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Prologue

uried on this page of the July 8, 1958, issue of The New York Times
was a rather extraordinary story. The headline read, “New Navy

Device Learns by Doing: Psychologist Shows Embryo of Computer
Designed to Read and Grow Wiser.” The opening paragraph raised the
stakes: “The Navy revealed the embryo of an electronic computer today that
it expects will be able to walk, talk, see, write, reproduce itself and be
conscious of its existence.”

With hindsight, the hyperbole is obvious and embarrassing. But The
New York Times wasn’t entirely at fault. Some of the over-the-top talk also
came from Frank Rosenblatt, a Cornell University psychologist and project
engineer. Rosenblatt, with funding from the U.S. Office of Naval Research,
had invented the perceptron, a version of which was presented at a press
conference the day before the New York Times story about it appeared in
print. According to Rosenblatt, the perceptron would be the “first device to
think as the human brain” and such machines might even be sent to other
planets as “mechanical space explorers.”

None of this happened. The perceptron never lived up to the hype.
Nonetheless, Rosenblatt’s work was seminal. Almost every lecturer on
artificial intelligence (AI) today will harken back to the perceptron. And
that’s justified. This moment in history—the arrival of large language
models (LLMs) such as ChatGPT and its ilk and our response to it—which
some have likened to what it must have felt like in the 1910s and ’20s,
when physicists were confronted with the craziness of quantum mechanics,
has its roots in research initiated by Rosenblatt. There’s a line in the New
York Times story that only hints at the revolution the perceptron set in



motion: “Dr. Rosenblatt said he could explain why the machine learned
only in highly technical terms” (italics mine). The story, however, had none
of the “highly technical” details.

This book does. It tackles the technical details. It explains the elegant
mathematics and algorithms that have, for decades, energized and excited
researchers in “machine learning,” a type of AI that involves building
machines that can learn to discern patterns in data without being explicitly
programmed to do so. Trained machines can then detect similar patterns in
new, previously unseen data, making possible applications that range from
recognizing pictures of cats and dogs to creating, potentially, autonomous
cars and other technology. Machines can learn because of the extraordinary
confluence of math and computer science, with more than a dash of physics
and neuroscience added to the mix.

Machine learning (ML) is a vast field populated by algorithms that
leverage relatively simple math that goes back centuries, math one learns in
high school or early in college. There’s, of course, elementary algebra.
Another extremely important cornerstone of machine learning is calculus,
co-invented by no less a polymath than Isaac Newton. The field also relies
heavily on the work of Thomas Bayes, the eighteenth-century English
statistician and minister who gave us the eponymous Bayes’s theorem, a
key contribution to the field of probability and statistics. The work of
German mathematician Carl Friedrich Gauss on the Gaussian distribution
(and the bell-shaped curve) also permeates machine learning. Then there’s
linear algebra, which forms the backbone of machine learning. The earliest
exposition of this branch of mathematics appears in a two-thousand-year-
old Chinese text, Nine Chapters on the Mathematical Art. The modern
version of linear algebra has its roots in the work of many mathematicians,
but mainly Gauss, Gottfried Wilhelm Leibniz, Wilhelm Jordan, Gabriel
Cramer, Hermann Günther Grassmann, James Joseph Sylvester, and Arthur
Cayley.

By the mid-1850s, some of the basic math that would prove necessary to
building learning machines was in place, even as other mathematicians
continued developing more relevant mathematics and birthed and advanced



the field of computer science. Yet, few could have dreamed that such early
mathematical work would be the basis for the astounding developments in
AI over the past half century, particularly over the last decade, some of
which may legitimately allow us to envision a semblance of the kind of
future Rosenblatt was overoptimistically foreshadowing in the 1950s.

This book tells the story of this journey, from Rosenblatt’s perceptron to
modern-day deep neural networks, elaborate networks of computational
units called artificial neurons, through the lens of key mathematical ideas
underpinning the field of machine learning. It eases gently into the math
and then, ever so slowly, ratchets up the difficulty, as we go from the
relatively simple ideas of the 1950s to the somewhat more involved math
and algorithms that power today’s machine learning systems.

Hence, we will unabashedly embrace equations and concepts from at
least four major fields of mathematics—linear algebra, calculus, probability
and statistics, and optimization theory—to acquire the minimum theoretical
and conceptual knowledge necessary to appreciate the awesome power we
are bestowing on machines. It is only when we understand the inevitability
of learning machines that we will be prepared to tackle a future in which AI
is ubiquitous, for good and for bad.

Getting under the mathematical skin of machine learning is crucial to
our understanding of not just the power of the technology, but also its
limitations. Machine learning systems are already making life-altering
decisions for us: approving credit card applications and mortgage loans,
determining whether a tumor is cancerous, predicting the prognosis for
someone in cognitive decline (will they go on to get Alzheimer’s?), and
deciding whether to grant someone bail. Machine learning has permeated
science, too: It is influencing chemistry, biology, physics, and everything in
between. It’s being used in the study of genomes, extrasolar planets, the
intricacies of quantum systems, and much more. And as of this writing, the
world of AI is abuzz with the advent of large language models such as
ChatGPT. The ball has only just gotten rolling.

We cannot leave decisions about how AI will be built and deployed
solely to its practitioners. If we are to effectively regulate this extremely



useful, but disruptive and potentially threatening, technology, another layer
of society—educators, politicians, policymakers, science communicators, or
even interested consumers of AI—must come to grips with the basics of the
mathematics of machine learning.

In her book Is Math Real?, mathematician Eugenia Cheng writes about
the gradual process of learning mathematics: “It can…seem like we’re
taking very small steps and not getting anywhere, before suddenly we look
behind us and discover we’ve climbed a giant mountain. All these things
can be disconcerting, but accepting a little intellectual discomfort (or
sometimes a lot of it) is an important part of making progress in math.”

Fortunately, the “intellectual discomfort” in store for us is eminently
endurable and more than assuaged by the intellectual payoff, because
underlying modern ML is some relatively simple and elegant math—a
notion that’s best illustrated with an anecdote about Ilya Sutskever. Today,
Sutskever is best known as the co-founder of OpenAI, the company behind
ChatGPT. More than a decade ago, as a young undergraduate student
looking for an academic advisor at the University of Toronto, Sutskever
knocked on Geoffrey Hinton’s door. Hinton was already a well-known
name in the field of “deep learning,” a form of machine learning, and
Sutskever wanted to work with him. Hinton gave Sutskever some papers to
read, which he devoured. He remembers being perplexed by the simplicity
of the math, compared to the math and physics of his regular undergrad
coursework. He could read these papers on deep learning and understand
powerful concepts. “How can it be that it’s so simple…so simple that you
can explain it to high school students without too much effort?” he told me.
“I think that’s actually miraculous. This is also, to me, an indication that we
are probably on the right track. [It can’t] be a coincidence that such simple
concepts go so far.”

Of course, Sutskever already had sophisticated mathematical chops, so
what seemed simple to him may not be so for most of us, including me. But
let’s see.

This book aims to communicate the conceptual simplicity underlying
ML and deep learning. This is not to say that everything we are witnessing



in AI now—in particular, the behavior of deep neural networks and large
language models—is amenable to being analyzed using simple math. In
fact, the denouement of this book leads us to a place that some might find
disconcerting, though others will find it exhilarating: These networks and
AIs seem to flout some of the fundamental ideas that have, for decades,
underpinned machine learning. It’s as if empirical evidence has broken the
theoretical camel’s back in the same way experimental observations of the
material world in the early twentieth century broke classical physics; we
need something new to make sense of the brave new world awaiting us.

As I did the research for this book, I observed a pattern to my learning
that reminded me of the way modern artificial neural networks learn: With
each pass the algorithm makes through data, it learns more about the
patterns that exist in that data. One pass may not be enough; nor ten; nor a
hundred. Sometimes, neural networks learn over tens of thousands of
iterations through the data. This is indeed the way I grokked the subject in
order to write about it. Each pass through some corner of this vast base of
knowledge caused some neurons in my brain to make connections, literally
and metaphorically. Things that didn’t make sense the first or second time
around eventually did upon later passes.

I have used this technique to help readers make similar connections: I
found myself repeating ideas and concepts over the course of writing this
book, sometimes using the same phrasing or, at times, a different take on
the same concept. These repetitions and rephrasings are intentional: They
are one way that most of us who are not mathematicians or practitioners of
ML can come to grips with a paradoxically simple yet complex subject.
Once an idea is exposed, our brains might see patterns and make
connections when encountering that idea elsewhere, making more sense of
it than would have been possible at first blush.

I hope your neurons enjoy this process as much as mine did.
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C H A P T E R  1

Desperately Seeking Patterns

hen he was a child, the Austrian scientist Konrad Lorenz,
enamored by tales from a book called The Wonderful Adventures of

Nils—the story of a boy’s adventures with wild geese written by the
Swedish novelist and winner of the Nobel Prize for Literature, Selma
Lagerlöf—“yearned to become a wild goose.” Unable to indulge his
fantasy, the young Lorenz settled for taking care of a day-old duckling his
neighbor gave him. To the boy’s delight, the duckling began following him
around: It had imprinted on him. “Imprinting” refers to the ability of many
animals, including baby ducks and geese (goslings), to form bonds with the
first moving thing they see upon hatching. Lorenz would go on to become
an ethologist and would pioneer studies in the field of animal behavior,
particularly imprinting. (He got ducklings to imprint on him; they followed
him around as he walked, ran, swam, and even paddled away in a canoe.)
He won the Nobel Prize for Physiology or Medicine in 1973, jointly with
fellow ethologists Karl von Frisch and Nikolaas Tinbergen. The three were
celebrated “for their discoveries concerning organization and elicitation of
individual and social behavior patterns.”

Patterns. While the ethologists were discerning them in the behavior of
animals, the animals were detecting patterns of their own. Newly hatched
ducklings must have the ability to make out or tell apart the properties of
things they see moving around them. It turns out that ducklings can imprint
not just on the first living creature they see moving, but on inanimate things
as well. Mallard ducklings, for example, can imprint on a pair of moving
objects that are similar in shape or color. Specifically, they imprint on the
relational concept embodied by the objects. So, if upon birth the ducklings



see two moving red objects, they will later follow two objects of the same
color (even if those latter objects are blue, not red), but not two objects of
different colors. In this case, the ducklings imprint on the idea of similarity.
They also show the ability to discern dissimilarity. If the first moving
objects the ducklings see are, for example, a cube and a rectangular prism,
they will recognize that the objects have different shapes and will later
follow two objects that are different in shape (a pyramid and a cone, for
example), but they will ignore two objects that have the same shape.

Ponder this for a moment. Newborn ducklings, with the briefest of
exposure to sensory stimuli, detect patterns in what they see, form abstract
notions of similarity/dissimilarity, and then will recognize those
abstractions in stimuli they see later and act upon them. Artificial
intelligence researchers would offer an arm and a leg to know just how the
ducklings pull this off.

While today’s AI is far from being able to perform such tasks with the
ease and efficiency of ducklings, it does have something in common with
the ducklings, and that’s the ability to pick out and learn about patterns in
data. When Frank Rosenblatt invented the perceptron in the late 1950s, one
reason it made such a splash was because it was the first formidable “brain-
inspired” algorithm that could learn about patterns in data simply by
examining the data. Most important, given certain assumptions about the
data, researchers proved that Rosenblatt’s perceptron will always find the
pattern hidden in the data in a finite amount of time; or, put differently, the
perceptron will converge upon a solution without fail. Such certainties in
computing are like gold dust. No wonder the perceptron learning algorithm
created such a fuss.

But what do these terms mean? What are “patterns” in data? What does
“learning about these patterns” imply? Let’s start by examining this table:



Each row in the table is a triplet of values for variables x1, x2, and y.
There’s a simple pattern hidden in this data: In each row, the value of y is
related to the corresponding values of x1 and x2. See if you can spot it
before reading further.

In this case, with a pencil, paper, and a little effort one can figure out
that y equals x1 plus two times x2.

y = x1 + 2x2

A small point about notation: We are going to dispense with the
multiplication sign (“×”) between two variables or between a constant and a
variable. For example, we’ll write

2 × x2 as 2x2 and x1 × x2 as x1x2

Ideally, we should write 2x2 as 2x2 and x1x2 as x1 x2, with the variables
subscripted. But we’ll dispense with the subscripts, too, unless it becomes
absolutely necessary to use them. (Purists will cringe, but this method helps
keep our text less cluttered and easy on the eye; when we do encounter
subscripts, read xi as “x sub-i.”) So, keep this in mind: If there’s a symbol
such as “x” followed by a digit such as “2,” giving us x2, take the entire
symbol to mean one thing. If a symbol (say, x or x2) is preceded by a
number (say, 9), or by another symbol (say, w1), then the number and the
symbol, or the two symbols, are being multiplied. So:



2x2 = 2 × x2

x1x2 = x1 × x2

w2x1 = w2 × x1

Getting back to our equation y = x1 + 2x2, more generally, we can write
this as:

y = w1x1 + w2x2, where w1 = 1 and w2 = 2

To be clear, we have found one of the many possible relationships
between y and x1 and x2. There can be others. And indeed, for this example,
there are, but we don’t need to worry about them for our purposes here.
Finding patterns is nowhere near as simple as this example is suggesting,
but it gets us going.

We identified what’s called a linear relationship between y, on the one
hand, and x1 and x2, on the other. (“Linear” means that y depends only on
x1 and x2, and not on x1 or x2 raised to some power, or on any product of
x1 and x2.) Also, I’m using the words “equation” and “relationship”
interchangeably here.

The relationship between y, x1, and x2 is defined by the constants w1
and w2. These constants are called the coefficients, or weights, of the linear
equation connecting y to x1 and x2. In this simple case, assuming such a
linear relationship exists, we figured out the values for w1 and w2 after
inspecting the data. But often, the relationship between y and (x1, x2,…) is
not so straightforward, especially when it extends to more values on the
right side of the equation.

For example, consider:

y = w1x1 + w2x2 + w3x3 + ··· + w9x9



Or, more generally, for a set of n weights, and using formal
mathematical notation:

The expression on the right, using the sigma notation, is shorthand for
summing all wixi, where i takes on values from 1 to n.

