe. Then a first order interpretation 𝐼 over Σ and Δ maps each 𝑐 ∈ Σ𝑐 to 
an object 𝑐𝐼 ∈Δ, each 𝑓 ∈ Σ𝑓 to a function 𝑓𝐼 ∶ Δ𝑛 →Δ (where 𝑛 is 𝑓 ’s arity) and each 𝑝 ∈ Σ𝑝 to a relation 𝑝𝐼 ⊆Δ𝑛 (where 𝑛 is 𝑝’s 
arity).
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Table C.4

Syntactic shortcuts in FOL.

formula is a shortcut for 
𝜓1 ∨𝜓2 ¬(¬𝜓1 ∧ ¬𝜓2)
∀𝑥 ∶ 𝜓 ¬(∃𝑥 ∶ ¬𝜓)
𝜓1 ⊃ 𝜓2 ¬𝜓1 ∨𝜓2
𝜓1 ≡ 𝜓2 (𝜓1 ⊃ 𝜓2) ∧ (𝜓2 ⊃ 𝜓1)
𝚏𝚊𝚕𝚜𝚎 ¬𝚝𝚛𝚞𝚎
𝑡1 ≈ 𝑡2 ≈ (𝑡1, 𝑡2)
𝑡1 ≉ 𝑡2 ¬(𝑡1 ≈ 𝑡2)

Appendix D. Well-founded semantics for normal logic programs

The well-founded semantics [54] assigns a three-valued model to a normal logic program. We give here the alternative definition 
of the WFS of Przymusinski [43] that is based on an iterated fixpoint.

A three-valued interpretation  is a pair (𝐼𝑇 , 𝐼𝐹 ) where 𝐼𝑇 and 𝐼𝐹 are subsets of 𝑃 and represent, respectively, the set of true and 
false atoms. So 𝑎 is true in  if 𝑎 ∈ 𝐼𝑇 and is false in  if 𝑎 ∈ 𝐼𝐹 , and ∼𝑎 is true in  if 𝑎 ∈ 𝐼𝐹 and is false in  if 𝑎 ∈ 𝐼𝑇 . If 𝑎 ∉ 𝐼𝑇 and 
𝑎 ∉ 𝐼𝐹 , then 𝑎 assumes the third truth value, undefined.

The set 𝐼𝑛𝑡3 of three-valued interpretations for a program P forms a complete lattice where the partial order ≤ is defined as 
(𝐼𝑇 , 𝐼𝐹 ) ≤ (𝐽𝑇 , 𝐽𝐹 ) if 𝐼𝑇 ⊆ 𝐽𝑇 and 𝐼𝐹 ⊆ 𝐽𝐹 . The least upper bound and greatest lower bound are defined as 𝗅𝗎𝖻(𝑋) =

⋃
∈𝑋  and 

𝗀𝗅𝖻(𝑋) =
⋂

∈𝑋 . The bottom and top element are, respectively, (∅,∅) and (𝑃 ,𝑃 ). Let Int2 be the set of two-valued interpretations.

Definition 26 (OpTrue𝑃 and OpFalse𝑃 operators). For a normal program 𝑃 and a three-valued interpretation , we define the operators 
𝑂𝑝𝑇 𝑟𝑢𝑒𝑃 ∶ Int2 → Int2 and OpFalse𝑃 ∶ Int2 → Int2 as

𝑂𝑝𝑇 𝑟𝑢𝑒𝑃 (Tr) = {𝑎|𝑎 is not true in ; and there is a clause 𝑏← 𝑙1, ..., 𝑙𝑛 in 𝑃 , a grounding substitution 𝜃 such that 𝑎 = 𝑏𝜃 and for 
every 1≤ 𝑖 ≤ 𝑛 either 𝑙𝑖𝜃 is true in , or 𝑙𝑖𝜃 ∈ Tr};

OpFalse𝑃 (Fa) = {𝑎|𝑎 is not false in ; and for every clause 𝑏← 𝑙1, ..., 𝑙𝑛 in 𝑃 and grounding substitution 𝜃 such that 𝑎 = 𝑏𝜃 there is 
some 𝑖 (1 ≤ 𝑖 ≤ 𝑛) such that 𝑙𝑖𝜃 is false in  or 𝑙𝑖𝜃 ∈ Fa}.

𝑂𝑝𝑇 𝑟𝑢𝑒𝑃 and OpFalse𝑃 are both monotonic [43], so they both have least and greatest fixpoints. Let us now define an iterated 
fixpoint operator.

Definition 27 (Iterated fixpoint). For a normal program 𝑃 , let 𝖨𝖥𝖯𝑃∶ 𝐼𝑛𝑡3→ 𝐼𝑛𝑡3 be defined as

𝖨𝖥𝖯𝑃 () =  ∪ ⟨𝗅𝖿𝗉(𝑂𝑝𝑇 𝑟𝑢𝑒𝑃 ),𝗀𝖿𝗉(OpFalse𝑃 )⟩.
𝖨𝖥𝖯𝑃 is monotonic [43] and thus has a least fixpoint 𝗅𝖿𝗉(𝖨𝖥𝖯𝑃 ). The well-founded model 𝖶𝖥𝖬(𝑃 ) of 𝑃 is 𝗅𝖿𝗉(𝖨𝖥𝖯𝑃 ).
If 𝖶𝖥𝖬(𝑃 ) = (𝐼𝑇 , 𝐼𝐹 ) and 𝐼𝑇 ∪ 𝐼𝐹 = 𝑃 , then the well-founded model is called total or two-valued and the program dynamically 

stratified.

Appendix E. Probabilistic semantics

In this section we describe in detail the semantics of ProbLog without function symbols (Appendix E.1) and with function symbols 
(Appendix E.2), and the DISPONTE semantics (Appendix E.3).

E.1. ProbLog programs’ semantics without function symbols

Let  = (, ) a ProbLog program without functions symbols, 𝑔𝑟𝑜𝑢𝑛𝑑() and 𝑔𝑟𝑜𝑢𝑛𝑑( ) are finite. From the grounding 𝑔𝑟𝑜𝑢𝑛𝑑(), 
we generate normal programs called worlds by including in a program the set of certain rules and a subset of the probabilistic facts, 
in all possible ways. Call 𝑊 the set of all possible worlds. Since  is finite, so is 𝑊 and (𝑊 ,ℙ(𝑊 )) is a measurable space, where 
ℙ(⋅) is the powerset function. Thus the measurable sets or events are the sets of worlds.

Define function 𝜌 ∶𝑊 →ℝ as

𝜌 (𝑤) =
∏

𝑝∶∶𝑎∈∶𝑎∈𝑤
𝑝

∏
𝑝∶∶𝑎∈∶𝑎∉𝑤

(1 − 𝑝)

and function 𝜇 ∶ ℙ(𝑊 )→ℝ as

𝜇 (𝜔) =
∑
𝑤∈𝜔

𝜌 (𝑤)
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Then (𝑊 ,ℙ(𝑊 ), 𝜇 ) is a probability space and 𝜇 is a probability measure.
Let 𝑄 ∶𝑊 → {0,1} the function

𝑄(𝑤) =
{

1 if 𝑤⊨ 𝑞
0 otherwise

(E.1)

where 𝑣 ⊨ 𝑞 means that 𝑞 is true in the well-founded model of 𝑤. We assume that each world has a total well-founded model, i.e., 
each ground atom is either true or false in the world and cannot be undefined. We call programs satisfying this property sound. This 
means that if 𝑤⊭ 𝑞, 𝑞 is false in the well-founded model, so 𝑄(𝑤) = 0 only for false atoms.

