
CoAct-1: Computer-using Agents with
Coding as Actions

Linxin Song 1, Yutong Dai 2, Viraj Prabhu 2, Jieyu Zhang 3, Taiwei Shi 1, Li Li 1, Junnan Li 2,
Silvio Savarese 2, Zeyuan Chen 2, Jieyu Zhao 1, Ran Xu 2, and Caiming Xiong 2

1University of Southern California, 2Salesforce Research, 3University of Washington

Autonomous agents that operate computers via Graphical User Interfaces (GUIs) often struggle with efficiency
and reliability on complex, long-horizon tasks. While augmenting these agents with planners can improve
task decomposition, they remain constrained by the inherent limitations of performing all actions through GUI
manipulation, leading to brittleness and inefficiency. In this work, we introduce a more robust and flexible
paradigm: enabling agents to use coding as an enhanced action. We present CoAct-1, a novel multi-agent
system that synergistically combines GUI-based control with direct programmatic execution. CoAct-1 features
an Orchestrator that dynamically delegates subtasks to either a conventional GUI Operator or a specialized
Programmer agent, which can write and execute Python or Bash scripts. This hybrid approach allows the
agent to bypass inefficient GUI action sequences for tasks like file management and data processing, while still
leveraging visual interaction when necessary. We evaluate our system on the challenging OSWorld benchmark,
where CoAct-1 achieves a new state-of-the-art success rate of 60.76%, significantly outperforming prior
methods. Furthermore, our approach dramatically improves efficiency, reducing the average number of steps
required to complete a task to just 10.15, compared to 15 for leading GUI agents. Our results demonstrate that
integrating coding as a core action provides a more powerful, efficient, and scalable path toward generalized
computer automation.

Website: https://linxins.net/coact/

1. Introduction

Recent advancements in computer-using agents have primarily focused on operating through Graphical
User Interfaces (GUIs). While these GUI agents, powered by vision-language (action) models (Li et al.,
2023, Deepmind, 2025a,b, OpenAI, 2024, 2025a, Qin et al., 2025, Xie et al., 2025a, Yang et al., 2025),
have demonstrated the ability to perform a variety of tasks, they often struggle with long-horizon planning
and interactions in environments with dense GUI elements. For example, workflows common in office
productivity suites or involving direct OS-level operations—such as locating a specific table within a multi-
sheet spreadsheet, filtering it based on complex criteria, copying the results, and then saving it as a new CSV
file—often involve a long and intricate sequence of precise GUI manipulations. Similarly, tasks like finding
all image files in a nested directory structure, resizing them to specific dimensions, and then compressing the
entire directory into a single archive are brittle and inefficient when solved via GUI actions such as clicking
and dragging. In these scenarios, existing agents frequently struggle with visual grounding ambiguity (e.g.,
distinguishing between visually similar icons or menu items) and the accumulated probability of making any
single error over the long horizon. A single mis-click or misunderstood UI element can derail the entire task.
To mitigate these challenges, a prominent line of research has focused on augmenting GUI agents with
dedicated high-level planners. Approaches such as GTA-1 (Yang et al., 2025) and other modular systems (Yang
et al., 2024, Xu et al., 2024, Agashe et al., 2024, 2025) employ powerful language models like OpenAI
o3 (OpenAI, 2025b) to decompose a user’s high-level goal into a sequence of more manageable subtasks.

Corresponding author(s): Linxin Song (linxinso@usc.edu), Jieyu Zhao(jieyuz@usc.edu), Ran Xu(ran.xu@salesforce.com), Caiming
Xiong(cxiong@salesforce.com)

ar
X

iv
:2

50
8.