In the case of 9 inputs, you’d be hard-pressed to extract the values of w1
to w9 just by visually inspecting the data and doing some mental arithmetic.
That’s where learning comes in. If there’s a way to algorithmically figure
out the weights, then the algorithm is “learning” the weights. But what’s the
point of doing that?

Well, once you have learned the weights—say, w1 and w2 in our simple,
toy example—then given some value of x1 and x2 that wasn’t in our initial
dataset, we can calculate the value of y. Say, x1 = 5 and x2 = 2. Plug these
values into the equation y = x1 + 2x2 and you get a value of y = 9.

What’s all this got to do with real life? Take a very simple, practical, and
some would say utterly boring problem. Let’s say x1 represents the number
of bedrooms in a house, and x2 represents the total square footage, and y
represents the price of the house. Let’s assume that there exists a linear
relationship between (x1, x2) and y. Then, by learning the weights of the
linear equation from some existing data about houses and their prices, we
have essentially built a very simple model with which to predict the price of
a house, given the number of bedrooms and the square footage.

The above example—a teeny, tiny baby step, really—is the beginning of
machine learning. What we just did is a simplistic form of something called
supervised learning. We were given samples of data that had hidden in them
some correlation between a set of inputs and a set of outputs. Such data are
said to be annotated, or labeled; they are also called the training data. Each
input (x1, x2,…, xn) has a label y attached to it. So, in our earlier numerical
table, the pair of numbers (4, 2) is labeled with y = 8, the pair (1, 2) with 5,



and so on. We figured out the correlation. Once it is learned, we can use it
to make predictions about new inputs that weren’t part of the training data.

Also, we did a very particular kind of problem solving called regression,
where given some independent variables (x1, x2), we built a model (or
equation) to predict the value of a dependent variable (y). There are many
other types of models we could have built, and we’ll come to them in due
course.

In this case, the correlation, or pattern, was so simple that we needed
only a small amount of labeled data. But modern ML requires orders of
magnitude more—and the availability of such data has been one of the
factors fueling the AI revolution. (The ducklings, for their part, likely
indulge in a more sophisticated form of learning. No parent duck sits
around labeling the data for its ducklings, and yet the babies learn. How do
they do it? Spoiler alert: We don’t know, but maybe by understanding why
machines learn, we can one day fully understand how ducklings and,
indeed, humans learn.)

It may seem implausible, but this first step we took using a laughably
simple example of supervised learning sets us on a path toward
understanding modern deep neural networks—one step at a time, of course
(with small, gentle, and occasionally maybe not so gentle dollops of
vectors, matrices, linear algebra, calculus, probability and statistics, and
optimization theory served, as needed, along the way).

Rosenblatt’s perceptron, which we briefly encountered in the prologue,
was for its time an astonishing example of one such learning algorithm. And
because it was modeled on how neuroscientists thought human neurons
worked, it came imbued with mystique and the promise that, one day,
perceptrons would indeed make good on the promise of AI.

THE FIRST ARTIFICIAL NEURON
The perceptron’s roots lie in a 1943 paper by an unlikely combination of a
philosophically minded neuroscientist in his mid-forties and a homeless
teenager. Warren McCulloch was an American neurophysiologist trained in



philosophy, psychology, and medicine. During the 1930s, he worked on
neuroanatomy, creating maps of the connectivity of parts of monkey brains.
While doing so, he also obsessed over the “logic of the brain.” By then, the
work of mathematicians and philosophers like Alan Turing, Alfred North
Whitehead, and Bertrand Russell was suggesting a deep connection
between computation and logic. The statement “If P is true AND Q is true,
then S is true” is an example of a logical proposition. The assertion was that
all computation could be reduced to such logic. Given this way of thinking
about computation, the question bothering McCulloch was this: If the brain
is a computational device, as many think it is, how does it implement such
logic?

With these questions in mind, McCulloch moved in 1941 from Yale
University to the University of Illinois, where he met a prodigiously
talented teenager named Walter Pitts. The youngster, already an
accomplished logician (“a protégé of the eminent mathematical logician
Rudolf Carnap”), was attending seminars run by Ukrainian mathematical
physicist Nicolas Rashevsky in Chicago. Pitts, however, was a “mixed-up
adolescent, essentially a runaway from a family that could not appreciate
his genius.” McCulloch and his wife, Rook, gave Walter a home. “There
followed endless evenings sitting around the McCulloch kitchen table
trying to sort out how the brain worked, with the McCullochs’ daughter
Taffy sketching little pictures,” wrote computer scientist Michael Arbib.
Taffy’s drawings would later illustrate McCulloch and Pitts’s 1943 paper,
“A Logical Calculus of the Ideas Immanent in Nervous Activity.”

In that work, McCulloch and Pitts proposed a simple model of a
biological neuron. First, here’s an illustration of a generic biological
neuron:



The neuron’s cell body receives inputs via its treelike projections, called
dendrites. The cell body performs some computation on these inputs. Then,
based on the results of that computation, it may send an electrical signal
spiking along another, longer projection, called the axon. That signal travels
along the axon and reaches its branching terminals, where it’s
communicated to the dendrites of neighboring neurons. And so it goes.
Neurons interconnected in this manner form a biological neural network.

McCulloch and Pitts turned this into a simple computational model, an
artificial neuron. They showed how by using one such artificial neuron, or
neurode (for “neuron” + “node”), one could implement certain basic
Boolean logical operations such as AND, OR, NOT, and so on, which are
the building blocks of digital computation. (For some Boolean operations,
such as exclusive-OR, or XOR, you need more than one neurode, but more
on this later.) What follows is an image of a single neurode. (Ignore the “g”
and “f” inside the neuron for now; we’ll come to those in a moment.)



In this simple version of the McCulloch-Pitts model, x1 and x2 can be
either 0 or 1. In formal notation, we can say:

x1, x2 ∈ {0,1}

That should be read as x1 is an element of the set {0, 1} and x2 is an
element of the set {0, 1}; x1 and x2 can take on only values 0 or 1 and
nothing else. The neurode’s output y is calculated by first summing the
inputs and then checking to see if that sum is greater than or equal to some
threshold, theta (θ). If so, y equals 1; if not, y equals 0.

sum = x1 + x2

If sum ≥ θ: y = 1

Else: y = 0

Generalizing this to an arbitrary sequence of inputs, x1, x2, x3,…, xn,
one can write down the formal mathematical description of the simple
neurode. First, we define the function g(x)—read that as “g of x,” where x
here is the set of inputs (x1, x2, x3,…, xn)—which sums up the inputs. Then



we define the function f(g(x))—again, read that as “f of g of x”—which
takes the summation and performs the thresholding to generate the output,
y: It is zero if g(x) is less than some θ and 1 if g(x) is greater than or equal
to θ.

With one artificial neuron as described, we can design some of the basic
Boolean logic gates (AND & OR, for example). In an AND logic gate, the
output y should be 1 if both x1 and x2 are equal to 1; otherwise, the output
should be 0. In this case, θ = 2 does the trick. Now, the output y will be 1
only when x1 and x2 are both 1 (only then will x1 + x2 be greater than or
equal to 2). You can play with the value of θ to design the other logic gates.
For example, in an OR gate, the output should be 1 if either x1 or x2 is 1;
otherwise, the output should be 0. What should θ be?

The simple MCP model can be extended. You can increase the number
of inputs. You can let inputs be “inhibitory,” meaning x1 or x2 can be
multiplied by -1. If one of the inputs to the neurode is inhibitory and you set
the threshold appropriately, then the neurode will always output a 0,
regardless of the value of all the other inputs. This allows you to build more
complex logic. As does interconnecting multiple neurodes such that the
output of one neurode serves as the input to another.

All this was amazing, and yet limited. The McCulloch-Pitts (MCP)
neuron is a unit of computation, and you can use combinations of it to
create any type of Boolean logic. Given that all digital computation at its



most basic is a sequence of such logical operations, you can essentially mix
and match MCP neurons to carry out any computation. This was an
extraordinary statement to make in 1943. The mathematical roots of
McCulloch and Pitts’s paper were apparent. The paper had only three
references—Carnap’s The Logical Syntax of Language; David Hilbert and
Wilhelm Ackermann’s Foundations of Theoretical Logic; and Whitehead
and Russell’s Principia Mathematica—and none of them had to do with
biology. There was no doubting the rigorous results derived in the
McCulloch-Pitts paper. And yet, the upshot was simply a machine that
could compute, not learn. In particular, the value of θ had to be hand-
engineered; the neuron couldn’t examine the data and figure out θ.

It’s no wonder Rosenblatt’s perceptron made such a splash. It could
learn its weights from data. The weights encoded some knowledge,
however minimal, about patterns in the data and remembered them, in a
manner of speaking.

LEARNING FROM MISTAKES
Rosenblatt’s scholarship often left his students floored. George Nagy, who
came to Cornell University in Ithaca, New York, in 1960 to do his Ph.D.
with Rosenblatt, recalled a walk the two of them took, during which they
talked about stereo vision. Rosenblatt blew Nagy away with his mastery of
the topic. “It was difficult not to feel naïve talking to him in general,” said
Nagy, now professor emeritus at Rensselaer Polytechnic Institute in Troy,
New York; Rosenblatt’s evident erudition was accentuated by his relative
youth. (He was barely ten years older than Nagy.)

Rosenblatt’s youthfulness almost got the two of them into trouble during
a road trip. He and Nagy had to go from Ithaca to Chicago for a conference.
Rosenblatt hadn’t yet written the paper he wanted to present, so he asked
Nagy to drive while he worked. Nagy had never owned a car and barely
knew how to drive, but he agreed nonetheless. “Unfortunately, I drove in
several lanes at once, and a policeman stopped us,” Nagy said. Rosenblatt
told the cop that he was a professor and had asked his student to drive. “The



cop laughed and said, ‘You are not a professor, you are a student.’ ”
Fortunately, Rosenblatt had enough papers on him to convince the cop of
his credentials, and the cop let the two go. Rosenblatt drove the rest of the
way to Chicago, where he stayed up all night typing his paper, which he
presented the next day. “He was able to do these things,” Nagy told me.

By the time Nagy arrived at Cornell, Rosenblatt had already built the
Mark I Perceptron; we saw in the prologue that Rosenblatt had done so in
1958, leading to the coverage in The New York Times. Nagy began working
on the next machine, called Tobermory (named after the talking cat created
by H. H. Munro, aka Saki), a hardware neural network designed for speech
recognition. Meanwhile, the Mark I Perceptron and Rosenblatt’s ideas had
already garnered plenty of attention.

In the summer of 1958, the editor of the Cornell Aeronautical
Laboratory’s Research Trends magazine had devoted an entire issue to
Rosenblatt (“because of the unusual significance of Dr. Rosenblatt’s
article,” according to the editor). The article was titled “The Design of an
Intelligent Automaton: Introducing the Perceptron—A Machine that Senses,
Recognizes, Remembers, and Responds Like the Human Mind.” Rosenblatt
would eventually rue choosing the term “perceptron” to describe his work.
“It became one of Rosenblatt’s great regrets that he used a word that sounds
like a machine,” Nagy told me. By “perceptron,” Rosenblatt really meant a
class of models of the nervous system for perception and cognition.

His emphasis on the brain wasn’t a surprise. Rosenblatt had studied with
James Gibson, one of the giants in the field of visual perception. He also
looked up to McCulloch and Pitts and to Donald Hebb, a Canadian
psychologist who in 1949 introduced a model for how biological neurons
learn—to be clear, “learning” here refers to learning about patterns in data
and not to the kind of learning we usually associate with high-level human
cognition. “He’d always talk highly of them,” Nagy said.

While McCulloch and Pitts had developed models of the neuron,
networks of these artificial neurons could not learn. In the context of
biological neurons, Hebb had proposed a mechanism for learning that is
often succinctly, but somewhat erroneously, put as “Neurons that fire



together wire together.” More precisely, according to this way of thinking,
our brains learn because connections between neurons strengthen when one
neuron’s output is consistently involved in the firing of another, and they
weaken when this is not so. The process is called Hebbian learning. It was
Rosenblatt who took the work of these pioneers and synthesized it into a
new idea: artificial neurons that reconfigure as they learn, embodying
information in the strengths of their connections.

As a psychologist, Rosenblatt didn’t have access to the kind of computer
power he needed to simulate his ideas in hardware or software. So, he
borrowed time on the Cornell Aeronautical Laboratory’s IBM 704, a five-
ton, room-size behemoth. The collaboration proved fruitful when
Rosenblatt’s work caught the attention of physicists, resulting in papers in
journals of psychology and of the American Physical Society. Rosenblatt
eventually built the Mark I Perceptron. The device had a camera that
produced a 20x20-pixel image. The Mark I, when shown these images,
could recognize letters of the alphabet. But saying that the Mark I
“recognized” characters is missing the point, Nagy said. After all, optical
character recognition systems, which had the same abilities, were
commercially available by the mid-1950s. “The point is that Mark I learned
to recognize letters by being zapped when it made a mistake!” Nagy would
say in his talks.

But what exactly is a perceptron, and how does it learn? In its simplest
form, a perceptron is an augmented McCulloch-Pitts neuron imbued with a



learning algorithm. What follows is an example with two inputs. Note that
each input is being multiplied by its corresponding weight. (There is also an
extra input, b, the reason for which will soon become clear.)

The computation carried out by the perceptron goes like this:

sum = w1x1 + w2x2 + b

If sum > 0: y = 1

Else: y = -1

More generally and in mathematical notation:

The main difference from the MCP model presented earlier is that the
perceptron’s inputs don’t have to be binary (0 or 1), but can take on any
value. Also, these inputs are multiplied by their corresponding weights, so
we now have a weighted sum. Added to that is an additional term b, the
bias. The output, y, is either -1 or +1 (instead of 0 or 1, as in the MCP
neuron). Crucially, unlike with the MCP neuron, the perceptron can learn
the correct value for the weights and the bias for solving some problem.