Since the set of events is the powerset, then 𝑄−1(𝛾) ∈ ℙ(𝑊 ) for all 𝛾 ⊆ {0,1} so 𝑄 is a random variable. The distribution of 𝑄 is 
defined by 𝑃 (𝑄= 1) (𝑃 (𝑄 = 0) is given by 1 − 𝑃 (𝑄 = 1)) and we indicate 𝑃 (𝑄 = 1) with 𝑃 (𝑞).

So, 𝑃 (𝑞) can be computed as

𝑃 (𝑞) = 𝜇 (𝑄−1({1})) = 𝜇 ({𝑤|𝑤 ∈𝑊 ,𝑤 ⊧ 𝑞}) =
∑

𝑤∈𝑊∶𝑤⊧𝑞
𝜌 (𝑤)

E.2. ProbLog programs’ semantics with function symbols

When the program contains functions symbols, 𝑔𝑟𝑜𝑢𝑛𝑑( ) may be infinite. If  is infinite, as in Example 2, 𝜌 (𝑤) is a denumerable 
product of numbers in (0,1) bounded away from 1, so 𝜌 (𝑤) = 0 for any 𝑤 and a different probability space must be defined.

We briefly recall that:

• an atomic choice (𝑓,𝑘) indicates whether a ground probabilistic fact 𝑝 ∶∶ 𝑓 is selected (𝑘 = 1) or not (𝑘 = 0);
• a set of atomic choices is consistent if only one alternative is selected for the same probabilistic fact;
• a composite choice 𝜅 is a consistent set of atomic choices;
• a selection 𝜎 contains one atomic choice for every probabilistic fact and identifies a world 𝑤𝜎 ;
• 𝑊 is the set of worlds, which may be uncountable [46];
• the set of worlds 𝜔𝜅 compatible with a composite choice 𝜅 is 𝜔𝜅 = {𝑤𝜎 ∈𝑊 ∣ 𝜅 ⊆ 𝜎} and may be uncountable.

Given a composite choice 𝜅 we define function 𝜌 as

𝜌 (𝜅) =
∏

(𝑓𝑖,1)∈𝜅
𝑝𝑖

∏
(𝑓𝑖,0)∈𝜅

1 − 𝑝𝑖.

Given a set of composite choices 𝐾 , the set of worlds 𝜔𝐾 compatible with 𝐾 is defined as 𝜔𝐾 =
⋃
𝜅∈𝐾 𝜔𝜅 . Two sets 𝐾1 and 𝐾2 of 

composite choices are equivalent if 𝜔𝐾1
= 𝜔𝐾2

, that is, they identify the same set of worlds. If the union of two composite choices 𝜅1 and 
𝜅2 is not consistent, then 𝜅1 and 𝜅2 are incompatible. We define pairwise incompatible a set 𝐾 of composite choices if ∀𝜅1 ∈𝐾,∀𝜅2 ∈𝐾 , 
𝜅1 ≠ 𝜅2 implies that 𝜅1 and 𝜅2 are incompatible. If 𝐾 is a pairwise incompatible set of composite choices, define 𝜇𝑐 (𝐾) =

∑
𝜅∈𝐾 𝜌 (𝜅).

Given a general set 𝐾 of composite choices, we can construct a pairwise incompatible equivalent set through the technique of 
splitting. In detail, if 𝑓 is a fact and 𝜅 is a composite choice that does not contain an atomic choice (𝑓,𝑘) for any 𝑘, the split of 𝜅 on 
𝑓 can be defined as the set of composite choices 𝑆𝜅,𝑓 = {𝜅 ∪ {(𝑓,0)}, 𝜅 ∪ {(𝑓,1)}}. In this way, 𝜅 and 𝑆𝜅,𝑓 identify the same set of 
possible worlds, i.e., 𝜔𝜅 = 𝜔𝑆𝜅,𝑓 , and 𝑆𝜅,𝑓 is pairwise incompatible. It turns out that, given a set of composite choices, by repeatedly 
applying splitting it is possible to obtain an equivalent mutually incompatible set of composite choices [41].

Theorem 5 (Existence of a pairwise incompatible set of composite choices [41]). Given a finite set 𝐾 of composite choices, there exists a 
finite set 𝐾 ′ of pairwise incompatible composite choices equivalent to 𝐾 .

Theorem 6 (Equivalence of the measure of two equivalent pairwise incompatible finite set of finite composite choices   [39]). If 𝐾1 and 𝐾2
are both pairwise incompatible finite sets of finite composite choices such that they are equivalent, then 𝜇𝑐(𝐾1) = 𝜇𝑐(𝐾2).

For a probabilistic logic program  and a ground atom 𝑞, we define function 𝑄 ∶𝑊 → {0,1} as for the case of no function 
symbols, Eq. (1). As for programs without function symbols, we consider only sound programs, i.e., programs where each world has 
a total well-founded model.

Given a probabilistic logic program  , we call Ω the set of sets of worlds identified by countable sets of countable composite 
choices, i.e., Ω = {𝜔𝐾 ∣𝐾 is a countable set of countable composite choices}.

Lemma 3 (𝜎-algebra of a program, Lemma 2 of   [47]). Ω is a 𝜎-algebra over 𝑊 .

We can now define a function 𝜇 ∶ Ω → [0,1]. Given 𝐾 = {𝜅1, 𝜅2,…}, consider the sequence {𝐾𝑛 ∣ 𝑛 ≥ 1} where 𝐾𝑛 =
{𝜅1,… , 𝜅𝑛}. 𝐾𝑛 is an increasing sequence and so lim𝑛→∞𝐾𝑛 exists and is equal to 

⋃∞
𝑛=1𝐾𝑛 = 𝐾 [16]. Consider the sequence 

{𝐾 ′
𝑛
∣ 𝑛 ≥ 1} constructed as follows: 𝐾 ′

1 = {𝜅1}, and 𝐾 ′
𝑛

is obtained by the union of 𝐾 ′
𝑛−1 with the splitting of each element of 

𝐾 ′
𝑛−1 with 𝜅𝑛. It is possible to prove by induction that 𝐾 ′

𝑛
is pairwise incompatible and equivalent to 𝐾𝑛.
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Since 𝜌 (𝜅) = 0 for infinite composite choices, we can compute 𝜇𝑐 (𝐾 ′
𝑛
) for each 𝐾 ′

𝑛
. Considering lim𝑛→∞ 𝜇𝑐(𝐾 ′

𝑛
), we have the 

following lemma.

Lemma 4 (Existence of the limit of the measure of countable union of countable composite choices, Lemma 3 from   [47]). lim𝑛→∞ 𝜇𝑐(𝐾 ′
𝑛
)

exists.

We can now introduce the definition of the probability space of a program.