03
92

3v
2 

 [
cs

.C
L

] 
 8

 A
ug

 2
02

5

https://linxins.net/coact/
https://arxiv.org/abs/2508.03923v2


CoAct-1: Computer-using Agents with Coding as Actions

This hierarchical decomposition can improve performance on complex, multi-step problems by providing a
structured plan. However, this paradigm does not fundamentally address the inefficiency and brittleness
inherent in relying exclusively on GUI-based actions for execution. The agent must still navigate menus,
click buttons, and type into fields, even for operations that could be accomplished more directly and reliably
through programmatic means. This leaves the system susceptible to planning uncertainty, visual perception
errors, and the integration challenges between high-level planning and low-level action generation.
In this work, we argue for and instantiate a more flexible and powerful action space. We propose a hybrid
approach that combines the intuitive, human-like strengths of GUI manipulation with the precision, reliability,
and efficiency of direct system interaction through code. We introduce CoAct-1 (Computer-using Agent
with Coding as Actions), a novel multi-agent system that is architected around three specialized agents:
Orchestrator, Programmer, and GUI Operator. A high-level Orchestrator serves as the central planner,
decomposing the user’s goal and assessing the nature of each subtask. Based on this analysis, it assigns the
task to one of two distinct execution agents: a Programmer agent, which writes and executes Python or Bash
scripts for backend operations like file management, data processing, or environment configuration; or a
GUI Operator, a VLM-based agent that performs frontend actions like clicking buttons and navigating visual
interfaces. This dynamic delegation allows CoAct-1 to strategically bypass inefficient GUI sequences in favor
of robust, single-shot code execution where appropriate, while still leveraging visual interaction for tasks
where it is indispensable.
Our experimental analysis provides strong evidence for the advantages of this hybrid design. On the
comprehensive OSWorld benchmark, CoAct-1 establishes a new state-of-the-art, achieving an overall success
rate of 60.76%. This marks a significant improvement over leading baselines like GTA-1 (53.10%). The
performance gains are most pronounced in categories where programmatic control is highly advantageous.
For instance, in Calc (70.21%), multi-application (47.88%), and VS Code (78.26%) tasks, the Programmer
agent’s ability to execute precise scripts leads to substantial gains over the strongest GUI-only methods.
Beyond improving success rates, our dual-modality approach dramatically enhances operational efficiency.
By replacing long, error-prone click sequences with concise code, CoAct-1 solves tasks in an average of just
10.15 steps, a stark contrast to the 15 steps required by agents like GTA-1. This efficiency underscores the
potential of our approach to pave a more robust and scalable path toward generalized computer automation.

2. Related Work

Screen parsing and visual grounding A first line of work focuses on perceiving and grounding GUI
elements directly from pixels, without relying on DOM or accessibility hooks. OmniParser learns screen-
parsing primitives for pure vision–based understanding (Lu et al., 2024). On the grounding side, SeeClick
(instruction-to-target grounding), Aria-UI (instruction grounding over GUIs), and UGround (universal GUI
grounding) map language to actionable screen locations (Cheng et al., 2024, Yang et al., 2024, Gou et al.,
2024). OS-Atlas trains a foundation action model to generalize across diverse interfaces (Wu et al., 2024).
Dedicated grounding evaluations such as ScreenSpot-Pro further benchmark grounding under professional,
high-resolution settings (Li et al., 2025).
Modular planner–grounder agents A second strand explicitly separates what to do from where/how to act
on screen: a language planner proposes subgoals while a visual model grounds each step. Representative
systems include SeeClick and OS-Atlas (Cheng et al., 2024, Wu et al., 2024). GTA-1 strengthens this two-stage
paradigm via test-time scaling: sampling multiple candidate actions and using an MLLM judge to select
among them, improving robustness on high-resolution, cluttered UIs (Yang et al., 2025). Other related
open frameworks such as Agent-S / Agent-S2 and AutoGen provide reusable infrastructures for multi-agent

2



CoAct-1: Computer-using Agents with Coding as Actions

orchestration and tool calling (Agashe et al., 2024, 2025, Song et al., 2025, Zhang et al., 2024, Wu et al.,
2023, Zhang et al., 2023, 2025b).
Native end-to-end GUI agents A third thread trains native agents that unify perception, reasoning, and
action in a single model. UI-TARS exemplifies this approach with a unified action space for mouse/keyboard
operations across apps, eschewing hand-crafted controllers (Qin et al., 2025). AGUVIS pushes toward unified,
pure-vision GUI agents that generalize across interfaces (Xu et al., 2024).
Hybrid agentic frameworks Beyond GUI-only interaction, several agentic systems compose tools and APIs
on the fly to extend capabilities at run time. Examples include UFO-2 (Zhang et al., 2025a), PyVision (Zhao
et al., 2025), and ALITA (Qiu et al., 2025)—which, while not restricted to GUI/CUA, share the principle of
dynamically constructing and invoking tools.

3. Computer-using Agent with Coding as Actions

GUI OperatorOrchestratorProgrammer

Code 


Result

Subtask Subtask

Summary Summary

Task

User

ScreenshotScreenshot Screenshot

GUI Operation

Operating System

Figure 1: Multi-agent system design for our CoAct-1. This multi-agent system includes a programmer who can interact
with the operating system through multi-round coding.

In this work, we introduce a new system-interactive action: coding, to replace redundant and brittle GUI
actions. Specifically, we design a multi-agent system called CoAct-1 based on the GUI agent with a planner
approach, introducing a new agent called programmer who can interact with the operating system by coding.
An orchestrator is designed to determine whether to assign the programmer or the GUI operator to complete
a subtask. The overall framework is illustrated in Figure 1.