To understand how this works, consider a perceptron that seeks to
classify someone as obese, y = +1, or not-obese, y = -1. The inputs are a
person’s body weight, x1, and height, x2. Let’s say that the dataset contains



a hundred entries, with each entry comprising a person’s body weight and
height and a label saying whether a doctor thinks the person is obese
according to guidelines set by the National Heart, Lung, and Blood
Institute. A perceptron’s task is to learn the values for w1 and w2 and the
value of the bias term b, such that it correctly classifies each person in the
dataset as “obese” or “not-obese.” Note: We are analyzing a person’s body
weight and height while also talking about the perceptron’s weights (w1 and
w2); keep in mind these two different meanings of the word “weight” while
reading further.

Once the perceptron has learned the correct values for w1 and w2 and
the bias term, it’s ready to make predictions. Given another person’s body
weight and height—this person was not in the original dataset, so it’s not a
simple matter of consulting a table of entries—the perceptron can classify
the person as obese or not-obese. Of course, a few assumptions underlie this
model, many of them to do with probability distributions, which we’ll come
to in subsequent chapters. But the perceptron makes one basic assumption:
It assumes that there exists a clear, linear divide between the categories of
people classified as obese and those classified as not-obese.

In the context of this simple example, if you were to plot the body
weights and heights of people on an xy graph, with weights on the x-axis
and heights on the y-axis, such that each person was a point on the graph,
then the “clear divide” assumption states that there would exist a straight
line separating the points representing the obese from the points
representing the not-obese. If so, the dataset is said to be linearly separable.

Here’s a graphical look at what happens as the perceptron learns. We
start with two sets of data points, one characterized by black circles (y = +1,
obese) and another by black triangles (y = -1, not-obese). Each data point is
characterized by a pair of values (x1, x2), where x1 is the body weight of
the person in kilograms, plotted along the x-axis, and x2 is the height in
centimeters, plotted along the y-axis.

The perceptron starts with its weights, w1 and w2, and the bias
initialized to zero. The weights and bias represent a line in the xy plane. The
perceptron then tries to find a separating line, defined by some set of values



for its weights and bias, that attempts to classify the points. In the
beginning, it classifies some points correctly and others incorrectly. Two of
the incorrect attempts are shown as the gray dashed lines. In this case, you
can see that in one attempt, all the points lie to one side of the dashed line,
so the triangles are classified correctly, but the circles are not; and in
another attempt, it gets the circles correct but some of the triangles wrong.
The perceptron learns from its mistakes and adjusts its weights and bias.
After numerous passes through the data, the perceptron eventually
discovers at least one set of correct values of its weights and its bias term. It
finds a line that delineates the clusters: The circles and the triangles lie on
opposite sides. This is shown as a solid black line separating the coordinate
space into two regions (one of which is shaded gray). The weights learned
by the perceptron dictate the slope of the line; the bias determines the
distance, or offset, of the line from the origin.

Once the perceptron has learned the correlation between the physical
characteristics of a person (body weight and height) and whether that
person is obese (y = +1 or -1), you can give it the body weight and height of
a person whose data weren’t used during training, and the perceptron can
tell you whether that person should be classified as obese. Of course, now
the perceptron is making its best prediction, having learned its weights and



bias, but the prediction can be wrong. Can you figure out why? See if you
can spot the problem just by looking at the graph. (Hint: How many
different lines can you draw that succeed in separating the circles from the
triangles?) As we’ll see, much of machine learning comes down to
minimizing prediction error.

What’s described above is a single perceptron unit, or one artificial
neuron. It seems simple, and you may wonder what all the fuss is about.
Well, imagine if the number of inputs to the perceptron went beyond two:
(x1, x2, x3, x4, and so on), with each input (xi) getting its own axis. You can
no longer do simple mental arithmetic and solve the problem. A line is no
longer sufficient to separate the two clusters, which now exist in much
higher dimensions than just two. For example, when you have three points
(x1, x2, x3), the data is three-dimensional: you need a 2D plane to separate
the data points. In dimensions of four or more, you need a hyperplane
(which we cannot visualize with our 3D minds). In general, this higher-
dimensional equivalent of a 1D straight line or a 2D plane is called a
hyperplane.

Now think back to 1958. Rosenblatt built his Mark I Perceptron with
numerous such units. It could process a 20x20-pixel image—for a total of
400 pixels, with each pixel corresponding to an x input value. So, the Mark
I took as input a long row of values: x1, x2, x3,…, x400. A complex
arrangement of artificial neurons, both with fixed, random weights and
weights that could be learned, turned this vector of 400 values into an
output signal that could be used to discern the pattern in the image. (This is
an oversimplified description. Some of the computing was complex enough
that it needed an IBM 704. We’ll get a glimpse of the architectural details in
chapter 10.) The Mark I could learn to categorize the letters of the alphabet
encoded in those pixel values. All the logic just described, scaled up to
handle 400 inputs, was built-in hardware. The machine, once it had learned
(we’ll see how in the next chapter), contained knowledge in the strengths
(weights) of its connections. It’s little wonder that everyone let their
imagination run wild.



But if you closely examine what the perceptron learns, its limitations—
in hindsight, of course—become obvious. The algorithm is helping the
perceptron learn about correlations between values of (x1, x2,…, x400) and
the corresponding value of y, if such correlations exist in the data. Sure, it
learns the correlations without being explicitly told what they are, but these
are correlations nonetheless. Is identifying correlations the same thing as
thinking and reasoning? Surely, if the Mark I distinguished the letter “B”
from the letter “G,” it was simply going by the patterns and did not attach
any meaning to those letters that would engender further reasoning. Such
questions are at the heart of the modern debate over the limits of deep
neural networks, the astonishing descendants of perceptrons. There is a path
connecting these early perceptrons to the technology of large language
models or the AI being developed for, say, self-driving cars. That path is not
a straight one; rather, it’s long and winding, with false turns and dead ends.
But it’s a fascinating, intriguing path nonetheless, and we are setting off on
it now.

Building the perceptron device was a major accomplishment. An even
bigger achievement was the mathematical proof that a single layer of
perceptrons will always find a linearly separating hyperplane, if the data are
linearly separable. Understanding this proof will require us to get our first
taste of vectors and how they form the backbone of methods used to
represent data in machine learning. It’s our first mathematical pit stop.
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We Are All Just Numbers Here…

ess than a month before his death in September 1865, the Irish
mathematician William Rowan Hamilton wrote a letter in four

paragraphs to his son. In that letter, Hamilton recalled, among other things,
a walk along the Royal Canal in Dublin, Ireland. It was October 16, 1843.
Hamilton was on his way to attend a meeting of the Royal Irish Academy.
His wife was with him. When the couple came underneath the Brougham
Bridge, Hamilton, who had been struggling for more than a decade with
some deep mathematical questions, had a flash of inspiration. “An electric
circuit seemed to close; and a spark flashed forth…I [could not] resist the
impulse—unphilosophical as it may have been—to cut with a knife on a
stone of Brougham Bridge, as we passed it, the fundamental formula with
the symbols, i, j, k; namely, i2 = j2 = k2 = ijk = -1.”

Hamilton signed off the letter to his son with these words: “With this
quaternion of paragraphs [emphasis mine] I close this letter…Your
affectionate father, William Rowan Hamilton.” The use of the word
“quaternion” was deliberate. A quaternion is a mathematical entity
composed of four elements with very strange and special properties, which
Hamilton discovered on that fateful day beneath Brougham Bridge. The
equation he etched on the stone there, representing the general form of the
quaternion, is one of the most famous examples of mathematical graffiti;
the original, which has long since been defaced, was replaced by an official
plaque reading:

Here as he walked by
on the 16th of October 1843



Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for

quaternion multiplication
i² = j² = k² = ijk = -1

& cut it on a stone of this bridge.
Quaternions are exotic entities, and they don’t concern us. But to create

the algebra for manipulating quaternions, Hamilton developed some other
mathematical ideas that have become central to machine learning. In
particular, he introduced the terms “scalar” and “vector.” These days, most
of us would likely not have heard of Hamilton, but we are intuitively
familiar with the notion of scalars and vectors, even if not their formal
definitions. Here’s a quick primer.

Consider a man who walks five miles. Given that statement, the only
thing we can say about what the man did is denoted by a single number: the
distance walked. This is a scalar quantity, a stand-alone number. Now, if we
were told that the man walked five miles in a northeasterly direction, we
would have two pieces of information: the distance and the direction. This
can be represented by a vector. A vector, then, has both a length
(magnitude) and a direction. In the following graph, the vector is an arrow
of magnitude 5.



If you closely examine the vector, you’ll see that it has two components:
one along the x-axis and another along the y-axis. It’s equivalent to saying
that the man went four miles in the direction due east and three miles in the
direction due north. The vector representing the actual walk is an arrow
going from (0, 0) to (4, 3), giving both the direction and the distance. The
magnitude of the vector is simply the length of the hypotenuse of the right-
angled triangle formed by the vector and its components along the x- and y-
axes. So, the vector’s magnitude, or length, is equal to .

Thinking in terms of vectors, without using formal ways of representing
and manipulating them, predates Hamilton. For example, by the late 1600s,
Isaac Newton was already using geometric ways of thinking about vector-
like entities such as acceleration and force. Newton’s Second Law of
Motion says that the acceleration experienced by an object is proportional
to the force acting upon it and that the object’s acceleration and the force
have the same direction. The first corollary to Newton’s Laws of Motion, in
his Principia, states, “A body by two forces conjoined will describe the
diagonal of a parallelogram, in the same time that it would describe the



sides, by those forces apart.” This is a statement about using geometry to
add two vectors, even though Newton didn’t call the quantities vectors.

To understand vector addition, we can go back to our man who walked
five miles, represented by a vector going from (0, 0) to (4, 3). After
reaching the destination, the man turns more northward such that in the
coordinate plane, he reaches (6, 9): He has effectively walked two more
miles in the direction due east and six more miles in the direction due north.
This is represented by a second vector, an arrow drawn from (4, 3) to (6, 9).
This new vector has an x component of 2 and a y component of 6. What is
the total distance the man walked? And what is the net distance in the xy
coordinate space, from origin to the final destination? This graph shows you
the answers to both:

The magnitude of the two individual vectors, or walks, is
 and . So,

the total distance the man walks is 5 + 6.32 = 11.32 miles.



The resultant vector is an arrow drawn from the origin to the final
destination, which is (6, 9), and its magnitude is

. The net distance in the xy

coordinate space is 10.82 miles.
This now helps us make sense of what Newton was saying. Let’s say the

acceleration caused by one force acting upon an object is given by the
vector (2, 6) and that the acceleration caused by another force on the same
object is given by the vector (4, 3). Both forces are acting on the object at
the same time. What is the total acceleration of the object? According to
Newton’s corollary, the geometric interpretation involves drawing a
parallelogram, as shown in the following figure; the net acceleration, then,
is given by the diagonal vector (6, 9):

If the acceleration is in units of meters per second per second (m/s2),
then the net acceleration is given by the magnitude of the vector (6, 9),
which equals 10.82 m/s2, in the direction of the arrow.



I have chosen to add the same vectors in this case as in the example of
the man walking, but here the two vectors represent acceleration, not
distance, and they both have their tails at (0, 0). What this tells you is that
the vector (2, 6) is the same vector regardless of whether its tail is at (0, 0)
or at (4, 3), as in the previous example. An important property of vectors is
that we can move the arrow representing a vector in the coordinate space,
and if we don’t change the length of the arrow and its orientation, it’s the
same vector. Why? Well, because we haven’t changed its length or its
direction, the two properties that define the vector.

None of this was formally understood as the beginnings of vector
analysis when Newton published his Principia in 1687. His contemporary
Gottfried Wilhelm Leibniz (1646–1716), however, had more than an inkling
about this new way of thinking. In 1679, in a letter to another luminous
contemporary, Christiaan Huygens, Leibniz wrote, “I believe that I have
found the way…that we can represent figures and even machines and
movements by characters, as algebra represents numbers or magnitudes.”
Leibniz never quite formalized his intuition, but his prescience—as we’ll
see when we understand the importance of vectors for machine learning—
was astounding. Following Leibniz, a host of other mathematicians,
including Johann Carl Friedrich Gauss (1777–1855), developed methods for
the geometric representation of certain types of numbers in two dimensions,
setting the stage for Hamilton’s discovery of quaternions and the
formalization of vector analysis.

VECTORS BY THE NUMBERS
Vector analysis doesn’t have to be geometric. It can come down to
manipulating numbers written in a certain format. And in fact, for machine
learning, that’s how we need to think about vectors. For example, the
accelerations caused by the two forces in the previous example are simply
arrays of two numbers each, [4, 3] and [2, 6], respectively. Adding them is
the same as adding the individual components of each vector (stacked
vertically, as a column). You don’t have to fuss with arrows:



Subtracting vectors is similar.

What just happened? Why is the y component of the resultant vector
negative? If these numbers still represent acceleration, then subtraction
meant that the second force was acting against the first force; along the x-
axis, the acceleration is just a little bit less than when we were adding the
two vectors, but it is still positive; along the y-axis, however, the force is
now acting against the initial direction of motion, resulting in a
deceleration.

One can multiply a vector by a scalar—simply multiply each element of
the vector by the scalar.

Geometrically, that’s the same as stretching the arrow (or vector) five
times in the same direction. The magnitude of the original vector is 5.
Scaling it 5 times gives us a new magnitude of 25. If you were to calculate
the magnitude of the new vector using its scaled-up coordinates, you’d
again get:

There’s yet another way to represent vectors. Restricting ourselves to
two dimensions, think of a vector of length one, i, along the x-axis and a
vector of length one, j, along the y-axis. Note that i and j are in lowercase
and boldface; this signifies that they are vectors. So, i can be thought of as
an arrow that points from (0, 0) to (1, 0) and j as an arrow that points from



(0, 0) to (0, 1). Each has a magnitude of 1 and is also called a unit vector.
Given this, the vectors (4, 3) and (2, 6), in Cartesian coordinates, can be
written as 4i + 3j and 2i + 6j, respectively. That’s the same as saying that
the vector (4, 3) is 4 units along the x-axis and 3 units along the y-axis and
that the vector (2, 6) is 2 units along the x-axis and 6 units along the y-axis.
The use of i and j is shorthand for representing vectors. It’s also important
to point out that a unit vector is simply a vector with a magnitude of 1; it
doesn’t have to lie along the perpendicular axes of some coordinate space.