Theorem 7 (Probability space of a program, Theorem 8 from   [47]). Given a set of composite choices 𝐾 = {𝜅1, 𝜅2,…} and a pairwise 
incompatible set of composite choices 𝐾 ′

𝑛
equivalent to {𝜅1,… , 𝜅𝑛}, the triple ⟨𝑊 ,Ω , 𝜇 ⟩ with

𝜇 (𝜔𝐾 ) = lim 
𝑛→∞

𝜇𝑐(𝐾 ′
𝑛
)

is a probability space.

As already reported in Section 3.2.2, given a probabilistic logic program  , a ground atom 𝑞 and a composite choice 𝜅, we say that 
𝜅 is an explanation of 𝑞 if ∀𝑤 ∈ 𝜔𝜅 ∶𝑤 ⊧ 𝑞. We say that a set of composite choices 𝐾 is covering for 𝑞 if {𝑤 ∣𝑤 ∈𝑊 ∧𝑤⊨ 𝑞} ⊆ 𝜔𝐾 .

If 𝑞 has a countable set 𝐾 of countable explanations that is covering with respect to 𝑞, 𝑄 represents a random variable, since 
{𝑤 ∣𝑤 ∈𝑊 ∧𝑤⊨ 𝑞} = 𝜔𝐾 ∈Ω . For brevity, we indicate 𝑃 (𝑄 = 1) with 𝑃 (𝑞) and we say that 𝑃 (𝑞) is well-defined according to the 
distribution semantics. If the probability of all ground atoms in the grounding of a probabilistic logic program  is well-defined, then 
 is well-defined.

E.3. DISPONTE semantics

Given a DISPONTE knowledge base (KB)  = (,), as for ProbLog, we obtain the set of worlds 𝑊, where each world is built 
by taking the certain axioms and adding a subset of the probabilistic axioms in all possible ways. We can define the query random 
variable as for ProbLog without function symbols (Eq. (1) in Section 3.2.1), so the sample space is 𝑊 , the event space Ω is the 
powerset of 𝑊.

Define function 𝜌 ∶𝑊 →ℝ as

𝜌(𝑤) =
∏

𝑝∶∶𝑎∈∶𝑎∈𝑤
𝑝

∏
𝑝∶∶𝑎∈∶𝑎∉𝑤

(1 − 𝑝)

and function 𝜇 ∶ ℙ(𝑊)→ℝ as

𝜇(𝜔) =
∑
𝑤∈𝜔

𝜌(𝑤)

Then (𝑊,ℙ(𝑊), 𝜇) is a probability space and 𝜇 is a probability measure.
Given an axiom 𝑞, define the function 𝑄 ∶𝑊 → {0,1} as in Eq. (1). Since the set of events is the powerset, then 𝑄−1(𝛾) ∈ ℙ(𝑊)

for all 𝛾 ⊆ {0,1} so 𝑄 is a random variable. The distribution of 𝑄 is defined by 𝑃 (𝑄 = 1) (𝑃 (𝑄 = 0) is given by 1−𝑃 (𝑄 = 1)) and we 
indicate 𝑃 (𝑄 = 1) with 𝑃 (𝑞).

We can now compute 𝑃 (𝑞) as

𝑃 (𝑞) = 𝜇(𝑄−1({1})) = 𝜇({𝑤|𝑤 ∈𝑊,𝑤 ⊧ 𝑞}) =
∑

𝑤∈𝑊∶𝑤⊧𝑞
𝜌(𝑤)

Appendix F. Ordinal numbers, mappings and fixpoints

We denote the set of ordinal numbers with Ω. Ordinal numbers extend the definition of natural numbers. The elements of Ω are 
called ordinals and are represented with lower case Greek letters. Ω is well-ordered, i.e., is a totally ordered set and every subset of it 
has a smallest element. The smallest element of Ω is 0. Given two ordinals 𝛼 and 𝛽, we say that 𝛼 is a predecessor of 𝛽, or equivalently 
𝛽 is a successor of 𝛼, if 𝛼 < 𝛽. If 𝛼 is the largest ordinal smaller than 𝛽, 𝛼 is termed immediate predecessor. The immediate successor of 
𝛼 is the smallest ordinal larger than 𝛼, denoted as 𝛼 + 1. Every ordinal has an immediate successor called successor ordinal. Ordinals 
that have predecessors but no immediate predecessor are called limit ordinals. So, ordinal numbers can be limit ordinals or successor 
ordinals.

The first elements of Ω are the naturals 0,1,2,… After all the natural numbers comes 𝜔, the first infinite ordinal. Successors of 𝜔
are 𝜔+ 1, 𝜔+ 2 and so on. The generalization of the concept of sequence for ordinal number is the so-called transfinite sequence. The 
technique of induction for ordinal numbers is called transfinite induction: this states that, if a property 𝑃 (𝛼) is defined for all ordinals 
𝛼, to prove that it is true for all ordinals we need to assume that 𝑃 (𝛽) is true ∀𝛽 < 𝛼 and then prove that 𝑃 (𝛼) is true. Transfinite 
induction proofs are usually structured in two steps: prove 𝑃 (𝛼) for 𝛼 both successor and limit ordinal.

Consider a lattice 𝐴. A mapping is a function 𝑓 ∶ 𝐴→ 𝐴. It is monotonic if 𝑓 (𝑥) ≤ 𝑓 (𝑦), ∀𝑥, 𝑦 ∈ 𝐴, 𝑥 ≤ 𝑦. If 𝑎 ∈ 𝐴 and 𝑓 (𝑎) = 𝑎, 
then 𝑎 is a fixpoint. The least fixpoint is the smallest fixpoint. The greatest fixpoint can be defined analogously.
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We define increasing ordinal powers of a monotonic mapping 𝑓 as 𝑓 ↑ 0 = ⊥, 𝑓 ↑ (𝛼 + 1) = 𝑓 (𝑓 (𝛼)) if 𝛼 is a successor ordinal and 
𝑓 ↑ 𝛼 = lub({𝑓 ↑ 𝛽 ∣ 𝛽 < 𝛼}) if 𝛼 is a limit ordinal. Similarly, decreasing ordinal powers are defined as 𝑓 ↓ 0 = ⊤, 𝑓 ↓ 𝛼 = 𝑓 (𝑓 (𝛼 − 1)) if 
𝛼 is a successor ordinal and 𝑓 ↓ 𝛼 = glb({𝑓 ↓ 𝛽 ∣ 𝛽 < 𝛼}) if 𝛼 is a limit ordinal. If 𝐴 is a complete lattice and 𝑓 a monotonic mapping, 
then the set of fixpoints of 𝑓 in 𝐴 is also a lattice (Knaster-Tarski theorem [26]). Moreover, 𝑓 has a least fixpoint (lfp(A)) and a 
greatest fixpoint (gfp(A)). See [26] for a complete analysis of the topic.

Appendix G. Three-valued MKNF semantics [27]

The truth of an MKNF formula 𝜓 is defined relatively to a three-valued MKNF structure (𝐼,, ), which consists of a first-order1

interpretation 𝐼 over a universe Δ and two pairs  = (𝑀,𝑀1) and  = (𝑁,𝑁1) of sets of first-order interpretations over Δ where 
𝑀1 ⊆𝑀 and 𝑁1 ⊆𝑁 . 𝑀 and 𝑀1 can be seen as the sets possible worlds where 𝜓 is true or not false, respectively, for the purpose 
of evaluating the truth value of 𝐊 𝜓 . 𝑁 and 𝑁1 serve the same purpose for defining the truth value of 𝐧𝐨𝐭 𝜓 .