3.1. Multi-agent System Design for Computer Use

Our multi-agent system comprises three agents: the Orchestrator, Programmer, and GUI Operator, each of
which will establish a conversation.
Orchestrator. The orchestrator is responsible for decomposing user tasks and dynamic planning. The
orchestrator’s step-wise action is based on all previous observations. Orchestrator cannot interact with the OS
directly. Therefore, in each step, the orchestrator is required to assign a subtask to either a programmer or a
GUI operator. After the programmer and the GUI operator complete their subtask, the operator will receive
a summarization of their task-solving process and a screenshot that reflects the current system state. If the
orchestrator determines that the task is complete, it will return a termination signal to end the conversation.
Programmer. Once the orchestrator assigns a subtask to the programmer, we will establish a new conversation
between the coding agent and code interpreter, enabling the coding agent to reflect the generated code
according to the environment feedback in multiple rounds. The coding agent is required to solve the assigned
subtask by programming with Python or Bash scripts, which is the two most frequently used languages when

3



CoAct-1: Computer-using Agents with Coding as Actions

operating the OS. When the code interpreter successfully retrieves the code from the coding agent’s reply,
it sends the code to the operating system (which can be a remote virtual machine). Then it returns the
execution result to the conversation along with a screenshot. Notably, we use a language model to serve as
a coding agent with limited ability to read and understand sequential images. Therefore, we require the
orchestrator to provide sufficient environment information to the programmer, such as the opened windows,
browser tabs, or file paths inferred from the user’s instructions.
GUI operator. The GUI agent is a vision-language action model, which can take a sequence of images
along with the text instruction as input and generate a (sequence of) GUI action(s). When the GUI operator
receives a subtask from the orchestrator, it will establish a conversation between a GUI agent and a GUI
action interpreter. The GUI action includes mouse movement, mouse clicks, keyboard hotkeys, and keyboard
typing. The GUI interpreter is a non-language model, proxy agent responsible for interpreting the language
model’s actions as system operations, and returning the resulting screenshot to the GUI agent. Once the
GUI agent decides to complete the task, it will output a message along with a termination signal to end the
conversation. This message includes the information that the orchestrator requires the GUI agent to collect,
such as a file path, and will be returned to the orchestrator along with a screenshot.

3.2. Workflow and Memory Design

Figure 2: Illustration of CoAct-1 workflow. Given a user task, Orchestrator can choose either to call Programmer or
GUI Operator to solve a subtask. A programmer can interact with the OS by coding, and a GUI Operator can interact
with the OS by performing GUI operations.

For each agent, we use the instance conversation history as their memory. As illustrated in Figure 2, when
the Programmer completes an assigned subtask, a language model will summarize the conversation between
the coding agent and code interpreter, returning a summary and a screenshot to the Orchestrator as part of
the Orchestrator’s memory. On the other hand, the GUI Operator will return a message that includes the
required information from the Orchestrator, which is also stored as part of the Orchestrator’s memory. The
Programmer, Orchestrator, and GUI Operator do not share their conversation history. Once the subtask is
completed, the system will clean the instance conversation history of the Programmer and the GUI Operator,
allowing them to focus solely on the current assigned subtask.

4



CoAct-1: Computer-using Agents with Coding as Actions

4. Experiments

4.1. Benchmark Dataset

We test the CoAct-1 and other baselines on the OSWorld benchmark (Xie et al., 2024). OSWorld is a scalable
real-computer testbed that exposes an OS like Linux to an agent through both pixel streams and an OS
shell interface. The benchmark currently comprises 369 tasks that span common productivity tools, IDEs,
browsers, file managers, and multi-application workflows, thereby stressing both vision–language grounding
and long-horizon planning in heterogeneous GUI environments. Each task in OSWorld ships with (i) a
deterministic VM snapshot capturing the initial desktop state, (ii) a natural-language goal that mirrors how
end-users phrase requests (e.g., “resize the image to 512 × 512 and export as PNG”), and (iii) a rule-based
evaluator. Tasks cover atomic operations (single-app editing, file I/O) as well as cross-app pipelines, such as
“export this spreadsheet, compress it, then e-mail the archive,” providing a realistic spectrum of difficulty.

4.2. Baselines

We compare CoAct-1 with OpenAI CUA 4o (OpenAI, 2025a), GTA-1 (Yang et al., 2025), UI-TARS (Qin
et al., 2025), and other baselines listed in Table 1. These baselines represent the forefront of GUI-based task
automation, each with a unique approach to interacting with and controlling the computer.