These ideas apply to higher dimensions, too, and we’ll come to that. For
now, getting a handle on the mathematical manipulation of 2D vectors and
their corresponding geometric meanings will go a long way toward helping
us understand the role of their higher-dimensional counterparts in machine
learning.

THE DOT PRODUCT
Another important operation with vectors is something called the dot
product. Consider vector (4, 0), call it a, and vector (5, 5), call it b. (Again,
the boldface and lowercase for letters a and b signify that they are vectors.)
Conceptually, the dot product a.b—read that as “a dot b”— is defined as the
magnitude of a multiplied by the projection of b onto a, where the
projection can be thought of as the “shadow cast” by one vector onto
another.



The magnitude of a is denoted by . The projection of b onto a

is given by the magnitude of b, or , multiplied by the cosine of the

angle between the two vectors. For the vectors we have chosen, the angle
between them is 45 degrees (or , as shown in the preceding graph.

So:



Note: the symbol ⇒ means “which implies that.”
Now let’s make a couple of small tweaks. Let the vector a be given by

(1, 0), vector b by (3, 3). Vector a has a magnitude of 1, so it’s a “unit
vector.” Now, if you were to take the dot product a.b, you’d get:

= 3

The dot product turns out to be equal to the x component of vector b, or
the shadow cast by b onto the x-axis, the direction of the unit vector. This
gives us a crucial geometric intuition: If one of the vectors involved in a dot
product is of length 1, then the dot product equals the projection of the other



vector onto the vector of unit length. In our special case, the unit vector lies
along the x-axis, so the projection of vector b onto the x-axis is simply its x
component, 3.

But here’s something amazing about dot products. Even if the unit
vector is not along one of the axes, this geometric truth still holds. Let’s say
a is . Its magnitude is 1, so it’s a unit vector, but it’s at a 45-

degree angle to the x-axis. Let’s say b is the vector (1, 3). The dot product
a.b is , which equals , which in

turn is the projection of the vector b onto the straight line that extends along
vector a (see figure below).

Another important thing the dot product tells us about two vectors is
whether they are at right angles, or orthogonal, to each other. If they are at
right angles, then cosine of (90°) equals zero. So, regardless of the length of
the vectors, their dot product, or the projection of vector b onto vector a, is
always zero. Conversely, if the dot product of two vectors is zero, they are
orthogonal to each other.

How would we calculate the dot product if we were to use the other
method for representing vectors, using their components, and we didn’t



know the angle between the two vectors?
Say, a = a1i + a2j and b = b1i + b2j. Then:

a.b = (a1i + a2j).(b1i + b2j) = a1b1 × i.i + a1b2 × i.j + a2b1 × j.i + a2b2 ×
j.j

Note that the second and third terms in the equation turn out to be zero.
The vectors i and j are orthogonal, so i.j and j.i are zero. Also, both i.i and
j.j equal 1. All we are left with is a scalar quantity:

a.b = a1b1 + a2b2

MACHINES AND VECTORS
If all this feels far removed from machine learning, perceptrons, and deep
neural networks, rest assured it’s not. It’s central to the plot. And we are
getting there, by leaps and bounds, yet by stepping carefully only on the
stones necessary for sure footing.

It’s time to revisit the perceptron and think of it in terms of vectors. The
intent is to gain geometric insights into how data points and the weights of a
perceptron can be represented as vectors and how to visualize what happens
when a perceptron tries to find a linearly separating hyperplane that divides
the data points into two clusters. Much of it has to do with using dot
products of vectors to find the relative distances of the data points from the
hyperplane, as we’ll see.

Recall the generic equation for a perceptron, which says that the
perceptron outputs 1 if the weighted sum of its inputs plus some bias term,
b, is greater than 0; otherwise, it outputs -1.



We have made a subtle change to the notation we used previously: The
argument to the function g is now a vector; in the previous chapter, because
we hadn’t yet introduced the notion of vectors, we simply had g(x) instead
of g(x). Let’s stick to the two-dimensional case, with data points given by
different values for (x1, x2) and the weights of the perceptron given by (w1,
w2). The perceptron first computes the weighted sum of the inputs:

w1x1 + w2x2

If this weighted sum is greater than some threshold, call it -b, then the
perceptron’s output, y, is 1. Else it is -1. So:

This can be rewritten as:

Let’s put on our vectors hat. The set of weights (w1, w2) is nothing but a
vector w. But what exactly does w represent?



The figure above shows a weight vector, w = (2.5, 1.5). It also shows a
unit vector in the same direction, u. The dashed line gives us the direction
along which the two vectors lie. Let’s draw a solid black line perpendicular,
or orthogonal, to vectors w and u. This line separates the shaded area from
the rest of the coordinate space. So, if we were trying to find a line that
clearly delineated the xy plane into two regions, shaded and unshaded, all
we would need to specify such a boundary would be the vector w, or the
corresponding unit vector, u. If the solid line, or boundary, in the preceding
figure is the separating hyperplane, then the vector w is orthogonal to it and
characterizes that hyperplane. The boundary is a line when we are dividing
2D space, a plane when partitioning a 3D volume, and a hyperplane in
higher dimensions.

Our earlier look at the perceptron learning algorithm showed that it tries
to find a hyperplane that divides the coordinate space into two. So, the
perceptron finds, or learns, an appropriate set of weights. These weights
constitute a vector, w, which is orthogonal to the hyperplane. As you
change the weights of the perceptron, you change the direction of w, and so
you change the orientation of the hyperplane, which is always perpendicular



to w. And what’s true of w is also true of the unit vector u that lies in the
same direction. So, one way of rephrasing what the perceptron does is to
say that it finds the vector w, which is the same as saying that it finds the
corresponding perpendicular hyperplane.

Now consider the data points that either lie or don’t lie in the shaded
area. Each data point is given by (x1, x2) and can be thought of as a vector,
too. Then the weighted sum (w1x1 + w2x2) is the same as the dot product of
the vector representing the data point with the weight vector. Note that if
the data point lies on the hyperplane, which in the 2D case is just a line,
then the vector (x1, x2) will be orthogonal to w, making the dot product
equal zero. below is a graphical look at the dot product of data points and
the weight vector. For convenience, we’ll work with a weight vector of unit
length. It doesn’t change anything conceptually, but it does simplify the
math. Let’s start with vector a, given by data point (3, 1).

Because w is a unit vector, its dot product with a equals the projection
of a onto the dashed line. The point at which a lands on the line
perpendicular to the hyperplane is a measure of the distance of the point (3,
1) from the hyperplane.



Next, let’s look at this somewhat busy but important depiction of the dot
product of the weight vector with four different data points, or vectors, a (3,
1), b (2, -1), c (-2, 1), and d (-1, -3).

It’s clear that the dot product of each vector with w is telling you
something about that vector: its distance from the hyperplane and whether
it’s to one side of it (dot product is +ve) or to the other (-ve). In this
scenario, points a and b are linearly separated from points c and d. (Points
lying in the gray shaded area represent y = 1; points lying in the unshaded
area and points lying on the dividing line itself represent y = -1.)

So, let’s say the perceptron, at first attempt, finds the weights and the
hyperplane as depicted above. But let’s also say that according to our
labeled training data, points a, b, and c should have been on one side of the
hyperplane and only point d on the other. For argument’s sake, let’s say that
a, b, and c represent people classified as those who like thriller movies; d
represents a person who doesn’t. This means that the perceptron hasn’t yet
found the correct hyperplane. One thriller lover has been classified as a
thriller hater. That’s where the bias term comes in. Adding a bias term to the
equation is the same as moving the hyperplane away from the origin, but



without changing its orientation. For example, after iterating through the
training data, the perceptron could have found this hyperplane:

It’s clear by looking at the figure above that if the data are linearly
separable into two clusters, then there exist many, many separating
hyperplanes (for different values of the bias term and different orientations
of w). Just think of how many straight lines you can draw that go through
the space between c and d: in principle, infinitely many. The perceptron
guarantees only that it’ll find one, and not necessarily the best one. We’ll
come to what “best” means in more detail, but it has to do with prediction.
After all, the perceptron is learning the weights and the bias term in order to
classify some as-yet-unseen data point with respect to the hyperplane. For
example, given two characteristics of some person that we are using to
classify that person as a thriller lover or a thriller hater, on which side of the
hyperplane would the person have to be to be classified as one or the other?
A good or best possible hyperplane will minimize future prediction errors.
(Defining a “future” prediction error, let alone minimizing it, is a nontrivial,
or not an easy, problem.)



These graphs are a way of developing an intuitive sense of what was
happening when a perceptron learned. If you were to try to write a
computer program to simulate a perceptron, you wouldn’t be drawing charts
and graphs. You’d be manipulating numbers. Fortunately, the numerical
representations we have seen of vectors so far are already enough to
showcase the power of these abstractions. In our 2D example, data points
(x1, x2) are just arrays of numbers, each array with two elements. The
weight vector is similarly another array of two numbers. Finding the dot
product is a matter of manipulating these arrays.

More generically, these arrays are called matrices, which contain rows
and columns of numbers. For example, if there are m rows and n columns,
then we have what’s called an m×n matrix (read as an “m by n matrix”). A
vector is a particular form of matrix with either one row or one column:
either m=1 or n=1. We saw these earlier, only the term “matrix” hadn’t yet
been introduced. But that’s what vectors are: matrices with just one column
or one row. Here’s the example of adding two one-column matrices to get a
third one-column matrix.

Flip one of the one-column matrices on its side, and you get a matrix
with a single row:

So, in formal notation, a one-column matrix with two elements is given
by:



The notation says that the column matrix has two rows (indexed by
numbers 1 and 2) and that each row has just one element (index 1). When
you flip the matrix on its side, the numbering changes. (Note that the row
index is 1, while the columns have indices 1 and 2.)

This is called taking the “transpose” of a matrix. (It looks trivial, or
easy, for a column matrix, but it does get more involved for higher-order
matrices, which we’ll come to in later chapters.) Taking the transpose is a
key aspect of calculating the dot product between two column matrices.
We’ll use boldface capital letters to signify matrices. Let A be the column

matrix  and B the column matrix . You cannot take a dot

product of two column matrices. That’s because to take the dot product, the
number of columns in the first matrix must equal the number of rows in the
second one. So, in our case, one of them must be transposed. The transpose
of A is written as AT. The dot product A.B is written as ATB or BTA. (They
are one and the same thing in this case.)

Note that this is exactly the value you’d get if you wrote the vectors in
terms of their unit vectors i and j. If a = a11i + a12j and b = b11i + b21j,
then:

a.b = (a11i + a12j) . (b11i + b21j)

⇒ a.b = a11b11 × i.i + a11b21 × i.j +a12b11 × j.i + a12b21 × j.j

⇒ a.b = a11b11 + a12b21



Here’s another cool thing about using matrices, rather than arrows, to
represent vectors: You can just manipulate the numbers and get a scalar
value for the dot product without worrying about the cosine of the angle
between them. What this means is that if you have a bunch of data points,
each represented by a vector, and you want to find their relative distances
from a hyperplane characterized by a weight vector w, all you do is take the
dot products of each data point with w, and you’ll have the necessary
information.

And if one of the data points is on the hyperplane, its dot product with
the weight vector would be zero, signifying that the data point is orthogonal
to the weight vector and that its distance from the hyperplane is zero.

PUTTING IT TOGETHER
All this is leading up to a rather elegant shorthand notation for the
perceptron.

Consider inputs [x1, x2,…. , xn]. You can write this as a column vector
x. Similarly, the weights, using one weight for each input, [w1, w2,…. , wn],
are the column vector w. Note that we have made another subtle shift in
notation: We use square brackets to contain the elements of w and x, [],
instead of parentheses, (), to signal that w and x are matrices or vectors.

We know that the output of a perceptron involves calculating the
weighted sum w1x1 + w2x2 + ··· + wnxn. This is more concisely written as
the dot product of w and x, or wTx. Given this, here’s what a perceptron
does:

Pictorially, let’s look again at the perceptron with two inputs and two
weights:



The bias term looks incongruous. There’s a neat little trick to subsume it
into the weight vector (see first figure below).

In this depiction, the bias term b is equal to the weight w0 and is
multiplied by x0. However, x0 is always set to 1, ensuring that the bias b is
always added to the weighted sum of the other inputs. The weight vector, w,
is now given by [w0, w1, w2]. The input vector, x, equals [x0, x1, x2],
where x0=1.



The generic perceptron, for input vector x = [x0, x1, x2,…, xn] and a
weight vector w = [w0, w1, w2,…, wn] looks like the figure directly above.

The equation of the perceptron looks even simpler:

Let’s burn this equation into our mind’s eye. It’s a simple, eloquent
statement of these facts: The weight vector w is perpendicular to the line, or
hyperplane, that separates the data points into two clusters. For one cluster
of points, wTx is less than or equal to zero, and the output of the perceptron
is -1. For the other cluster of points, wTx is greater than zero, and the output
of the perceptron is 1. The points that lie on the hyperplane (given by wTx =
0) are assigned to the cluster with the label y = -1. From a machine learning
perspective, the task of a perceptron is to learn the weight vector, given a
set of input data vectors, such that the weight vector represents a hyperplane
that separates the data into two clusters. Once it has learned the weight
vector, and then is given a new data point to classify (say, as “obese” or
“not-obese”), the perceptron simply has to calculate wTx for the new
instance of data, see if it falls on one side or the other of the hyperplane,
and then classify it accordingly.



This has been a somewhat extended journey from Rosenblatt’s ideas to a
formal notation for a linear transformation of an input to an output, but it’s
hard to overstate the importance of this formulation. It’s one of the
cornerstones of our eventual forays into other ML techniques, including
modern deep neural networks.