Satisfaction of a closed formula by a three-valued MKNF structure is defined as follows (where 𝑝 is a predicate, 𝜓 is a formula, 
the values 𝚝𝚛𝚞𝚎, 𝚞𝚗𝚍𝚎𝚏𝚒𝚗𝚎𝚍 and 𝚏𝚊𝚕𝚜𝚎 follow the order 𝚏𝚊𝚕𝚜𝚎 < 𝚞𝚗𝚍𝚎𝚏𝚒𝚗𝚎𝚍 < 𝚝𝚛𝚞𝚎, and 𝜖𝐼 represents the individual or relation in 
the domain of discourse assigned to 𝜖 by the interpretation 𝐼 :

(𝐼,, )(𝑝(𝑡1,… , 𝑡𝑛)) 𝚝𝚛𝚞𝚎 iff (𝑡𝐼1 ,… , 𝑡𝐼
𝑛
) ∈ 𝑝𝐼

𝚏𝚊𝚕𝚜𝚎 iff (𝑡𝐼1 ,… , 𝑡𝐼
𝑛
) ∉ 𝑝𝐼

(𝐼,, )(¬𝜓) 𝚝𝚛𝚞𝚎 iff (𝐼,, )(𝜓) = 𝚏𝚊𝚕𝚜𝚎,
𝚞𝚗𝚍𝚎𝚏𝚒𝚗𝚎𝚍 iff (𝐼,, )(𝜓) = 𝚞𝚗𝚍𝚎𝚏𝚒𝚗𝚎𝚍,
𝚏𝚊𝚕𝚜𝚎 iff (𝐼,, )(𝜓) = 𝚝𝚛𝚞𝚎

(𝐼,, )(𝜓1 ∧𝜓2) 𝑚𝑖𝑛{(𝐼,, )(𝜓1), (𝐼,, )(𝜓2)}
(𝐼,, )(𝜓1 ⊃ 𝜓2) 𝚝𝚛𝚞𝚎 iff (𝐼,, )(𝜓1) < (𝐼,, )(𝜓2),

𝚏𝚊𝚕𝚜𝚎 otherwise
(𝐼,, )(∃𝑥 ∶ 𝜓) 𝑚𝑎𝑥{(𝐼,, )(𝜓)[𝛼∕𝑥]|𝛼 ∈Δ}
(𝐼,, )(𝐊 𝜓) 𝚝𝚛𝚞𝚎 iff (𝐽, (𝑀,𝑀1), )(𝜓) = 𝚝𝚛𝚞𝚎 for all 𝐽 ∈𝑀,

𝚏𝚊𝚕𝚜𝚎 iff (𝐽, (𝑀,𝑀1), )(𝜓) = 𝚏𝚊𝚕𝚜𝚎 for some 𝐽 ∈𝑀1,
𝚞𝚗𝚍𝚎𝚏𝚒𝚗𝚎𝚍 otherwise

(𝐼,, )(𝐧𝐨𝐭 𝜓) 𝚝𝚛𝚞𝚎 iff (𝐽,, (𝑁,𝑁1))(𝜓) = 𝚏𝚊𝚕𝚜𝚎 for some 𝐽 ∈𝑁1,
𝚏𝚊𝚕𝚜𝚎 iff (𝐽,, (𝑁,𝑁1))(𝜓) = 𝚝𝚛𝚞𝚎 for all 𝐽 ∈𝑁,
𝚞𝚗𝚍𝚎𝚏𝚒𝚗𝚎𝚍 otherwise

An MKNF interpretation over a universe Δ is a non-empty set of first order interpretations over Δ. An MKNF interpretation pair (𝑀,𝑁)
over a universe Δ consists of two MKNF interpretations 𝑀 , 𝑁 over Δ, with ∅ ⊂𝑁 ⊆𝑀 . An MKNF interpretation pair (𝑀,𝑁) satisfies 
a closed MKNF formula 𝜓 iff, for each 𝐼 ∈𝑀 , (𝐼, (𝑀,𝑁), (𝑀,𝑁))(𝜓) = 𝚝𝚛𝚞𝚎. If there exists an MKNF interpretation pair satisfying 
𝜓 , then 𝜓 is consistent. An MKNF interpretation pair (𝑀,𝑁) over a universe Δ is a three-valued MKNF model for a given closed MKNF 
formula 𝜓 if

• (𝑀,𝑁) satisfies 𝜓 and
• for each MKNF interpretation pair (𝑀 ′,𝑁 ′) over Δ with 𝑀 ⊆𝑀 ′ and 𝑁 ⊆𝑁 ′, where at least one of the inclusions is proper and 
𝑀 ′ =𝑁 ′ if 𝑀 =𝑁 , there is 𝐼 ′ ∈𝑀 ′ such that (𝐼 ′, (𝑀 ′,𝑁 ′), (𝑀,𝑁))(𝜓) = 𝚏𝚊𝚕𝚜𝚎. In other words, 𝑀 and 𝑁 cannot be extended 
while satisfying 𝜓 ; intuitively, the semantics implements minimal knowledge by requiring as many possible worlds as possible.

Appendix H. Details on iterated fixpoint semantics for HKB

Proposition 3 (From [4]). Given an HKBFS 𝐻 and a 3-valued interpretation  for 𝐻 , OpTrue𝐻 and OpFalse𝐻 are both monotonic in their 
argument.

Proposition 4 (From [4]). Given an HKBFS 𝐻 , OpTrue𝐻 and OpFalse𝐻 are monotonic in , i.e., if  and ′ are three-valued interpretations 
for 𝐻 such that  ≤ ′, then

1. for each 𝑇 𝑟 ⊆ 𝖪𝖠(𝐻), OpTrue𝐻 (𝑇 𝑟) ⊆ OpTrue𝐻′ (𝑇 𝑟)
2. for each 𝐹𝑎 ⊆ 𝖪𝖠(𝐻), OpFalse𝐻 (𝐹𝑎) ⊆ OpFalse𝐻′ (𝐹𝑎).

Proposition 5 (From [4]). For each HKBFS 𝐻 , IFP𝐻 is monotonic w.r.t. the order relation among 3-valued interpretations defined in 
Definition 7.