• OpenAI CUA 4o (SOTA of accessible proprietary model). This agent uses vision and reasoning to
interact with graphical user interfaces, controlling the mouse and keyboard to perform tasks. It is the
technology behind services like Operator and ChatGPT agent.

• GTA-1 (SOTA of grounder + planner) The GUI Test-time Scaling Agent (GTA-1) is a GUI agent that
addresses the challenges of planning ambiguity and action grounding in high-resolution interfaces. To
improve accuracy, this agent employs a "test-time scaling" strategy, where it generates multiple possible
actions and utilizes a Judge model to select the optimal one. It also leverages the GRPO (Guo et al.,
2025) to train a powerful grounder.

• UI-TARS (SOTA of opensourced unified GUI agent). This is a self-contained agent that learns from a
large dataset of GUI screenshots and computer-using trajectories. It utilizes a unified action model to
execute human-like mouse and keyboard operations across various platforms, eliminating the need for
external models.

4.3. Implementation Details

Environment We test the CoAct-1 on Linux with an extended RESTful server from OSWorld. Specifically, we
implement a remote code interpreter that can take long Python and Bash scripts as input and return the
execution result back to the sender. On the other hand, for each task, OSWorld will establish an initial state,
such as opening a set of apps or specific websites, or downloading the specified files to a specified location,
etc. After the initial state is ready, we will take a screenshot as the initial input along with a user task to
CoAct-1 and baselines.
CoAct-1 settings We implement CoAct-1 using AG2 (Wu et al., 2023). We tried different backbones for
the Programmer and Orchestrator, including OpenAI o3 (OpenAI, 2025b) and o4-mini (OpenAI, 2025b).
For the GUI Operator, we use computer-use-preview, a vision-language action model finetuned by OpenAI
for computer use, as the backbone model. We use the o4-mini as the summarizer for summarizing the
conversation history between the Programmer and the Orchestrator. We set the max round I for Programmer

5



CoAct-1: Computer-using Agents with Coding as Actions

Table 1: Comparison of the state-of-the-art methods on the OSWorld (Xie et al., 2024) benchmark. We split the results
by steps and show the approach type in the second column. A specialized model means that the model is trained
specifically for computer use. We report the success rate (%) as the evaluation metric in the third column. We only
include the verified results from https://os-world.github.io/.

Agent Model Approach Type Success Rate

15 steps

o3 (OpenAI, 2025b) General Model 9.10
UI-TARS-72B-DPO (Qin et al., 2025) Specialized Model 24.00
UI-TARS-1.5-7B (Qin et al., 2025) Specialized Model 25.70
OpenAI CUA 4o (OpenAI, 2025b) Specialized Model 26.00
Jedi-7B w/ o3 (Xie et al., 2025b) Agentic Framework 26.80
Claude 3.7 Sonnet (Anthropic, 2025) General Model 27.10
Claude 4 Sonnet (Anthropic, 2025) General Model 31.20
Agent S2 w/ Gemini-2.5-Pro (Agashe et al., 2025) Agentic Framework 34.64
Agent S2.5 w/ o3 (Agashe et al., 2025) Agentic Framework 39.00
CoAct-1 w/ o3 & o4mini & OpenAI CUA 4o Agentic Framework 39.81

50 steps
o3 (OpenAI, 2025b) General Model 17.17
UI-TARS-72B-DPO (Qin et al., 2025) Specialized Model 25.80
UI-TARS-1.5-7B (Qin et al., 2025) Specialized Model 29.40
OpenAI CUA 4o (OpenAI, 2025b) Specialized Model 31.30
Claude 3.7 Sonnet (Anthropic, 2025) General Model 35.80
Claude 4 Sonnet (Anthropic, 2025) General Model 43.90
Agent S2 w/ Gemini-2.5-Pro (Agashe et al., 2025) Agentic Framework 45.76
GTA-1-7B w/ o3 (Yang et al., 2025) Agentic Framework 48.59
Jedi-7B w/ o3 (Xie et al., 2025b) Agentic Framework 50.60
Agent S2.5 w/ o3 (Agashe et al., 2025) Agentic Framework 54.20
CoAct-1 w/ o3 & o4mini & OpenAI CUA 4o Agentic Framework 56.39