GUARANTEED TO SUCCEED
Soon after Rosenblatt invented the perceptron learning algorithm—we’ll
come to its exact formulation in a bit—researchers, Rosenblatt included,
began analyzing it, developing theorems and proofs to show that it was
indeed a computationally viable algorithm. Among these proofs were those
that showed that perceptrons would converge upon a solution if one existed,
“solution” being defined as a hyperplane that linearly separated the data
into two groups. George Nagy remembered the time. “Rosenblatt himself
collected these,” Nagy told me. “He had a collection of…proofs that had
been published in the 1960s.” One such proof was developed in 1962 by
Henry David Block, an applied mathematician at Cornell University who
collaborated with Rosenblatt on the mathematical analysis of perceptrons.
Block’s proof was complicated, but it established upper bounds for the
number of mistakes made by the perceptron learning algorithm as it tried to
find a linearly separating hyperplane. Block was an accomplished
theoretician, at home with reasoning about machines and “the logic of
what’s possible.” When he died in 1978, the Cornell faculty said in their
memorial statement, “For all his exceptional intelligence and
accomplishments, David Block was a deeply modest, indeed, humble
person, tolerant of everything save smugness.”

Block’s intolerance of smugness comes through in his classic twenty-
two-page review of Perceptrons: An Introduction to Computational
Geometry, a three-hundred-page book by MIT scientists and AI pioneers
Marvin Minsky and Seymour Papert. A tour de force of exposition,
theorems, and proofs, Perceptrons made a huge splash upon its publication
in 1969. “We will study in great detail a class of computations that make



decisions by weighing evidence,” Minsky and Papert write in its
introduction. “The machines we will study are abstract versions of a class of
devices known under various names; we have agreed to use the name
‘perceptron’ in recognition of the pioneer work of Frank Rosenblatt.” Block
praises the book early on in his review: “It is a remarkable book. Not only
do the authors formulate a new and fundamental conceptual framework, but
they also fill in the details using strikingly ingenious mathematical
techniques.” One of these ingenious mathematical techniques was Minsky
and Papert’s version of the convergence proof, but their accompanying
notes seemed to irritate Block. The duo had drawn attention to a 1954 paper
by Israeli mathematician Shmuel Agmon, who had seemingly anticipated
the convergence proof. “In an abstract mathematical sense, both theorem
and proof already existed before the perceptron,” Minsky and Papert write.
“It is quite clear that the theorem would have been instantly obvious had the
cyberneticists interested in perceptrons known about Agmon’s work.”

The dig at cyberneticists rubbed Block the wrong way. “Cybernetics,” a
term coined by American mathematician Norbert Wiener in his 1948 book
of the same name, refers to the study of “control and communication in the
animal and the machine.” So, those doing research on perceptrons as a
means of understanding the human brain and nervous system were
cyberneticists. Should they have known of precursors to the convergence
proof for perceptrons, which shows that the algorithm will find an answer
after a finite number of steps? “Since there is nothing in ‘Agmon’s work’…
about the termination of the process after a finite number of steps, this
aspect of the theorem at least does not seem to be ‘instantly obvious,’ ”
Block quipped in his review. “Furthermore, it is not clear who ‘the
cyberneticists’ are; but presumably the authors do not include themselves in
this category. One might wonder why the rebuke does not apply to all those
interested in the perceptron.” Block followed up with references to 1961
papers by both Minsky and Papert on topics related to perceptrons,
implying that Minsky and Papert’s castigation should apply equally to them.
Block called it as he saw it: “In sum then, Minsky and Papert’s formulation
of their theory of perceptrons is precise and elegant. Their mathematical



analysis is brilliant. Their exposition is lively, often bombastic, and,
occasionally, snide.”

Putting aside their bombast and snide remarks, we’ll focus on the
precision and elegance of Minsky and Papert’s convergence proof. But first,
we need to revisit Rosenblatt’s algorithm with more formal notations in
hand.

Let’s take a potentially real problem. Assuming we have learned from
our disastrous experience with the coronavirus pandemic, let’s hope we can
bring some smarts to how we react during the first months of the next
pandemic involving a new infectious respiratory pathogen. (Fingers crossed
it doesn’t happen anytime soon.) In this more enlightened scenario,
hospitals worldwide diligently collect data about the patients they see early
on in the pandemic. Each patient is categorized using six variables: x1 =
age, x2 = body mass index, x3 = has difficulty breathing (yes = 1/no = 0),
x4 = has fever (yes/no), x5 = has diabetes (yes/no), x6 = chest CT scan (0 =
clear, 1 = mild infection, 2 = severe infection). The values for these
variables make up a six-dimensional vector. Each patient is an arrow
pointing in 6D space, or simply a point in 6D space.

So, for the ith patient, the vector xi is given by 6 attributes [x1, x2, x3,
x4, x5, x6].

Doctors notice that patients are either okay about three days after
coming to the hospital and are sent home or they worsen and need ventilator
support. So, each patient has an associated outcome y = -1 (did not need
ventilator support after three days) or y = 1 (needed ventilator support after
three days).

Hence, the ith patient, xi, has a labeled outcome, yi, which can be either
-1 or 1.

Doctors in many nations collect data for n patients, creating a set of n
data points: {(x1, y1), (x2, y2),…, (xn, yn)}

Note that x1, x2…xn are all vectors. They all have the same dimension,
in this case 6. We have to train a perceptron such that given an input, say, x1
(the information about the first patient), the perceptron should output the



corresponding value y1. The same goes for x2, x3, x4, and so on. In our
dataset, each xi is classified as belonging to either group -1 or group 1.

We assume that the data, which exist in six dimensions, are linearly
separable into two groups. The separating hyperplane would be five-
dimensional and impossible to visualize. How would you use this
information? Well, first you would train the perceptron with the data that
have been collected, so that it would find some separating hyperplane.

Then, if what’s true of the patients in this training sample holds for all
future patients—this is a major assumption, and we’ll examine it more
carefully in later chapters—imagine a scenario where a new patient comes
to the hospital. You collect the necessary data (the values for x1, x2, x3, x4,
x5, and x6) and plug them into your perceptron. It should tell you whether
the patient will need ventilator support in three days, by outputting -1 or 1.
This can, for example, be used for triaging decisions. Doctors can, with
some confidence, send some people home but keep others for observation.

Training the perceptron means finding the weights [w0, w1, w2, w3, w4,
w5, w6] of the weight vector w, such that:

Recall that w0 represents the bias term and is included in the weight
vector. It’s always multiplied by the value 1, or x0.

Given this, the training algorithm requires the following steps:

Step 1. Initialize the weight vector to zero: set w = 0

Step 2. For each data point x in the training dataset, do the following:
Step 2a if ywTx ≤0:

the weight vector is wrong, so update it:
wnew= wold + yx



Step 3. If there were no updates to the weight vector in Step 2,
terminate; otherwise, go to Step 2 and iterate over all the data points
once again.

The perceptron begins by initializing the weight vector to zero and then
checks to see if the chosen weight vector correctly classifies each data point
one at a time. This is done by first calculating the value of the expression
ywTx for one data point. If the weights are correct for the data point x and
the expression wTx evaluates to a negative value, it means that x lies to the
left of the hyperplane; it also means that x is classified with the label y = -1.
So, if the expected value of y is -1 and the expression wTx evaluates to a
negative number, their product will be positive. Similarly, if the weights are
correct and if wTx evaluates to a positive number, it means x lies on the
right side of the hyperplane; and it means that x is classified with the label y
= 1. So, if the expected value is 1 and the expression wTx evaluates to a
positive number, their product will again be positive. In other words, if the
weights are correct, the expression ywTx will always be positive.

But if weights are wrong, then ywTx will always be a negative number.
(Expression wTx evaluates to a positive number, but the expected value of y
is -1, so ywTx will be negative; or, the expression wTx evaluates to a
negative number, but the expected value of y is +1, so ywTx will be
negative.) So, if ywTx is less than or equal to zero, then something is wrong,
and we should update the weights and bias.

As per the algorithm, updating the weights involves adding yx to w.
Why does this work? Intuitively, this update is changing the direction and
magnitude of the weight vector (and hence the direction of the hyperplane)
in such a way that the data point x, which was on the wrong side of the
hyperplane, ends up a little closer to being on the correct side of it. For a
given data point x, one might have to make multiple such updates to ensure
that x is correctly classified as being on the correct side of the hyperplane.
(For a formal proof, see the mathematical coda on this page.) Of course,
making the correction for one data point means that the hyperplane can go
wrong for some of or all the other data points.



So, the perceptron iterates over this process, data point by data point,
until it settles on an acceptable set of values for the weights and bias that
works for all data points. In doing so, the perceptron finds the linear divide
between the two sets of data points.

As computer algorithms go, this is amazingly simple. The question for
mathematicians was this: How can we be sure that it will terminate? Why
won’t it keep going indefinitely, by always getting at least one data point
wrong?

That’s where the convergence proofs come in—in particular, an
especially elegant one by Minsky and Papert in their book, Perceptrons. We
start by restating the main assumption: There exists a linearly separating
hyperplane characterized by the weight vector w*. The perceptron has to
find w*. There are, of course, many potential such hyperplanes, and the
algorithm needs to find only one.

The algorithm starts by using a weight vector w initialized to zero. Now
consider the dot product of w and w*. As we update the weight vector w
and it starts pointing more and more in the direction of the desired weight
vector w*, the angle between w and w* approaches zero, regardless of the
choice of w*. The dot product of w and w*, given by ,

keeps increasing, because cos(θ) goes from zero (when the two vectors are
perpendicular and most unlike each other) to 1 (when they are parallel and,
hence, pointing in the same direction). So, as the algorithm learns, we want
w.w* to keep increasing; that’s an indication that it is working. However,
w.w* can also increase simply because the magnitude of w keeps increasing
while showing no change in direction. In this case, w.w (the dot product of
w with itself) will also increase. So, the essence of the proof involves
showing that during training, w.w increases less rapidly than w.w*. If that’s
the case, the algorithm will converge in a finite number of steps, when w
coincides with w*. Readers keen to understand the proof can find it in the
mathematical coda on this page.

The proof establishes an inequality. It says that if the algorithm updates
the weight vector M times (or makes M mistakes) before finding the



solution, then M must be less than or equal to a finite number. It does this
by establishing what are called lower and upper bounds for the algorithm,
which are measures of at least and at most how much time and resources
the algorithm needs to arrive at the desired solution. Proving such bounds
for algorithms is a difficult, intricate, and esoteric task in a field of research
called computational complexity theory.

In 2018, Manuel Sabin, a young researcher I met at the University of
California, Berkeley, gave an eloquent perspective on such work in a short
film that I wrote, hosted, and co-directed (the film was part of a
documentary series). “There are deep connections between lower bounds
and upper bounds. Oftentimes, you can say they are two sides of the same
coin,” he said. Lower bounds tell us about whether something is impossible.
Say you prove that an algorithm will take exponentially longer to run as you
increase the number of data points. You will then encounter problems for
which you “won’t know the answer until the sun engulfs the earth,” Sabin
said. “So, lower bounds…talks about what is knowable within our
lifetimes.”

It was no wonder that establishing such bounds for the perceptron
learning algorithm was a huge deal in the 1960s. The algorithm will always
find a linearly separating hyperplane in finite time if one exists. Minsky and
Papert, Block, and others were responsible for a slew of such proofs.
Perceptrons were all the rage.

THE FIRST BIG CHILL
But then, Minsky and Papert’s 1969 book, which provided such a firm
mathematical foundation for research on perceptrons, also poured an
enormous amount of cold water on it. Among the many proofs in their
book, one addresses a very simple problem that a single layer of
perceptrons could never solve: the XOR problem. Look at the four data
points shown in the figure below.



No straight line you can draw will separate the circles from the
triangles. The points (x1, x2) in this case are: (0, 0), (1, 0), (1, 1) and (0, 1).
For the perceptron to separate the circles, represented by the points (0, 0)
and (1, 1), from the triangles, represented by (1, 0) and (0, 1), it must be
able to generate an output y = 1 when both x1 and x2 are 0 or both x1 and x2
are 1, and an output y = -1 otherwise. No such straight line exists,
something that is easy to see visually. Minsky and Papert proved that a
single layer of perceptrons cannot solve such problems. The situation
illustrated above is the simplest case and calls to mind the XOR gate with
two inputs in Boolean logic, where the logic gate outputs a 1 if both the
inputs are the same, and 0 otherwise.

It’s possible to solve the XOR problem if you stack perceptrons, such
that the output of one feeds into the input of another. These would be so-
called multi-layer perceptrons. Rosenblatt wasn’t oblivious to this problem.
“He knew certainly as well or better than Minsky the limitations of a single
layer,” Nagy told me. However, the problem with multiple layers of
perceptrons was that no one knew how to train such networks, including
Minsky and Papert. The algorithm we encountered earlier doesn’t work if
the weights of more than one layer of perceptrons have to be updated.

The hoopla surrounding neural networks subsided. All talk of an
electronic computer that would “walk, talk, see, write, reproduce itself and



be conscious of its existence” vaporized, as did any notion of sending
perceptron devices to other planets as “mechanical space explorers.”
Funding agencies balked, money disappeared, and a once-promising field of
research ground to an almost dead halt. Those in the field refer to the years
from 1974 to 1980 as the first AI winter. Sir James Lighthill, the Lucasian
professor of applied mathematics at Cambridge University, surveyed the
field and, in 1972, published a report about the state of AI. His report even
had a section called “Past Disappointments.” It begins with these words:
“Most workers in Al research and in related fields confess to a pronounced
feeling of disappointment in what has been achieved in the past twenty-five
years. Workers entered the field around 1950, and even around 1960, with
high hopes that are very far from having been realized in 1972. In no part of
the field have the discoveries made so far produced the major impact that
was then promised.”

As far as neural networks are concerned, it’d take a physicist’s unique
solution to a biological problem to re-energize the field. That was in 1982.
Then, in 1986, David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams published a pathbreaking paper on an algorithm called
backpropagation. (The idea itself predated their work, but their paper put it
firmly on the map.) The algorithm, which showed how to train multi-layer
perceptrons, relies on calculus and optimization theory. It’d take fifteen
more years before computers became powerful enough to handle the
computational demands of artificial neural networks, but the “backprop”
paper set a slow-burning revolution in motion.