1 A summary of First Order Logic is in Appendix C.
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Table I.5
Iterations of the operators for virus(t), mutation(t, 𝑌 ), and spillover(t,0).

virus(t) mutation(t,Y) spillover(t,0) 
𝓘0 ∅,∅ ∅,∅ ∅,∅

𝒯𝑟1 {∅} {{(𝑒,1)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}}
𝒯𝑟2 {∅} {{(𝑒,1)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}}
𝒯𝑟3 {∅} {{(𝑒,1)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}}
𝒯𝑟4 {∅} {{(𝑒,1)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}}

ℱ𝑎1 {∅} {{(𝑒,0)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}
ℱ𝑎2 {∅} {{(𝑒,0)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}
ℱ𝑎3 {∅} {{(𝑒,0)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}
ℱ𝑎4 {∅} {{(𝑒,0)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}

𝓘1 {∅},∅ {{(𝑒,1)}},{{(𝑒,0)}} {{(𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}},{{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}

Table I.6
Iterations of the operators for spillover(t, 𝑠(0)), and mutated(t).

spillover(t,s(0)) mutated(t) 
𝓘0 ∅,∅ ∅,∅

𝒯𝑟1 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}} ∅
𝒯𝑟2 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}} {{(𝑒,1)}}
𝒯𝑟3 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}} {{(𝑒,1)}}
𝒯𝑟4 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}} {{(𝑒,1)}}

ℱ𝑎1 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}} {∅}
ℱ𝑎2 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}} {{(𝑒,0)}}
ℱ𝑎3 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}} {{(𝑒,0)}}
ℱ𝑎4 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}} {{(𝑒,0)}}

𝓘1 {{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}},{{(𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}} {{(𝑒,1)}},{{(𝑒,0)}}

Table I.7
Iterations of the operators for spillover_count(t,0), and spillover_count(t, 𝑠(0)).

spillover_count(t,0) spillover_count(t,s(0)) 
𝓘0 ∅,∅ ∅,∅

𝒯𝑟1 ∅ ∅
𝒯𝑟2 {∅} ∅
𝒯𝑟3 {∅} {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}}
𝒯𝑟4 {∅} {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}}

ℱ𝑎1 {∅} {∅}
ℱ𝑎2 {∅} {∅}
ℱ𝑎3 {∅} {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}
ℱ𝑎4 {∅} {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}

𝓘1 {∅},∅ {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1)}},{{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}

Appendix I. PIFP operator iteration for Example 8

Let us consider the PHKBFS of Example 7 and the queries 𝑞1 = safe(𝑡) and 𝑞2 = spillover_count(t, 𝑠(0)).
Tables from I.5 to I.10 show the computation of the first iteration of the PIFP operator. In the tables, fact 𝑓 is 𝑠𝑝𝑖𝑙𝑙𝑜𝑣𝑒𝑟(𝑋,𝑌 )

while axiom 𝑒 is

t ∶ ∃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛⊤.

Each column shows the sets of composite choices associated to an atom of 𝖪𝖠() at each step of the inner and outer operators. In 
particular, for each atom 𝑎, the line labelled 𝓘𝛼 shows the sets of composite choices 𝑆𝑎 and 𝑆∼ 𝑎 such that 𝑆𝑎 = 𝜔𝜙𝑎 and 𝑆∼ 𝑎 = 𝜔𝜙∼ 𝑎
where 𝖯𝖨𝖥𝖯 ↑ 𝛼 = {(𝑎,𝜙𝑎,𝜙∼ 𝑎)|𝑎 ∈ 𝖪𝖠()}; the lines labelled 𝒯𝑟𝛿 (resp. ℱ𝑎𝛿) show the set of composite choices 𝑆𝑎 = 𝜔𝜃𝑎 and 
𝑆∼ 𝑎 = 𝜔𝜃∼ 𝑎 such that (𝑎, 𝜃𝑎) ∈ POpTrue

𝖯𝖨𝖥𝖯↑𝛼
↑ 𝛿 (resp. (𝑎, 𝜃𝑎) ∈ POpFalse

𝖯𝖨𝖥𝖯↑𝛼
↑ 𝛿).
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Table I.8
Iterations of the operators for spillover_count(t, 𝑠(𝑠(0))).

spillover_count(t,s(s(0))) 
𝓘0 ∅,∅

𝒯𝑟1 ∅
𝒯𝑟2 ∅
𝒯𝑟3 ∅
𝒯𝑟4 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}
𝒯𝑟5 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}

ℱ𝑎1 {∅}
ℱ𝑎2 {∅}
ℱ𝑎3 {∅}
ℱ𝑎4 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}
ℱ𝑎5 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}
ℱ𝑎6 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}

𝓘1 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}, 
{{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}

Table I.9
Iterations of the operators for at_least_two_spillovers(t).

at_least_two_spillovers(t) 
𝓘0 ∅,∅

𝒯𝑟1 ∅
𝒯𝑟2 ∅
𝒯𝑟3 ∅
𝒯𝑟4 ∅
𝒯𝑟5 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}
𝒯𝑟6 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}

ℱ𝑎1 {∅}
ℱ𝑎2 {∅}
ℱ𝑎3 {∅}
ℱ𝑎4 {∅}
ℱ𝑎5 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}
ℱ𝑎6 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}
ℱ𝑎7 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}

𝓘1 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}, 
{{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}

Table I.10

Iterations of the operators for safe(t).

safe(t) 
𝓘0 ∅,∅

𝒯𝑟1 ∅
𝒯𝑟2 ∅
𝒯𝑟3 ∅
𝒯𝑟4 ∅
𝒯𝑟5 ∅
𝒯𝑟6 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)}}
𝒯𝑟7 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}
𝒯𝑟8 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}

ℱ𝑎1 {∅}
ℱ𝑎2 {∅}
ℱ𝑎3 {∅}
ℱ𝑎4 {∅}
ℱ𝑎5 {∅}
ℱ𝑎6 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}
ℱ𝑎7 {{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}

𝓘1 {{(𝑒,0)},{(𝑓{𝑋∕𝑡, 𝑌 ∕0},0)},{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},0)}}, 
{{(𝑒,1), (𝑓{𝑋∕𝑡, 𝑌 ∕0},1), (𝑓{𝑋∕𝑡, 𝑌 ∕𝑠(0)},1)}}
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Appendix J. Proof for Section 5

Proposition 6 (Monotonicity of POpTrue𝓘 and POpFalse𝓘). POpTrue𝓘 and POpFalse𝓘 are monotonic in their argument.

Proof. Here we only consider POpTrue𝓘, since the proof for POpFalse𝓘 can be constructed in a similar way. We have to prove that 
if 𝒯𝑟1 ≤𝒯𝑟2 then POpTrue𝓘(𝒯𝑟1) ≤ POpTrue𝓘(𝒯𝑟2). By definition, 𝒯𝑟1 ≤𝒯𝑟2 means that

∀(𝑎,𝜙𝑎) ∈𝒯𝑟1, (𝑎, 𝜃𝑎) ∈𝒯𝑟2 ∶ 𝜙𝑎 ⊆ 𝜃𝑎.

Let (𝑎,𝜙′
𝑎
) be the elements of POpTrue𝓘(𝒯𝑟1) and (𝑎, 𝜃′

𝑎
) the elements of POpTrue𝓘(𝒯𝑟2). To prove the monotonicity, we have to 

prove that 𝜙′
𝑎
⊆ 𝜃′

𝑎

If 𝑎 ∈  then 𝜙′
𝑎
= 𝜃′

𝑎
= 𝜔{{(𝑎,1)}} ×𝑊. If 𝑎 ∈ 𝖪𝖠() ⧵  , then 𝜙′

𝑎
and 𝜃′

𝑎
are given by expressions that have the same structure 

and are monotonic in 𝜙𝑏 and 𝜃𝑏, respectively. Since ∀𝑏 ∈ 𝖪𝖠() ∶ 𝜙𝑏 ⊆ 𝜃𝑏, then 𝜙′
𝑎
⊆ 𝜃′

𝑎
. □

Proposition 7 (Monotonicity of PIFP). PIFP is monotonic.

Proof. As above, we have to prove that, in the case that 𝓘1 ≤𝓘2, then

PIFP (𝓘1) ≤ PIFP (𝓘2).