100 steps
o3 (OpenAI, 2025b) General Model 23.00
UI-TARS-72B-DPO (Qin et al., 2025) Specialized Model 27.10
UI-TARS-1.5-7B (Qin et al., 2025) Specialized Model 29.60
OpenAI CUA 4o (OpenAI, 2025b) Specialized Model 31.40
Claude 3.7 Sonnet (Anthropic, 2025) General Model 35.60
Claude 4 Sonnet (Anthropic, 2025) General Model 41.40
Jedi-7B w/ o3 (Xie et al., 2025b) Agentic Framework 51.00
GTA-1-7B w/ o3 (Yang et al., 2025) Agentic Framework 53.10
Agent S2.5 w/ o3 (Agashe et al., 2025) Agentic Framework 56.00
CoAct-1 w/ o3 & o4mini & OpenAI CUA 4o Agentic Framework 59.93

100+ steps
CoAct-1 w/ o3 & o4mini & OpenAI CUA 4o Agentic Framework 60.76

as 20, max step K for GUI Operator as 25, and max round J for Orchestrator as 15. Therefore, the number of
system interactions, i.e, the number of steps, for CoAct-1 is upper bounded by 375.
Evaluation Protocol We evaluate our method with the rule-based evaluator provided by OSWorld. Internally,
every evaluator is expressed as a Boolean expression built from 134 atomic, execution-based evaluators that
the authors handcrafted for the benchmark. For a given task, the benchmark composes these atoms with
logical AND / OR operators, so a “pass” might require, for instance, (file exported AND MD5 matches) AND
(email sent == True).

6

https://os-world.github.io/


CoAct-1: Computer-using Agents with Coding as Actions

Table 2: Per-task performance comparison on OSWorld tasks with 100 steps budget. The number beside each subtask
is the total number of that subtask. It is obvious that CoAct-1 outperforms the previous SOTA methods in almost all
subtasks and achieves the best overall average performance. Subtasks with the most performance gain are Multi-apps,
Thunderbird, VLC, and OS, demonstrating the effectiveness of integrating a Programmer.

Methods (100 steps) Chrome (46) Calc (47) Impress (34) Writer (23) GIMP (25) VSCode (23) Multi Apps (101) Thunderbird (15) OS (24) VLC (17) Avg.

OpenAI CUA 4o 34.56 12.76 23.19 38.69 65.38 56.52 8.91 46.66 45.83 30.58 31.40
UI-TARS-1.5 (7b) 41.30 19.14 36.17 34.78 42.31 52.17 7.92 53.33 45.83 11.76 29.60
GTA-1 54.26 59.57 46.72 60.73 61.53 60.86 38.34 86.66 62.50 53.29 53.10
CoAct-1 52.09 70.21 50.27 73.91 65.38 78.26 47.88 66.67 75.00 66.07 59.93

4.4. Results

Table 1 presents a comprehensive comparison of CoAct-1 with state-of-the-art models on the OSWorld
benchmark, demonstrating that our agent establishes a new standard for performance. CoAct-1 achieves a
top success rate of 60.76% in the 100+ step category. The results show that CoAct-1 consistently outperforms
other leading methods across various maximum step allowances. For instance, at a 100-step budget, CoAct-1
reaches a 59.93% success rate, which is a significant improvement over other agentic frameworks like Agent
S2.5 w/ o3 (56.00%) and GTA-1-7B w/ o3 (53.10%). This robust performance is also evident at the 50-step
limit, where CoAct-1 achieves 56.39%, surpassing all other agents.
On the other hand, as shown in Table 2, CoAct-1 achieves the highest overall average success rate of 59.93%.
This represents a significant margin of improvement over other leading agents, including GTA-1 (53.10%),
OpenAI CUA 4o (31.40%), and UI-TARS-1.5 (7b) (29.60%). The advantages of our hybrid approach are most
evident in task categories that benefit from programmatic control. In the "Multi Apps" category, CoAct-1’s
performance of 47.88% substantially exceeds that of GTA-1 (38.34%). Similarly, major performance gains
are observed in application-specific and OS-level tasks. For VLC, CoAct-1 scores 71.96% compared to GTA-1’s
53.29% ; and for general OS tasks, CoAct-1 reaches 75.00%. CoAct-1 also demonstrates superior performance
in other applications like LibreOffice Calc (70.21%) and Writer (73.91%). These results underscore the
effectiveness of integrating a Programmer agent, which enables CoAct-1 to handle a more diverse and
complex range of tasks by augmenting GUI manipulation with the precision of direct coding actions.