The precursor to the backpropagation algorithm, with its emphasis on
calculus, however, was taking shape at about the same time as Rosenblatt
was showing off his perceptron. Toward the very end of the 1950s, over the
course of a weekend, a young assistant professor and an immensely talented
graduate student invented and implemented an algorithm that would prove
to be as important as the perceptron and would contain clues for one day
training multi-layer neural networks.



MATHEMATICAL CODA
Feel free to skip the following proof; doing so won’t impact your
understanding of what comes in subsequent chapters. I should say, however,
that it was while listening to recordings of lectures by Kilian Weinberger,
professor of computer science at Cornell University, in which he explains
this proof to the students of his 2018 course on machine learning, that I
realized I wanted to write this book. It’s a beautiful proof.

THE ALGORITHM: THE PERCEPTRON UPDATE RULE
(This rule and proof adapted from Weinberger’s lecture.)

Step 1. Initialize the weight vector to zero: set w = 0.

Step 2. For each data point x in the training dataset, do the following:
Step 2a if ywTx ≤ 0:

the weight vector is wrong, so update it:
wnew= wold + yx

Step 3. If there were no updates to the weight vector in step 2,
terminate, otherwise go to step 2 and iterate over all the data points
once again.

We make an update to the weight vector if ywTx ≤0 (see the explanation
in the “Guaranteed to Succeed” on this page for why this is the case):

wnew = wold + yx

For the new weight vector to classify x correctly, we need to prove that,
eventually, y wTx > 0 (because if it were ≤ 0, it would have required
updating). At each step of the update:



The second right-hand side term y2 xT x is ≥ 0, because y2 = 1, and xT x
≥ 0. Why is xT x ≥ 0? Well, it’s the dot product of a vector with itself. That’s
always a positive number or zero. It’s akin to squaring a scalar—you’ll
always get a positive number or zero.

So, , after one update, is a little less negative than ,

which means that the weight vector is moving in the right direction for the
one data point x. Eventually, after some unspecified number of updates, the
algorithm will classify x correctly. This process must be repeated for every
data point until the weight vector classifies all data correctly.

The proof that follows shows that the number of updates required to find
the new, correct weight vector is always finite.

THE PERCEPTRON CONVERGENCE PROOF
Assumptions:

w: the d-dimensional weight vector initialized to zero;

w*: the d-dimensional weight vector the perceptron has to learn; it’s
perpendicular to the linearly separating hyperplane. Let w* be a unit
vector of magnitude 1;

x: the vector representing an input data point, or instance; x is a d-
dimensional vector, so with elements [x1, x2,…, xd]. If there are n data
points, then each such instance is a row in a larger n × d matrix X (n
rows, d columns);



y: the output of the perceptron, for an input vector x; the output can be
-1 or 1. All the outputs can be collected into a one n-dimensional vector
y: [y1, y2,…, yn]; and

γ (gamma): the distance between the linear separating hyperplane and
the closest data point.
The following is the equation for the perceptron (ignoring an explicit

bias term; we saw earlier how to incorporate it into this formulation):

The goal is to prove that if you keep updating w, it will converge to w*
(meaning, the two vectors will point in the same direction). And because
w*, by definition, is perpendicular to the separating hyperplane, so, too,
will be w.

First, normalize all the input data points such that the data point farthest
from the origin has a magnitude of 1 and all other data points have
magnitudes less than or equal to 1. This can be done by dividing each
vector x by the magnitude of the data point, or vector, that’s farthest from
the origin. So, the farthest vector will now have a magnitude of 1, and all
other vectors will have magnitudes that are less than or equal to 1. This
doesn’t change the relationship between the data points/vectors because we
are simply scaling down their magnitudes by the same amount; their
directions remain the same.

Once normalized, 0 < γ < = 1.
Recall that we update the weight vector when an input, x, is classified

incorrectly:

If ywTx ≤ 0:
wnew ← wold + yx



As w comes closer to w*, which is our desired direction, the dot product
of the two vectors, or wTw*, gets bigger.

But wTw* can also increase if w grows in magnitude without changing
direction relative to w*. If w is growing in magnitude, then wTw, which is
the dot product of w with itself, will also increase. So, the algorithm will
converge only if wTw* increases faster than wTw, as that would happen
only because w is getting aligned with w* and not just increasing in
magnitude.

Let’s calculate wTw* upon each update:

= (wold + yx)Tw*

The second term of the right-hand side is yxTw*. If you have two d-
dimensional vectors a and b, we know that aTb = bTa. So, yxTw* = yw*Tx.
We know that yw*Tx > 0, because w* is the correct presumed weight
vector, and it should classify x correctly.

The dot product of the unit vector w* and x is the distance of x from the
hyperplane characterized by w*. We defined γ as the distance between the
closest data point and the hyperplane. So, yw*Tx is not only greater than 0,
but also always greater than or equal to γ.

Thus,

Interim result 1: This is telling us something important. The dot
product between w and w* grows by at least γ with each update.

Now let’s examine the rate of growth of wTw.



= (wold + yx)T (wold + yx)

= (wold + yx)Twold + (wold + yx)Tyx

Since:

So, the dot product of the new weight vector with itself equals the dot
product of the old weight vector with itself plus two new terms. We must
figure out the contribution of the new terms.

We know that the first new term  because .

That’s the reason we are doing an update to the weight vector.
The second new term is y2xTx. Because y is either +1 or -1, y2 = 1. Also,

xTx is always less than or equal to 1 (this is because we normalized all the
vectors representing data points earlier, so their magnitudes are always less
than or equal to 1).

So, the equation becomes:

Interim result 2: This is telling us that the dot product of the weight
vector with itself grows by at most 1 with each update.



Now, on the one hand, we have wTw* growing by at least γ with each
update and, on the other hand, we have wTw growing by at most 1 with
each update.

Let’s say the algorithm makes M updates to find the linearly separating
hyperplane. Our task is to prove that M is a finite number and that the
algorithm converges to a solution.

We start with the weight vector initialized to zero, so the initial value of
wTw* is zero. After the first update, the dot product would have grown at
least by γ.

After 1 update: wTw* ≥ γ

After 2 updates: wTw* ≥ γ + γ = 2γ

After 3 updates: wTw* ≥ 2γ + γ = 3γ

…

After M updates: wTw* ≥ (M - 1) γ + γ = Mγ

So: M γ ≤ wTw*…(1)
Similarly, by using interim result 2, which says that wTw increases by at

most 1 after each update, after M updates, we should have:
wTw ≤ M …(2)
Now, because of (1) we have:

Mγ ≤ wTw*

=||w||||w*||cos(θ); this is the definition of the dot product.



⇒ , because 0 ≤ cos(θ) ≤ 1 and ||w*|| = 1, by design.

Therefore:
, because , by definition.

The right-hand side can be substituted using the result in (2), giving us:

After all that analysis, we have arrived at a staggering result: The
number of updates that the perceptron makes to find a linearly separating
hyperplane is less than or equal to 1 over γ2. Because gamma is always a
positive quantity that’s less than or equal to 1, M is always a finite quantity.
The perceptron will converge without fail in a finite number of steps.

QED
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The Bottom of the Bowl

t was the autumn of 1959. Bernard Widrow, a young academic on the
cusp of turning thirty, was in his office at Stanford University when a

graduate student named Marcian “Ted” Hoff came looking for him. The
young man arrived highly recommended. The day before, a senior professor
at Stanford had reached out to Widrow on Hoff’s behalf, saying, “I’ve got
this student named Ted Hoff. I can’t seem to get him interested [in my
research]; maybe he’d be interested in what you’re doing. Would you be
willing to talk with him?” Widrow replied, “Sure, happy to.”

“So, the next day, knocking on my door was Ted Hoff,” Widrow told
me.

Widrow welcomed him in and proceeded to discuss his work, which was
focused on adaptive filters—electronic devices that learn to separate signals
from noise—and the use of calculus to optimize such filters. As Widrow
chalked up the math on the blackboard, Hoff joined in, and soon the
conversation morphed into something more dramatic. During that
discussion, the two invented what came to be called the least mean squares
(LMS) algorithm, which has turned out to be one of the most influential
algorithms in machine learning, having proven foundational for those
figuring out how to train artificial neural networks. “When I wrote the LMS
algorithm on the blackboard for the first time, somehow I just knew
intuitively that this is a profound thing,” Widrow told me. “Too bad I didn’t
have a camera to take a picture.”

Widrow grew up in a small town in Connecticut. He could hardly have
imagined his luminous academic career. His father ran an ice-
manufacturing plant. A curious young Widrow hung around the plant, amid



generators, motors, and compressors, always asking questions. He admired
the plant’s electrician, who taught him the basics of the trade. While
Widrow was still in high school, his dad sat him down and asked, “What do
you think you want to be when you grow up?”

The teen answered, “I want to be an electrician.”
His father said, “You don’t want to be an electrician. You want to be an

electrical engineer.”
That subtle course correction led Widrow to MIT in 1947, where he

obtained his bachelor’s, master’s, and doctorate; he joined MIT as an
assistant professor in 1956. One day during the summer of that year,
Widrow’s colleague Ken Shoulders came into the lab and told him about a
workshop on artificial intelligence at Dartmouth College he was attending;
did Widrow want to come? “I said, ‘What’s artificial intelligence?’ He said,
‘I don’t know. But it sounds interesting.’ So, I said, ‘Sure. I’ll go with
you.’ ”

The coining of the term “artificial intelligence” is credited to John
McCarthy, a mathematics professor at Dartmouth College. In August 1955,
McCarthy; Marvin Minsky, who was then at Harvard University; Nathaniel
Rochester of IBM; and Claude Shannon of Bell Telephone Laboratories, put
out “A Proposal for the Dartmouth Summer Research Project on Artificial
Intelligence.” It began with a bold declaration:

We propose that a 2 month, 10 man study of artificial intelligence be
carried out during the summer of 1956 at Dartmouth College in
Hanover, New Hampshire. The study is to proceed on the basis of the
conjecture that every aspect of learning or any other feature of
intelligence can in principle be so precisely described that a
machine can be made to simulate it. An attempt will be made to find
how to make machines use language, form abstractions and
concepts, solve kinds of problems now reserved for humans, and
improve themselves. We think that a significant advance can be made
in one or more of these problems if a carefully selected group of
scientists work on it together for a summer.



Widrow remembered it as an open seminar, no invitation needed. You
could go and stay as long as you wanted. You spoke up if you had
something to say, or you could simply listen. Widrow listened and then
returned to MIT all charged up. He wanted to build a thinking machine. “I
spent six months thinking about thinking,” he said. “The conclusion was
that with the circuitry, the technology that we had at that time, I expected
it’d be twenty-five years before we’d be able to build a thinking machine.”
For a young researcher at the start of his career, it seemed a foolhardy
venture. Widrow abandoned his plans and turned to something more
concrete: adaptive filters that could learn to remove noise from signals. He
was particularly interested in the digital form of adaptive analog filters
developed by Norbert Wiener. (We encountered Wiener in the previous
chapter as the man who coined the term “cybernetics.”)

To understand Wiener’s analog filter, consider some continuously
varying (hence analog) signal source. Some noise is added to the signal, and
the filter’s job is to tell signal from noise. Wiener’s filter theory showed
how this could be done. Others adapted the theory to digital signals. Instead
of being continuous, digital signals are discrete, meaning they have values
only at certain points in time (say, once every millisecond). Widrow wanted
to build a digital filter, but one that could learn and improve over time. In
other words, it would learn from its mistakes and become a better version of
itself.

At the heart of such an adaptive filter is a nifty bit of calculus. Imagine
that the filter, at any given time, makes an error. Let’s assume that we are
able to keep track of such errors for ten time steps. We must reduce the
error the filter makes by looking at its previous ten errors and adjusting its
parameters. One measure of the mistakes is simply the average of the
previous ten errors. However, errors can be positive or negative, and if you
just add them to take the average, they can cancel each other out, giving the
wrong impression that the filter’s working well. To avoid this, take the
square of each error (thus turning it into a positive quantity) and then take
the average of the squares of the errors. There are other advantages to
squaring the errors and averaging them that have to do with statistics and



calculus, but we don’t need to focus on those yet. The goal is to minimize
this “mean squared error” (MSE) with respect to the parameters of the filter.
To restate, we must change the values of the filter’s parameters at each time
step such that the average, or mean, of the squared errors of the past, say,
ten steps is minimized. Understanding how this works requires delving into
some simple calculus and learning a method that was first proposed in 1847
by Baron Augustin-Louis Cauchy, a French mathematician, engineer, and
physicist. It’s called the method of steepest descent.

DOWN FROM ON HIGH

If you have seen pictures of—or, better yet, visited—rice paddies on
hillsides, particularly in China, Japan, and Vietnam, you may have marveled
at the flat terraces cut into the sides of the hills. If we walk along any one
terrace, we remain at the same elevation. The edges of the terraces trace the
contours of the terrain. Imagine standing on some terrace way up a hillside.
Down in the valley below is a village. We have to get to the village, but it’s
getting dark, and we can see only a few feet ahead of us. Let’s say the



hillside is not too steep and that it’s possible to clamber down even the
steepest parts. How will we proceed?

We can stand at the edge of the terrace and look for the steepest route to
the terrace below. That’s also the shortest path down to the next piece of
level ground. If we repeat the process from terrace to terrace, we will
eventually reach the village. In doing so, we will have taken the path of
steepest descent. (This might not be a straight line from our initial position
down to the village; we might have had to zigzag down the hillside.)

What we instinctively did was evaluate the slope, or the gradient, of the
hillside as we looked in different directions while standing at the edge of a
terrace and then took the steepest path down each time. We just did some
calculus in our heads, so to speak.

More formally, let’s look at going down a slope for a 2D curve, given by
the equation y = x2.

First, we plot the curve on the xy plane and then locate ourselves on the
curve at some value of x, say, x = 0.5. At that point, the curve has a slope.