By definition, 𝓘1 ≤𝓘2 means that

∀(𝑎,𝜙𝑎,𝜙∼ 𝑎) ∈𝓘1, (𝑎, 𝜃𝑎, 𝜃∼ 𝑎) ∈𝓘2 ∶ 𝜙𝑎 ⊆ 𝜃𝑎,𝜙∼ 𝑎 ⊆ 𝜃∼ 𝑎.

Let (𝑎,𝜙′
𝑎
,𝜙′∼ 𝑎) be the elements of PIFP (𝓘1) and (𝑎, 𝜃′

𝑎
, 𝜃′∼ 𝑎) the elements of PIFP (𝓘2). We have to prove that 𝜙′

𝑎
⊆ 𝜃′

𝑎
and 𝜙′∼ 𝑎 ⊆ 𝜃

′
∼ 𝑎. 

This is a direct consequence of the monotonicity of POpTrue𝓘 and POpFalse𝓘 in 𝓘, which can be proved as in Proposition 1. □

Lemma 5 (Model Equivalence). For a grounded PHKBFS  = (, ,,), for every world 𝑤 and iteration 𝛼, we have:

IFP𝑤 ↑ 𝛼 = (PIFP ↑ 𝛼)𝑤

Proof. We prove it by double transfinite induction. If 𝛼 is a successor ordinal, assume that

IFP𝑤 ↑ 𝛼 − 1 = (PIFP ↑ 𝛼 − 1)𝑤

For any 𝛼, 𝛿, let 𝓘𝛼 be PIFP ↑ 𝛼 = {(𝑎,𝜙𝛼
𝑎
,𝜙𝛼∼ 𝑎)|𝑎 ∈ 𝖪𝖠()}, POpTrue

𝓘𝛼−1 ↑ 𝛿 = {(𝑎, 𝜃𝛿
𝑎
)|𝑎 ∈ 𝖪𝖠()}, POpFalse

𝓘𝛼−1 ↓ 𝛿 =
{(𝑎, 𝜃𝛿∼ 𝑎)|𝑎 ∈ 𝖪𝖠()} and 𝛼

𝑤
= (𝐼𝛼

𝑇
, 𝐼𝛼
𝐹
) be IFP𝑤 ↑ 𝛼

Let us perform transfinite induction on the iterations of OpTrue𝑤𝛼−1𝑤

and OpFalse𝑤𝛼−1𝑤

. Consider a successor ordinal 𝛿 and assume 
that

OpTrue𝑤𝛼−1𝑤

↑ (𝛿 − 1) =(POpTrue
𝓘𝛼−1 ↑ (𝛿 − 1))𝑤

OpFalse𝑤𝛼−1𝑤

↓ (𝛿 − 1) =(POpFalse
𝓘𝛼−1 ↓ (𝛿 − 1))𝑤

We now prove that

OpTrue𝑤𝛼−1𝑤

↑ 𝛿 =(POpTrue
𝓘𝛼−1 ↑ 𝛿)

𝑤

OpFalse𝑤𝛼−1𝑤

↓ 𝛿 =(POpFalse
𝓘𝛼−1 ↑ 𝛿)

𝑤

Pick an atom 𝑎 ∈ 𝖪𝖠() such that 𝑤 ∈ 𝜃𝛿
𝑎
. If 𝑎 ∈  , 𝑤 ∈ 𝜃𝛿

𝑎
means that 𝑎 is a fact in 𝑤 and 𝑎 ∈ OpTrue𝑤𝛼−1𝑤

↑ 𝛿.

If 𝑎 ∉  and 𝑤 ∈ 𝜃𝛿
𝑎

where

𝜃𝛿
𝑎
=
( ⋃
𝑎←𝑏1 ,…,𝑏𝑚,∼ 𝑐1 ,…∼ 𝑐𝑛∈

⋂
𝑖=1,…,𝑚

(𝜙𝛼−1
𝑏𝑖

∪ 𝜃𝛿−1
𝑏𝑖

)
⋂

𝑖=1,…,𝑛
𝜙𝛼−1∼ 𝑐𝑖

)
⋃( ⋃

𝐺⊆𝖪𝖠()
𝐸⊆ ,

𝖮𝖡∪𝐸,𝐺⊧𝑎

⋂
𝑔∈𝐺

(𝜙𝛼−1
𝑔

∪ 𝜃𝛿−1
𝑔

)
⋂

(𝑊 ×𝜔{{(𝑒,1) | 𝑒∈𝐸}}))

This means that either

1. there is a rule 𝑎← 𝑏1,… , 𝑏𝑚,∼𝑐1,… ,∼𝑐𝑛 ∈ such that 𝑤 ∈ 𝜃𝛿−1
𝑏𝑖

∪ 𝜙𝛼−1
𝑏𝑖

for 𝑖 = 1…𝑚 and 𝑤 ∈ 𝜙𝛼−1∼𝑐𝑗
for 𝑗 = 1…𝑛; or
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2. there is a subset 𝐺 of 𝖪𝖠() and a subset 𝐸 of  such that 𝖮𝖡∪𝐸,𝐺 ⊧ 𝑎, ∀𝑔 ∈𝐺 ∶𝑤 ∈ 𝜙𝛼−1
𝑔

∨𝑤 ∈ 𝜃𝛿−1
𝑔

and ∀𝑒 ∈𝐸 ∶ 𝑒 ∈ 𝑤
In case 1, by the inductive assumption, then either each 𝑏𝑖 ∈ OpTrue𝑤𝛼−1𝑤

↑ (𝛿−1) or 𝑏𝑖 ∈ 𝐼𝛼−1𝑇
and each 𝑐𝑗 ∈ 𝐼𝛼−1𝐹

so 𝑎 ∈ OpTrue𝑤𝛼−1𝑤

↑ 𝛿.

In case 2, there exist sets 𝐺 and 𝐸 such that it holds that for ∀𝑔 ∈𝐺 ∶ 𝑔 ∈ 𝐼𝛼−1
𝑇

∪OpTrue𝑤𝛼−1𝑤

↑ (𝛿−1) for the inductive hypothesis, 

and 𝐸 ⊂𝑤 because 𝑤 ∈ 𝜃𝛿
𝑎
, so 𝖮𝖡

𝑤,𝐼𝛼−1
𝑇

∪OpTrue𝑤𝛼−1𝑤

↑(𝛿−1) ⊧ 𝑎 and 𝑎∈ OpTrue𝑤𝛼−1𝑤

↑ 𝛿.

In the other direction, consider 𝑎 ∈ OpTrue𝑤𝛼−1𝑤

↑ 𝛿. If 𝑎 ∈  , then 𝑎 must be a fact in 𝑤 because no rule of  has 𝑎 in the head so 

𝑤 ∈ 𝜔{{(𝑎,1)}} ×𝑊 and 𝑤 ∈ 𝜃𝛿
𝑎
.