4.5. Discussion

Efficiency Analysis The analysis of CoAct-1’s operational efficiency, illustrated in Figure 3, reveals that our
hybrid approach is substantially more efficient than leading GUI-only agents. This efficiency is a key factor
in its improved success rate. As shown in Figure 3a, CoAct-1 solves tasks with an average of 10.15 steps.
This represents a significant improvement over other high-performing agents like GTA-1, which requires
15.22 steps, and UI-TARS, which needs 14.90 steps on average. While OpenAI CUA 4o averages fewer steps
(6.14) , its overall success rate is much lower compared to CoAct-1’s (31.40% v.s. 59.93% on 100 steps).
This indicates that CoAct-1’s efficiency is coupled with greater effectiveness. The source of this efficiency
lies in the strategic use of coding actions. Figure 3b supports this by showing that coding actions help keep
the total steps per task relatively low. This efficiency is crucial for robust performance. Figure 3c shows
that coding is particularly beneficial in complex domains like "LibreOffice Calc", "Multi-apps" and direct OS
interactions, where a large proportion of tasks are solved with code. A single script can replace a long and
error-prone sequence of GUI clicks, streamlining the workflow. Figure 3d illustrates a clear trend: tasks that
require more actions are more likely to fail. By reducing the total number of steps, the hybrid approach not
only accelerates task completion but also minimizes the opportunities for error. The ability to dynamically

7



CoAct-1: Computer-using Agents with Coding as Actions

GTA-1 UI-TARS (7B) OpenAI CUA 4o CoCUA-1
Method

0

5

10

15

20

Av
er

ag
e 

st
ep

s

15.22 14.90

6.14

10.15

Average Steps in Successful Tasks

(a) Average steps for a successful task. CoAct-1 can solve tasks
with lower average steps than previous SOTA agentic frame-
works. On the other hand, CoAct-1 higher steps than OpenAI
CUA 4o but also higher accuracy.

0 25 50 75 100 125 150
Total steps per task

0

20

40

60

80

Nu
m

be
r o

f t
as

ks
 in

 b
in

55
62

84

2929
22

1110
4 2

6 4 7 6 6 5 2 1 1 1 3 2 2 4 1 1 1

GUI / Coding Action Steps Overall Tasks
Coding actions
GUI actions

(b) GUI/code ratio split by total action of tasks. Coding helps
reduce the total action steps.

LibreOffice Calc
Multi-Apps OS

VSCode VLC

LibreOffice Writer

LibreOffice Impress

Thunderbird Gimp
Chrome

Domain

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n 
of

 st
ep

s

w/ and w/o Coding Action Steps in Solved Tasks

w/ Coding
w/o Coding

(c) This chart illustrates the domains where coding actions are
most frequently applied.

0 25 50 75 100 125 150
Total actions per task

0

20

40

60

80
Nu

m
be

r o
f t

as
ks

 in
 b

in

55
62

84

2929
22

1110
4 2

6 4 7 6 6 5 2 1 1 1 3 2 2 4 1 1 1

Pass / Fail Ratio Split by Total Steps
Fail
Pass

(d) Error rate distribution split by total action of tasks. The
error rate is positive related to total actions.

Figure 3: CoAct-1 Efficiency and Step Modality Analysis.

select the most appropriate action—either a direct coding command or a GUI interaction—is fundamental to
the enhanced efficiency and reliability of CoAct-1.

CoAct-1 with different backbone We investigated the impact of different backbone models on the per-
formance of CoAct-1, with results presented in Table 3. The study reveals that the choice of models for the
Orchestrator, Programmer, and GUI Operator significantly influences overall effectiveness. When a uniform
backbone, o4-mini, was used for both Orchestrator and Programmer, the system achieved a performance
score of 47.41%. Performance improved to 53.12% when the o3 model serving as both the Orchestrator and
Programmer. The highest performance of 60.76% was achieved by retaining OpenAI CUA 4o for the GUI
Operator and o3 for the Orchestrator, while upgrading the Programmer to the o4-mini model. This highlights
that the system benefits from a powerful, vision-centric model for GUI operations and that enhancing the
capability of the Programmer agent yields significant performance gains.

8



CoAct-1: Computer-using Agents with Coding as Actions

Table 3: Performance of CoAct-1 with different backbone model for each participant agent. Powerful Orchestrator
significantly help improve the performance on OSWorld.