One way to find the slope of a curve is to draw a tangent to the curve at
the point of interest. The tangent is a straight line. Imagine walking a
smidgen along the straight line. You would be at a new location, where the
x-coordinate has changed by an infinitesimal amount (Δx; read that as
“delta x”) and the y-coordinate has also changed by a corresponding



infinitesimal amount (Δy). The slope is . (If you think of climbing

stairs, then the slope of the stairs is given by the rise divided by the run,
where the rise is Δy, or how much you go up vertically with each step, and
the run is Δx, the amount you move horizontally with each step.)

Of course, when you do this in our example, you have moved along the
tangent to the curve, not along the curve itself. So, the slope really pertains
to the tangent and not the curve. However, if the change in the x-direction,
Δx, approaches zero, then the slope of the tangent line gets closer and closer
to the slope of the curve at the point of interest, until the two become the
same when Δx = 0. But how do you calculate the slope when the

denominator in  is zero? That’s where calculus steps in.

Differential calculus is a branch of calculus that lets us calculate the
slope of a continuous function (one that has no cusps, breaks, or
discontinuities). It lets you analytically derive the slope in the limit ∆x → 0
(read that as “delta-x tends to zero”), meaning the step you take in the x-
direction becomes vanishingly small, approaching zero. This slope is called
the derivative of a function.

For our function y = x2, the derivative equals 2x. (Finding the derivative
of a function is at the heart of differential calculus, but we won’t get into the
details here. For the functions used in this book, I’ll simply provide the
derivatives. To understand how to find the derivative of a function and for a
list of derivatives of common functions, consult Wolfram MathWorld.)

We write our derivative as:

This is called the derivative of y with respect to x.
Calculus can cause our eyes to glaze over, if not induce downright

dread. But as Silvanus P. Thompson, a professor of physics, electrical



engineer, and member of the Royal Society, wrote in his classic Calculus
Made Easy (first published in 1910), the “preliminary terror” of symbols in
calculus “can be abolished once [and] for all by simply stating what is the
meaning—in common-sense terms—of the…principal symbols.” The

symbol d, he points out, simply means a “little bit of.” So,  is a little bit

of y divided by a little bit of x. The beauty of calculus is that you can
calculate this ratio even as that “little bit of x” tends to zero, or dx → 0.

Given the derivative, you now have a way of determining the slope at

any point along the curve. So, for the function y = x2, the slope ,

and at x = 2 the slope is equal to 2x, which equals 4. At x = 1, the slope is 2;
at x = 0.5, the slope is 1; and at x = 0, the slope is 0. You can see that when
we move along the curve, as the value of x decreases from 2, so does the
slope, until the function reaches a minimum (where the slope becomes
zero), and then decreases further. The slope in general is zero at the
minimum of a function; in this example, the (x, y) coordinates also happen
to be (0, 0) at the minimum, but that doesn’t have to be so.

We are now equipped to understand the method of steepest descent, also
known as the method of gradient descent. Let’s say we are at the coordinate
(1, 1). We want to reach the bottom of the curve, where the slope is zero and
the value of the function is at its minimum. At any point along the curve,
there are only two ways you can go. Going one way takes you away from
the bottom; going the other way brings you closer to the bottom. The trick
to taking a step in the right direction is, first, to calculate the slope, or
gradient, at your current location. (The term “gradient” has a more specific
meaning, but let’s use it here nonetheless.) In this case, for x = 1, the
gradient is 2. If the function is bowl-shaped, as this one is, then the path
toward the minimum involves going in a direction that decreases the
gradient. So, we take a step such that the value of the x-coordinate is
reduced by some step size (η) multiplied by the gradient at that point:



xnew = xold - η. gradient

Let’s take a moment to see why taking a step that reduces the value of x
reduces the gradient. For our equation, the gradient is given by 2x. So, if the
new value of x is less than the old value of x, the gradient at the new
location will be lower than before. The new x-coordinate gives us a new y-
coordinate. We end up at a new location. We repeat the process until the
gradient becomes zero or close to zero. (We have reached the bottom or
near enough to it.) Here’s a graph depicting the process:

The step size, η, must be some small number, a fraction (say, 0.1). Why?
Mainly because as you near the bottom, you want to be very careful you
don’t overshoot the minimum and end up higher on the other side of the
curve. If you do so, depending on the function, the algorithm might begin
taking you higher up the curve, away from the minimum. Also, notice that
though the step size is the same at each iteration of the algorithm, the size
of the jumps along the curve is greater in the beginning and becomes
smaller as you near the bottom. Again, why? It’s because we are subtracting
a multiple of the gradient from the x-coordinate to get a new x-coordinate.
The multiple, or step size, doesn’t change in our algorithm. But what’s



changing is the gradient: It’s getting smaller. So, the jumps along the curve
also get progressively smaller.

Functions like the one depicted above, which have a single, well-defined
minimum, are also called convex functions. When we find the bottom of the
bowl, technically, we have found the “global” minimum of the function. (If
a function has multiple minima, then each of these is called a “local”
minimum.)

Now consider the case when the minimization involves a function that
takes two inputs. Here’s the function:

z = x2 + y2

The plot shows the bowl-shaped 3D surface, called an elliptic
paraboloid. If you start from any location above the bottom of the bowl, the
descent along the surface of this paraboloid can be easily visualized. The
difference from the 2D case is that we use the gradient at any location to



calculate the new x and y coordinates, instead of just the x-coordinate.
(Same operation: Subtract gradient times some step size from each
coordinate.) This then gives us a new z-coordinate, and we come down to a
new location on the surface. Doing this iteratively gets us to the bottom of
the bowl.

Here’s a different function to help visualize why it may not be possible
to find the minimum for certain functions.

The 3D surface is defined by this equation:

z = y2 - x2

The surface is called a hyperbolic paraboloid. Notice that it looks like a
saddle: part convex surface and part concave. In the figure above, we start
descending from our location and ostensibly reach a place where the
gradient is zero. But this is an unstable place. It’s called a saddle point. One
false step, and you’ll tumble down the surface. This function has no global
or local minimum. Also, the initial starting point can dictate whether you



even come close to the saddle point while descending. Take this scenario,
for instance:

In this case, attempting to descend the gradient by following the same
technique (because you start somewhere else) can cause you to veer away
from the saddle point.

All this may sound terribly abstract, but gradient descent is crucial not
only to Widrow and Hoff’s algorithm, but also to modern machine learning.
But before we connect gradient descent to Widrow and Hoff’s work, there’s
one important detail we need to address.

Take this function again:

z = x2 + y2

Recall that when we had a function with one variable (y = x2), we could

use calculus to determine the derivative ( ) and use this value to

perform gradient descent. But what do we do when the function involves



multiple variables? Well, there’s an entire field of so-called multi-variable,
or multi-variate, calculus. And while it can be daunting to confront multi-
variate calculus in its entirety, we can appreciate the central role it plays in
machine learning by focusing on some simple ideas.

Imagine you are standing at some point on the surface of an elliptic
paraboloid, z = x2 + y2. To figure out the direction of steepest descent, we
must be concerned about two directions, given that we have two variables.
Following Thompson’s exhortation to state things in simple ways, we know
that moving along the surface means a small change in the value of the

variable z. So, our job is to calculate ; or a “tiny change in z

divided by a tiny change in x” and a “tiny change in z divided by a tiny
change in y,” respectively.

In calculus-speak, we are taking the partial derivative of z with respect
to x, and the partial derivative of z with respect to y. For our elliptic

paraboloid, the partial derivatives are: .

Also, note the slight change in the symbol used: ∂x instead of dx and ∂y
instead of dy. The curvy “d” signifies a partial derivative of a function w.r.t.
(“with respect to”) one of many variables. For a conceptual understanding
of what comes next, we don’t need to worry about how to derive these
partial derivatives. It’s enough to know that given differentiable functions,
calculus shows us how to get at these analytical expressions.

The most important concept here is that the direction of steepest
descent, for this example, is given by two partial derivatives. Let’s say you
are standing at a location where:

x = 3, y = 4, and z = 32 + 42 = 25

At this location, the two partial derivatives have the values:

2x = 2 × 3 = 6



2y = 2 × 4 = 8
If you write these numbers in this form, it looks like something very

familiar: [6, 8]. It’s a vector!
So, if you have to move slightly in the direction of steepest descent, that

direction can be inferred from this vector. Recall that a vector has a
magnitude (or length) and a direction. In this case, our vector is an arrow
going from [0, 0] to [6, 8]. This vector is called the gradient. One technical
point: The gradient points away from the minimum. So, to go down toward
the minimum, you must take a small step in the opposite direction or follow
the negative of the gradient.

If there’s one thing to take away from this discussion, it’s this: For a
multi-dimensional or high-dimensional function (meaning, a function of
many variables), the gradient is given by a vector. The components of the
vector are partial derivatives of that function with respect to each of the
variables.

For our elliptical paraboloid, the gradient is written as:

The gradient can be written as either a row vector or a column vector.
What we have just seen is extraordinarily powerful. If we know how to

take the partial derivative of a function with respect to each of its variables,
no matter how many variables or how complex the function, we can always
express the gradient as a row vector or column vector. Just to illustrate the
power of this approach, consider this slightly more complicated equation:

f (x, y, z) = x2 + 3y3 + z5

The function f depends on three variables and is plotted in 4D space.
There is no way for us to visualize what it looks like. And just by looking at
the equation, it’s impossible to tell whether the function has a global
minimum toward which we can descend. But it’s possible to write down the



gradient using the partial derivatives. (Again, we are not trying to figure out
how exactly to differentiate the function with respect to each variable; let’s
take it that if the function can be differentiated, calculus will provide an
answer. You can use Wolfram MathWorld to find these derivatives.)

Now, given some set of values for x, y, and z, we can evaluate the
gradient of the function at that point, take a small step in the opposite
direction, and update the values of x, y, and z. If the function has a global
minimum or local minima, iterating over this process will get us there. Our
analysis has also connected the dots between two important concepts:
functions on the one hand and vectors on the other. Keep this in mind.
These seemingly disparate fields of mathematics—vectors, matrices, linear
algebra, calculus, probability and statistics, and optimization theory (we
have yet to touch upon the latter two)—will all come together as we make
sense of why machines learn.

GLIMMERS OF A NEURON

Bernard Widrow came back from the 1956 AI conference at Dartmouth
with, as he put it, a monkey on his back: the desire to build a machine that
could think. “It’s always there,” he told me more than six decades later. “I
haven’t really ever gotten that out of my system.” Yet, in 1956, a young
Widrow was savvy enough to realize the futility of building thinking
machines, and he turned to more practical things. Building an adaptive filter
was one such pursuit.

In the field of signal processing, a filter is something that takes an input
signal, processes it, and produces an output signal that has certain desired



properties. Let’s say you are working on some hobby electronics
equipment, and you need to measure a signal. But mixed in with your signal
is an annoying hum at a frequency of 60 Hz. That’s interference from the
AC mains power. A filter can take the noise-laden input, remove only the 60
Hz component, and spit out a clean signal. Such a filter is easy to design, as
the noise is well understood; it’s always at 60 Hz. But often, a filter needs to
learn the characteristics of the noise; it needs to adapt.

Consider an important application for such an adaptive filter: digital
communications. Anyone who has ever used a dial-up modem to connect to
the internet will remember the distinctive sounds made by the modem. First
a dial tone, then the tones of the number being dialed, followed by beeps
and bursts of staccato screeches, and then silence after about twenty
seconds. That’s the sound of a handshake: two digital devices figuring out
the best way to talk to each other over a phone line usually used for analog
voice signals. The digital devices must transmit and receive streams of
zeroes and ones. But analog transmission lines can be noisy—so, you need
a filter to remove the noise that could corrupt the data. This includes
canceling any echo that a modem may hear of its own transmissions. But
it’s impossible to build a generic filter for such purposes. The noise can be,
and often is, different in each instance of two communicating devices. Part
of what happens during a handshake is that an adaptive filter at each end
figures out the characteristics of the noise, which it can then remove to
create an almost error-free communication channel. (Widrow recalls using a
fax machine that made these “handshake” sounds when communicating
with some remote fax machine; his grandson, who happened to be around
him in those days, started calling the sounds of the handshake “Grandpa
music.”)

One design of an adaptive filter is shown below.
Here, xn is the input signal; yn represents the corresponding output. The

filter turns xn into yn. The output is compared against a desired signal dn,
which is the signal the filter ought to have produced. Any discrepancy
between yn and dn results in an error en.



en = dn - yn

This error en is fed back into the filter. An adaptive filter changes itself
such that the error is minimized. The black box named FILTER has some
characteristics, or parameters, and these parameters can be tweaked to make
the filter adaptive.

You might say, if you know the desired signal, what’s the point of a
filter? Well, you don’t know the desired signal for any generic input. But
there are ways to know what the filter should produce for known inputs. For
example, that’s what modems do during the handshake: They transmit a
previously agreed-upon signal, so that the other side knows what to expect.
That’s the desired signal dn. But the signal arrives over a noisy transmission
line, so the input xn is simply dn contaminated by noise. But unlike the 60
Hz hum we looked at earlier, this noise is random. The receiver needs a
filter that takes xn as an input and produces a signal yn that is as close to the
desired signal dn as possible. To do so, the algorithm must learn the
statistical properties of the noise, so that it can predict the noise at each time
step and subtract it in real time from xn to produce the desired signal.

While all this is a far cry from AI and ML, we can see glimmers of
machines that learn. This connection—particularly to Rosenblatt’s



perceptron and artificial neurons—will become even more obvious when
we write down the particulars of a filter.

This was slowly becoming obvious to Widrow, too, while he was still at
MIT, where he was deeply influenced by the doyen of filter design, Norbert
Wiener. At the time, Wiener was MIT’s best-known professor. Decades
later, Widrow, recalling Wiener’s personality in a book, painted a
particularly evocative picture of a man whose head was often, literally and
metaphorically, “in the clouds” as he walked the corridors of MIT
buildings: “We’d see him there every day, and he always had a cigar. He’d
be walking down the hallway, puffing on the cigar, and the cigar was at
angle theta—45 degrees above the ground. And he never looked where he
was walking…But he’d be puffing away, his head encompassed in a cloud
of smoke, and he was just in oblivion. Of course, he was deriving
equations.” Even as he approached the steps at the end of some hallway,
Wiener would be looking up, not down. “You can see he’s going to kill
himself—he’s going to fall down those steps—but if you disturb him, you
might break his train of thought and set science back like ten years! There
was always that problem.”