If 𝑎 ∉  then either

1. there is a rule 𝑎← 𝑏1,… , 𝑏𝑚,∼𝑐1,… ,∼𝑐𝑛 ∈ such that, for 𝑖 = 1…𝑚, 𝑏𝑖 ∈ OpTrue𝑤𝛼−1𝑤

↑ (𝛿 − 1) or 𝛼−1
𝑤

⊧ 𝑎 and, for 𝑗 = 1…𝑛, 

𝛼−1
𝑤

⊧∼ 𝑐𝑗 or
2. 𝖮𝖡,𝐼𝛼−1

𝑇
∪OpTrue𝑤𝛼−1𝑤

↑(𝛿−1) ⊧ 𝑎

In case 1, by the inductive assumption, 𝑤 ∈ 𝜃𝛿−1
𝑏𝑖

∪ 𝜙𝛼−1
𝑏𝑖

for 𝑖 = 1…𝑚 and 𝑤 ∈ 𝜙𝛼−1∼𝑐𝑗
for 𝑗 = 1…𝑛, so 𝑤 ∈ 𝜃𝛿

𝑎

In case 2, pick 𝐺 = 𝐼𝛼−1
𝑇

∪ OpTrue𝑤𝛼−1𝑤

↑ (𝛿 − 1) and 𝐸 = 𝑤. Then it holds that 𝖮𝖡∪𝐸,𝐺 ⊧ 𝑎, so 𝑤∈ 𝜃𝛿
𝑎
.

Now suppose 𝑤∈ 𝜃𝛿∼ 𝑎. If 𝑎 ∈  , 𝑤∈ 𝜃𝛿∼ 𝑎 means that 𝑎 is not a fact in 𝑤 and no rule has 𝑎 in the head so 𝑎 ∈ OpFalse𝑤𝛼−1𝑤

↓ 𝛿.

If 𝑎 ∉  then

𝜃𝛿∼ 𝑎 =
( ⋂
𝑎←𝑏1 ,…,𝑏𝑚,∼ 𝑐1 ,…∼ 𝑐𝑛∈

⋃
𝑖=1,…,𝑚

(𝜙𝛼−1∼ 𝑏𝑖 ∪ 𝜃𝛿−1∼ 𝑏𝑖 )
⋃

𝑖=1,…,𝑛
𝜙𝛼−1
𝑐𝑖⋃

𝐺⊆𝖪𝖠()
𝐸⊆ ,

𝖮𝖡∪𝐸,𝐺⊧¬𝑎

⋂
𝑔∈𝐺

𝜙𝛼−1
𝑔

⋂
(𝑊 ×𝜔{{(𝑒,1) | 𝑒∈𝐸}}))

⋂ ⋂
𝐺⊆𝖪𝖠()
𝐸⊆ ,

𝖮𝖡∪𝐸,𝐺⊧𝑎

(⋃
𝑔∈𝐺

(𝜙𝛼−1∼ 𝑔 ∪ 𝜃𝛿−1∼ 𝑔 )
⋃
𝑒∈𝐸

(𝑊 ×𝜔{{(𝑒,0)}})
)

This means that

1. either
(a) for all rules 𝑎← 𝑏1,… , 𝑏𝑚,∼𝑐1,… ,∼𝑐𝑛 ∈ either there exists an 𝑖 such that 𝑤 ∈ 𝜙𝛼−1∼ 𝑏𝑖 ∪ 𝜃𝛿−1∼ 𝑏𝑖 or a 𝑗 such that 𝑤 ∈ 𝜙𝛼−1

𝑐𝑗
, 

(b) or there is a subset 𝐺 of 𝖪𝖠() and a subset 𝐸 of  such that 𝖮𝖡∪𝐸,𝐺 ⊧ ¬𝑎, ∀𝑔 ∈𝐺 ∶𝑤 ∈ 𝜙𝛼−1
𝑔

and ∀𝑒∈𝐸 ∶ 𝑒 ∈ 𝑤,

2. and for all subsets 𝐺 of 𝖪𝖠() and subsets 𝐸 of  such that 𝖮𝖡∪𝐸,𝐺 ⊧ 𝑎, ∃𝑔 ∈𝐺 ∶𝑤 ∈ 𝜙𝛼−1∼ 𝑔 ∨𝑤 ∈ 𝜃𝛿−1∼ 𝑔 or ∃𝑒 ∈𝐸 ∶ 𝑒 ∉ 𝑤
In case 1a, by the inductive assumption, for all rules there exists a 𝑏𝑖 such that 𝑏𝑖 ∈ OpFalse𝑤𝛼−1𝑤

↓ (𝛿 − 1) or 𝑏𝑖 ∈ 𝐼𝛼−1𝑇
or there exists 

a 𝑐𝑗 such that 𝑐𝑗 ∈ 𝐼𝛼−1𝐹
.

In case 1b, for the sets 𝐺 and 𝐸 that satisfy the condition, it holds that for ∀𝑔 ∈𝐺 ∶ 𝑔 ∈ OpTrue𝑤𝛼−1𝑤

↑ (𝛿−1)∪𝐼𝛼−1
𝑇

for the inductive 
hypothesis, 𝐸 ⊂ 𝑤 and 𝖮𝖡∪𝐸,𝐼𝛼−1

𝑇

⊧ ¬𝑎.

In case 2, for all sets 𝐺 and 𝐸 such that 𝖮𝖡∪𝐸,𝐺 ⊧ 𝑎, it holds that for ∃𝑔 ∈𝐺 ∶ 𝑔 ∈ OpTrue𝑤𝛼−1𝑤

↑ (𝛿 − 1) ∪ 𝐼𝛼−1
𝑇

for the inductive 
hypothesis or ∃𝑒 ∈𝐸 ∶ 𝑒 ∉ 𝑤 so 𝖮𝖡∪𝑤,𝖪𝖠()⧵(OpFalse𝑤𝛼−1𝑤

↓(𝛿−1)∪𝐼𝛼−1
𝐹

) ̸⊧ 𝑎.

Conjoining conditions 1a and 2 it holds that 𝑎 ∈ OpFalse𝑤𝛼−1𝑤

↓ 𝛿. Similarly, conjoining conditions 1b and 2 it holds that 𝑎 ∈
OpFalse𝑤𝛼−1𝑤

↓ 𝛿.

In the other direction, consider 𝑎 ∈ OpFalse𝑤𝛼−1𝑤

↓ 𝛿. If 𝑎 ∈  , then 𝑎 must not be a fact in 𝑤 and 𝑤 ∈ 𝜔{{(𝑎,0)}} ×𝑊 so 𝑤 ∈ 𝜃𝛿
𝑎
.

If 𝑎 ∉  then

1. either
(a) for all rules 𝑎← 𝑏1,… , 𝑏𝑚,∼𝑐1,… ,∼𝑐𝑛 ∈ there exists an 𝑖 such that 𝑏𝑖 ∈ OpFalse𝑤𝛼−1𝑤

↓ (𝛿 − 1) or 𝑏𝑖 ∈ 𝐼𝛼−1𝑇
or there exists 

a 𝑗 such tat 𝑐𝑗 ∈ 𝐼𝛼−1𝐹
. 

(b) or 𝖮𝖡∪𝑤,𝐼𝛼−1𝑇

⊧ ¬𝑎,
2. and 𝖮𝖡∪𝑤,𝖪𝖠()⧵(OpFalse𝑤𝛼−1𝑤

↓(𝛿−1)∪𝐼𝛼−1
𝐹

) ̸⊧ 𝑎



Artificial Intelligence 346 (2025) 104361

26

M. Alberti, E. Lamma, F. Riguzzi et al. 

In case 1a, by the inductive assumption, for all rules there exists an 𝑖 such that 𝑤 ∈ 𝜙𝛼−1∼ 𝑏𝑖 ∪ 𝜃𝛿−1∼ 𝑏𝑖 or there exists a 𝑗 such that 𝑤 ∈ 𝜙𝛼−1
𝑐𝑗

.