GUI Operator Orchestrator Programmer Performance

CoAct-1 OpenAI CUA 4o
o4-mini o4-mini 47.41
o3 o3 53.12
o3 o4-mini 60.76

4.6. Case Study

To better understand the capabilities and limitations of CoAct-1, this section analyzes failure cases observed
during evaluation. Generally, errors in task completion arise from two primary challenges: high-level and
ambiguous queries.
High-level query A high-level query is one where the user’s instruction does not directly map to a sequence of
actions. Instead, it requires the agent first to infer the user’s underlying intent and the broader context before
it can devise a solution. For instance, one task in the VSCode domain instructed the agent: "Please help me
modify the setting of VSCode to keep my cursor focused on the debug console when debugging in VSCode,
instead of automatically focusing back on the Editor." In this scenario, the Orchestrator delegated the task to
the Programmer. The Programmer attempted to find the relevant setting by searching for keywords like
"debug" and "console". However, it failed to make the conceptual leap that the debugging process relates to
"breakpoints." Consequently, it overlooked the correct setting, "focusEditorOnBrake," leading to the task’s
failure. This case highlights a limitation in the agent’s ability to reason about concepts that are not explicitly
mentioned in the query.
Ambiguous query An ambiguous query is a user request that is vague or omits critical information necessary
for successful task completion. Resolving ambiguity often requires the agent to correctly infer the user’s
intent, which can also involve safety considerations. An example of this occurred in a VSCode task with the
instruction: "Please help me modify VSCode setting to hide all "__pycache__" folders in the explorer view."
The Orchestrator assigned this subtask to the Programmer. The Programmer successfully identified the need
to modify a settings file but incorrectly altered the workspace-specific settings instead of the global user
settings. This misinterpretation of the query’s scope resulted in the task failing. This illustrates the challenge
the agent faces in disambiguating the user’s intent when multiple valid interpretations exist.

5. Conclusions

In this work, we introduced CoAct-1, a novel multi-agent system designed to address the inherent ineffi-
ciency and brittleness of agents that rely exclusively on GUI manipulation. Our multi-agent system features
an Orchestrator that dynamically delegates subtasks to a GUI Operator or a Programmer. Our extensive
evaluation on the OSWorld benchmark confirms the effectiveness of this approach. CoAct-1 achieves a new
state-of-the-art success rate of 60.76%, significantly outperforming previous leading methods. The perfor-
mance gains were particularly pronounced in categories involving OS-level interactions, multi-application
workflows, and other tasks where the Programmer agent could leverage direct programmatic execution.

9



CoAct-1: Computer-using Agents with Coding as Actions

References

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An open agentic
framework that uses computers like a human. arXiv preprint arXiv:2410.08164, 2024.

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A compositional
generalist-specialist framework for computer use agents. arXiv preprint arXiv:2504.00906, 2025.

Anthropic. Claude opus 4 & claude sonnet 4 system card. System card, Anthropic, May 2025. URL https:
//www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf. Accessed 4
Aug 2025.

Anthropic. Claude 3.7 sonnet and claude code. Technical report, Anthropic, 2025. URL https://www.
anthropic.com/news/claude-3-7-sonnet. System Card.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick:
Harnessing gui grounding for advanced visual gui agents. arXiv preprint arXiv:2401.10935, 2024.

Deepmind. Introducing gemini 2.0: our new ai model for the agentic era. Techni-
cal report, Deepmind, 2025a. URL https://blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/#project-astra.

Deepmind. Gemini 2.5: Our most intelligent ai model. Technical report, Deep-
mind, 2025b. URL https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su.
Navigating the digital world as humans do: Universal visual grounding for gui agents. arXiv preprint
arXiv:2410.05243, 2024. URL https://arxiv.org/abs/2410.05243.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: bootstrapping language-image pre-training
with frozen image encoders and large language models. In International Conference on Machine Learning,
ICML’23. JMLR.org, 2023.

Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and Tat-Seng
Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use. arXiv preprint
arXiv:2504.07981, 2025.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. Omniparser for pure vision based gui agent.
arXiv preprint arXiv:2408.00203, 2024.

OpenAI. Gpt-4o system card, 2024.
OpenAI. Computer-using agent: Introducing a universal interface for ai to interact with the digital world.
2025a. URL https://openai.com/index/computer-using-agent.

OpenAI. Openai o3 and o4-mini system card. Technical report, OpenAI, 2025b. URL https://cdn.openai.
com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf.
System Card.

10

https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#project-astra
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/#project-astra
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2410.05243
https://openai.com/index/computer-using-agent
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf


CoAct-1: Computer-using Agents with Coding as Actions

Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li, Yunxin
Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with native agents. arXiv preprint
arXiv:2501.12326, 2025.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin Yao, Qihan
Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang, Shilong Liu, Hongru Wang,
and Mengdi Wang. Alita: Generalist agent enabling scalable agentic reasoning with minimal predefinition
and maximal self-evolution, 2025. URL https://arxiv.org/abs/2505.20286.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, Ao Luo, Shijian Wang, Qingyun Wu, and Chi Wang.
Adaptive in-conversation team building for language model agents, 2025. URL https://arxiv.org/
abs/2405.19425.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun
Zhang, Jiale Liu, Ahmed Hassan Awadallah, RyenWWhite, Doug Burger, and Chi Wang. Autogen: Enabling
next-gen llm applications via multi-agent conversation, 2023. URL https://arxiv.org/abs/2308.
08155.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen Ding,
Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui agents. arXiv
preprint arXiv:2410.23218, 2024.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh Jing Hua,
Zhoujun Cheng, Dongchan Shin, Fangyu Lei, Yitao Liu, Yiheng Xu, Shuyan Zhou, Silvio Savarese, Caiming
Xiong, Victor Zhong, and Tao Yu. Osworld: Benchmarking multimodal agents for open-ended tasks in real
computer environments, 2024. URL https://arxiv.org/abs/2404.07972.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu, Xinyuan
Wang, Yuhui Xu, Zekun Wang, Yiheng Xu, Junli Wang, Doyen Sahoo, Tao Yu, and Caiming Xiong.
Scaling computer-use grounding via user interface decomposition and synthesis, 2025a. URL https:
//arxiv.org/abs/2505.13227.

Tianbao Xie, Jiaqi Deng, Xiaochuan Li, Junlin Yang, Haoyuan Wu, Jixuan Chen, Wenjing Hu, Xinyuan Wang,
Yuhui Xu, Zekun Wang, et al. Scaling computer-use grounding via user interface decomposition and
synthesis. arXiv preprint arXiv:2505.13227, 2025b.

Yiheng Xu, ZekunWang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao Yu, and Caiming
Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction. arXiv preprint arXiv:2412.04454,
2024.

Yan Yang, Dongxu Li, Yutong Dai, Yuhao Yang, Ziyang Luo, Zirui Zhao, Zhiyuan Hu, Junzhe Huang, Amrita
Saha, Zeyuan Chen, Ran Xu, Liyuan Pan, Caiming Xiong, and Junnan Li. Gta1: Gui test-time scaling agent,
2025. URL https://arxiv.org/abs/2507.05791.

Yuhao Yang, Yue Wang, Dongxu Li, Ziyang Luo, Bei Chen, Chao Huang, and Junnan Li. Aria-ui: Visual
grounding for gui instructions. arXiv preprint arXiv:2412.16256, 2024.

Chaoyun Zhang, He Huang, Chiming Ni, Jian Mu, Si Qin, Shilin He, Lu Wang, Fangkai Yang, Pu Zhao, Chao
Du, Liqun Li, Yu Kang, Zhao Jiang, Suzhen Zheng, Rujia Wang, Jiaxu Qian, Minghua Ma, Jian-Guang
Lou, Qingwei Lin, Saravan Rajmohan, and Dongmei Zhang. Ufo2: The desktop agentos, 2025a. URL
https://arxiv.org/abs/2504.14603.

11

https://arxiv.org/abs/2505.20286
https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2405.19425
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2404.07972
https://arxiv.org/abs/2505.13227
https://arxiv.org/abs/2505.13227
https://arxiv.org/abs/2507.05791
https://arxiv.org/abs/2504.14603


CoAct-1: Computer-using Agents with Coding as Actions

Jieyu Zhang, Ranjay Krishna, Ahmed H. Awadallah, and Chi Wang. Ecoassistant: Using llm assistant more
affordably and accurately, 2023. URL https://arxiv.org/abs/2310.03046.

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song, Chi Wang, Ranjay Krishna, and Qingyun Wu. Offline
training of language model agents with functions as learnable weights, 2024. URL https://arxiv.org/
abs/2402.11359.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li, Chi Wang,
Huazheng Wang, Yiran Chen, and Qingyun Wu. Which agent causes task failures and when? on automated
failure attribution of llm multi-agent systems, 2025b. URL https://arxiv.org/abs/2505.00212.

Shitian Zhao, Haoquan Zhang, Shaoheng Lin, Ming Li, Qilong Wu, Kaipeng Zhang, and Chen Wei. Pyvision:
Agentic vision with dynamic tooling, 2025. URL https://arxiv.org/abs/2507.07998.

12

https://arxiv.org/abs/2310.03046
https://arxiv.org/abs/2402.11359
https://arxiv.org/abs/2402.11359
https://arxiv.org/abs/2505.00212
https://arxiv.org/abs/2507.07998

	Introduction
	Related Work
	Computer-using Agent with Coding as Actions
	Multi-agent System Design for Computer Use
	Workflow and Memory Design

	Experiments
	Benchmark Dataset
	Baselines
	Implementation Details
	Results
	Discussion
	Case Study

	Conclusions