In case 1b, pick 𝐺 = 𝐼𝛼−1
𝑇

and 𝐸 = 𝑤. Then it holds that 𝖮𝖡∪𝐸,𝐺 ⊧ ¬𝑎
In case 2, consider 𝐺 = 𝖪𝖠() ⧵ (OpFalse𝑤𝛼−1𝑤

↓ (𝛿 − 1) ∪ 𝐼𝛼−1
𝐹

) and 𝐸 = 𝑤. Then it holds that 𝖮𝖡∪𝐸,𝐺 ̸⊧ 𝑎. Since description 

logics are monotonic, this means that 𝖮𝖡∪𝐸′ ,𝐺′ ̸⊧ 𝑎 holds also for all subsets 𝐺′ of 𝐺 and 𝐸′ of 𝐸. Let’s consider the supersets 𝐺′′ of 
𝐺 and 𝐸′′ of 𝐸. For each pair (𝐺′′,𝐸′′) such that 𝖮𝖡∪𝐸′′ ,𝐺′′ ⊧ 𝑎, either ∃𝑔 ∈𝐺′′ ∶𝑤 ∈ 𝜙𝛼−1∼ 𝑔 ∨𝑤 ∈ 𝜃𝛿−1∼ 𝑔 or ∃𝑒 ∈𝐸′′ ∶ 𝑒 ∉ 𝑤.

Joining conditions 1a and 2 it holds that 𝑤 ∈ 𝜃𝛿∼ 𝑎. Similarly, joining conditions 1b and 2 it holds that 𝑤 ∈ 𝜃𝛿∼ 𝑎.
Consider now 𝛿 a limit ordinal, so 𝜃𝛿

𝑎
=
⋃
𝜇<𝛿 𝜃

𝜇
𝑎 and 𝜃𝛿∼ 𝑎 =

⋂
𝜇<𝛿 𝜃

𝜇
∼ 𝑎.

𝑎 ∈ OpTrue𝑤𝛼−1𝑤

↑ 𝛿, iff there exists a 𝜇 < 𝛿 such that

𝑎 ∈ OpTrue𝑤𝛼−1𝑤

↑ 𝜇.

For the inductive hypothesis, 𝑤 ∈ 𝜃𝛿
𝑎
.

∼𝑎 ∈ OpFalse𝑤𝛼−1𝑤

↓ 𝛿, iff, for all 𝜇 < 𝛿,

∼ 𝑎 ∈ OpFalse𝑤𝛼−1𝑤

↓ 𝜇.

For the inductive hypothesis, 𝑤 ∈ 𝜃𝛿∼ 𝑎.
Since

OpTrue𝑤𝛼−1𝑤

=(POpTrue
𝓘𝛼−1 ↑ 𝛿)

𝑤

OpFalse𝑤𝛼−1𝑤

=(POpFalse
𝓘𝛼−1 ↓ 𝛿)

𝑤

holds for any 𝛿, then

𝗅𝖿𝗉(OpTrue𝑤𝛼−1𝑤

) =(𝗅𝖿𝗉(POpTrue
𝓘𝛼−1 ))

𝑤

𝗀𝖿𝗉(OpFalse𝑤𝛼−1𝑤

) =(𝗀𝖿𝗉(POpFalse
𝓘𝛼−1 ))

𝑤

and

IFP𝑤 ↑ 𝛼 = (PIFP ↑ 𝛼)𝑤

Consider now 𝛼 a limit ordinal. Then 𝜙𝛼
𝑎
=
⋃
𝛽<𝛼 𝜙

𝛽
𝑎 and 𝜙𝛼∼ 𝑎 =

⋃
𝛽<𝛼 𝜙

𝛽
∼ 𝑎.

𝑎 ∈ IFP𝑤 ↑ 𝛼, iff there exists a 𝛽 < 𝛼 such that

𝑎 ∈ IFP𝑤 ↑ 𝛽 = (PIFP ↑ 𝛽)

For the inductive hypothesis, 𝑤 ∈ 𝜙𝛿
𝑎
.

∼𝑎 ∈ IFP𝑤 ↑ 𝛼, iff, for all 𝛽 < 𝛼,

∼ 𝑎 ∈ IFP𝑤 ↑ 𝛽.

For the inductive hypothesis, 𝑤 ∈ 𝜙𝛿∼ 𝑎. □

Lemma 6 (Soundness and completeness of PIFP). For a sound grounded PHKBFS , let PIFP ↑ 𝛼 = {(𝑎,𝜙𝛼
𝑎
,𝜙𝛼∼ 𝑎)|𝑎 ∈ 𝖪𝖠()} for all 𝛼. 

For every atom 𝑎∈ 𝖪𝖠() and world 𝑤 there is an iteration 𝛼0 such that for all 𝛼 > 𝛼0 we have:

𝑤 ∈ 𝜙𝛼
𝑎
↔𝖶𝖥𝖬(𝑤) ⊨ 𝑎 (J.1)

𝑤 ∈ 𝜙𝛼∼ 𝑎 ↔𝖶𝖥𝖬(𝑤) ⊨∼ 𝑎 (J.2)

Proof. 𝖶𝖥𝖬(𝑤) ⊨ 𝑎 means that there exists a 𝛼0 such that ∀𝛼 ∶ 𝛼 ≥ 𝛼0 → IFP𝑤 ↑ 𝛼 ⊨ 𝑎. For Lemma 1, this happens if and only 
if 𝑤 ∈ 𝜙𝛼

𝑎
. Similarly, 𝖶𝖥𝖬(𝑤) ⊨∼𝑎 implies that there exists a 𝛼0 such that ∀𝛼 ∶ 𝛼 ≥ 𝛼0 → IFP𝑤 ↑ 𝛼 ⊨∼𝑎. As before, for Lemma 1, 

𝑤 ∈ 𝜙𝛼∼ 𝑎. □

Theorem 8 (Well-definedness of the distribution semantics). For a sound grounded PHKBFS , for every atom 𝑎 ∈ 𝖪𝖠(), 𝜇 ({𝑤 ∣𝑤 ∈
𝑊 ,𝑤 ⊨ 𝑎}) is well-defined.

Proof. Let PIFP ↑ 𝛿 = {(𝑎,𝜙𝛿
𝑎
,𝜙𝛿∼ 𝑎)|𝑎 ∈ 𝖪𝖠()}, where 𝛿 denotes the depth of the program. For Lemma 2, {𝑤 ∣𝑤 ∈𝑊𝑃 ,𝑤 ⊨ 𝑎} = 𝜙𝛿𝑎.

Each iteration of POpTrue𝓘𝛼 and POpFalse𝓘𝛼 generates sets using a countable number of unions and intersection, since the set of 
rules is countable. So 𝜙𝛿

𝑎
∈Ω , {𝑤 ∣𝑤 ∈𝑊 ,𝑤 ⊨ 𝑎} is measurable and 𝜇 ({𝑤 ∣𝑤 ∈𝑊 ,𝑤 ⊨ 𝑎}) is well-defined. □
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