Such life-and-death decisions notwithstanding, Widrow embraced
Wiener’s work. While at MIT, he even came up with different versions of
the adaptive filter. Here’s an example of one of his designs:



In the filter, the input signal xn arrives discretely once every nth time
step (which can be anything: once per day, per second, per millisecond, per
microsecond, and so on), and yn is the corresponding output. Each box
labeled DELAY takes a signal and delays it by one time step, producing the
signal xn1 from xn and xn2 from xn1. After one delay, the signal is
multiplied by a weight w1, after two delays it is multiplied by w2, and so
on. The undelayed signal is multiplied by w0. All these are summed up. So,
for our example on the preceding page, the output signal yn can be written
as:

yn = w0.xn + w1.xn1 + w2.xn2

We can treat [w0, w1, w2] as the vector w, and [xn, xn1, xn2] as the
vector xn. Then,

w.xn = w0.xn + w1.xn1 + w2.xn2

The diagram shows only two delays, but in principle, there can be any
number of them. Now, if dn is the desired signal, here’s how you would go
about optimizing the filter’s parameters, to minimize the error between
what it generates, which is yn, and the desired signal, dn.

yn = w.xn, where:

xn = [xn, xn1, …]

and w = [w0, w1, …]

en = dn - yn

⇒ en = dn - w.xn



What we have is an expression for the error that the filter makes at the
nth time step. It’s clear that if the filter predicts a good approximation of the
desired signal, then the error will be minimized. To achieve this, the filter
must learn the value for w at each time step. Of course, such a filter can
update its parameters whenever it gets the prediction wrong—hence the
name “adaptive filter.” It learns. Ideally, over time, the average error made
by the filter should tend toward zero. (Maybe now the connections to
machine learning are beginning to emerge from this fog of filter theory.)

A small ML digression: How should we calculate the average error?
Adding the errors to calculate the mean won’t suffice; as we saw earlier,
negative and positive errors can negate each other, giving an invalid
impression that the average error is low. We could add the absolute value of
the errors and take the average: this is called the mean absolute error
(MAE). But the math folk prefer to take the average of the square of the
error terms and call it a mean squared error (MSE). It turns out that the
MSE has some nice statistical properties that the MAE doesn’t. Also, the
MSE is differentiable everywhere. (A differentiable function is one that has
a derivative everywhere in its domain, where a domain could be, say, the xy
plane.) The MAE is not. This, too, helps immensely, and we’ll see this
when we come to training neural networks. One more fact worth
mentioning: If you want your error estimate to punish the extreme outliers,
then the MSE does that better than the MAE, because the contribution of an
error to the average increases as the square of the error in the MSE, while it
increases linearly in the MAE.

Back to the filter. We square the error at each time step, add all the
squared errors, and then find the expected value. The expected value, or
“expectation,” of something that is varying randomly has a very specific
meaning in probability theory, but let’s not worry about that. The key
insight here is that we need to minimize the expected value (E) of the
squared errors. Let’s call that value J:

J = E(en2)



⇒ J = E((dn - yn)2)

⇒ J = E((dn - w.xn)2)
The value of J must be minimized. If you look at the form of the

equation that relates J to the filter parameter w, it becomes clear that the
function that connects the two will be quadratic (meaning, it’ll involve the
second power of w). We already saw that such quadratic functions are
convex (y = x2, or z = x2 + y2, for example). So, when J is minimized, we
end up at the bottom of some bowl-shaped function. At this point, the slope,
or gradient, of J is zero. This gives us another way of finding the optimal
value for w. We can simply set the value of the gradient of J with respect to
w to zero and solve the equation:

In 1931, Wiener and German mathematician Eberhard Hopf devised a
way to solve such equations, using techniques from linear algebra. But this
requires some a priori knowledge about the correlation between the inputs
at all the various time steps and the correlation between the inputs and the
desired outputs. This is not always known, and even when it is, the
calculations can be computationally intensive. Also, Wiener’s work applied
to analog filters.

We can also minimize J by using the method of steepest descent. Why is
that? Well, because it’s a bowl-shaped, convex function, we can always find
the value for w that minimizes the expectation value of the squared errors
by iteratively following a path down to the bottom of the bowl. So,
regardless of whether the filter is characterized by one coefficient (w0), two
(w0, w1), three (w0, w1, w2), or more, the assertion holds. Steepest descent
will let you find the minimum. But this method, too, has a limitation: We
need to be able to calculate the partial derivatives of J with respect to the
filter coefficients.



There are other computational concerns.
For instance, given xn and the corresponding yn, plus the desired output

dn, one can use the method of steepest descent to calculate the parameters
(in our example: w0, w1, w2). The trouble is that to find the optimal values
for the parameters, you need more and more samples of input, output, and
desired output, and these calculations take increasingly longer to finish.

In addition, given that the error calculated for a certain sample of data
doesn’t fully represent all possible errors, the gradient you calculate at each
time step to go toward the minimum is only an approximation. Sometimes
it’s pointing in the right direction, but most times it’s not. In our analogy of
walking down a terraced hillside to the village, it’s as if in addition to
having to navigate in the dark, you were somewhat drunk. Instead of taking
the steepest path down to the next terrace, you stagger down willy-nilly.
You might even clamber up to the next terrace. The hope is that if you take
small enough steps, even this drunkard’s walk will get you down to the
village. And in practice, algorithms that do this indeed succeed. This
method is called stochastic gradient descent (SGD), where the word
“stochastic” refers to the fact that the direction of each step in your descent
is slightly random.

This is what Widrow was working on while at MIT, before he moved to
Stanford. But alongside filters, he was thinking about adaptive neurons, or
neural elements, and realizing that training a neuron was no different from
training a filter.

A WEEKEND WITH BERNIE
When Ted Hoff walked into Widrow’s office at Stanford that fateful day in
the fall of 1959, Widrow began discussing such ideas with him. “So, I was
up at the blackboard explaining to Ted about the stochastic gradient and
quadratic bowl…and adaptive filters and adaptive neural elements and…
talking about how you differentiate to get the components of the gradient,”
Widrow told me. “I don’t know how it happened, but we came up with an
idea that we could get a stochastic gradient, a very crude gradient



algebraically—without differentiating anything, without averaging
anything, and without squaring anything.”

The technique they devised could be applied to adaptive filters or
artificial neurons. So far, we have learned that the output of our example
adaptive filter is given by:

yn = w0.xn + w1.xn1 + w2.xn2

or, yn = w.xn

Designing a filter that adapts involves learning the values for w0, w1,
and w2. If you cast your mind back to Rosenblatt’s perceptron, you’ll see
that it, too, involves learning the weights so that it can correctly classify a
new piece of data as falling on one or the other side of a hyperplane.
Rosenblatt’s algorithm isn’t cast in terms of gradient descent. But the
Widrow and Hoff algorithm is.

The figure below shows a way to think about the adaptive neuron
designed by Widrow and Hoff.

The neuron produces an output y:
y = w0x0 + w1x1 + w2x2



Here, x0 is always 1; this makes w0 our bias term, b. The actual inputs
are x1 and x2. Together, they make up the vector x. The set of coefficients
w0, w1, and w2 is the vector w. So:

y = w.x

⇒ y = wTx

Assume you have several training samples for which you have the
inputs and the corresponding desired outputs (d). Then, the error made by
the adaptive neuron for each input is given by:

error(e) = d - y = d - wTx

Consider the problem where the input is a set of 16 values, representing
a 4×4 grid of pixels. These pixels can be used to show letters of the
alphabet. The letter “T,” for example, would light up some of those pixels
(meaning, some pixels would have the value “1,” and others “0”). The letter
“J” would light up a different set of pixels.



Let’s say that when the set of pixels representing “T” is the input to the
neuron, it must output the value 1. And when the input is the set of pixel
values representing the letter “J,” the neuron must output -1. So, the desired
output for “T” is 1, and for “J,” it’s -1.

Training the neuron involves supplying it one input, representing one
letter, at a time. The algorithm uses the input and the desired output to
adjust its weights and generate the correct output. But changing the weights
so that you get the correct output for the input letter “T” may cause it to
make an error for the input letter “J.” If that’s the case, the algorithm adjusts
its weights again. Of course, now the new weights may cause an error for
the input letter “T.” You repeat the process. And this goes on until the
neuron correctly outputs 1 for the letter “T” and -1 for the letter “J.” The
method of steepest descent can be used to train the neuron.

Let’s say you had a bunch of training samples: inputs and their
corresponding outputs. If you calculate the errors made by the neuron for all
input samples and plot the expectation value of squared errors as a function
of all the weights, or coefficients, you get a bowl-shaped function (of
course, in a higher-dimensional space that we cannot visualize). Then, you
could minimize the expectation value using the method of steepest descent.
At each step, you calculate the gradient of the function with respect to each
weight and then modify the weights by taking a small step in the opposite
direction (toward the minimum).



wnew = wold + μ(-Δ)

where:

μ = step size

Δ = gradient

Recall from our previous discussion that the gradient is simply a vector
in which each element is the partial derivative of the mean squared error, J,
with respect to each weight.

So, for our three weights, the gradient is:

Each element of this vector will be an analytic expression that can be
calculated using the rules of calculus. Once you have the expressions, you
just plug in the current values for the weights, and you get the gradient,
which you can then use to calculate the new weights. The problem: You
need calculus, and while our gradient has only three elements, in practice, it
can have elements that number in the tens, hundreds, thousands, or even
more. Widrow and Hoff were after something simpler. This is what they
came up with:

wnew = wold + μ(-Δest)

Instead of calculating the entire gradient, they decided to calculate only
an estimate of it. The estimate would be based on just one data point. It
didn’t involve calculating the expectation value of the error squared. Rather,
they were simply estimating it. But estimating a statistical parameter based
on just one sample is usually anathema. Even so, Widrow and Hoff went



with it. With a little bit of analysis, they came up with their update rule for
the weights:

wnew = wold + 2μεx

where:

μ = step size

ε = error based on one data point

x = the vector representing a single data point

The error itself is given by:

ε = d - wTx

This is simple algebra. Basically, for each input, you calculate the error
and use that to update the weights.

Widrow and Hoff were aware that their method was extremely
approximate. “What you do is you take the single value of the error, square
it, swallow hard, because you are going to tell a lie, [and] you say that’s the
mean squared error,” Widrow told me. “It’s a pretty noisy version of the
average of the square of the error. And then, when you take the derivatives,
you can do it analytically, without differentiating. You don’t have to square
anything. You don’t have to average anything. You got an extremely noisy
gradient. You take a small step, another small step, another small step.”

And yet, the algorithm gets you close to the minimum of the function. It
came to be called the least mean squares (LMS) algorithm. In a video
Widrow uploaded in 2012, to explain the algorithm, he credited one of his
graduate students for naming the algorithm, but he doesn’t remember the



student’s name. He also said, “I hope that all this algebra didn’t create too
much mystery. It’s all quite simple once you get used to it. But unless you
see the algebra, you would never believe that these algorithms could
actually work. Funny thing is they do. The LMS algorithm is used in
adaptive filters. These are digital filters that are trainable…Every modem in
the world uses some form of the LMS algorithm. So, this is the most widely
used adaptive algorithm on the planet.”

Not only would the LMS algorithm find uses in signal processing, but it
would also become the first algorithm for training an artificial neuron that
used an approximation of the method of steepest descent. To put this into
context: Every deep neural network today—with millions, billions, possibly
trillions of weights—uses some form of gradient descent for training. It
would be a long road from the LMS algorithm to the modern algorithms
that power AI, but Widrow and Hoff had laid one of the first paving stones.

On that Friday afternoon in the autumn of 1959, however, all they had
were mathematically motivated scribbles on a blackboard. Widrow and
Hoff didn’t know that the algorithm would work. They needed to simulate it
on a computer; they were excited that they had uncovered something
extremely important. “Foolishly I was thinking: ‘We’ve discovered the
secret of life,’ ” Widrow told me.

Across the hall from his office was an analog computer, a gift to
Stanford from Lockheed. The door was open, and anyone could use the
computer. Programming it was akin to operating an old-fashioned telephone
switchboard: Take a wire out from a patch panel here, plug it in there, and
so on. In a half hour, Hoff had the algorithm running on the analog
machine. “He made it work,” Widrow said. “I don’t know how he knew
how to do it. He knew how to program that thing.”

Having verified that the algorithm worked, the two had as their next step
the building of a single adaptive neuron—an actual hardware neuron. But it
was late afternoon. The Stanford supply room was closed for the weekend.
“Well, we weren’t going to wait,” Widrow told me. The next morning, the
two of them walked over to Zack Electronics, in downtown Palo Alto, and
bought all the parts they needed. They then went over to Hoff’s apartment



and worked all of Saturday and most of Sunday morning. By Sunday
afternoon, they had it working. “Monday morning, I had it sitting on my
desk,” Widrow recalled. “I could invite people in and show them a machine
that learns. We called it ADALINE—‘adaptive linear neuron.’ It was…not
an adaptive filter, but an adaptive neuron that learned to be a good neuron.”

What ADALINE does, using the LMS algorithm, is to separate an input
space (say, the 16-dimensional space defined by 4×4, or 16, pixels) into two
regions. In one region are 16-dimensional vectors, or points that represent,
say, the letter “T.” In another region are vectors that represent the letter “J.”
Widrow and Hoff chose 4×4 pixels to represent letters, as this was big
enough to clearly show different letters, but small enough to work with,
given that they had to adjust the weights by hand (using knobs). Anything
larger, and they’d have spent most of their time twiddling those knobs.
Again, here are the letters “T” and “J” in 4×4-pixel space:

So, each letter is represented by 16 binary digits, each of which can be
either 0 or 1. If you were to imagine plotting these letters as points in a 16D
space, then “J” would be a point (vector) in one part of the coordinate
space, and “T” in another. The LMS algorithm helps ADALINE find the
weights that represent the linearly separating hyperplane—in this case, a
plane in fifteen dimensions—that divides the input space into two. It’s
exactly what Rosenblatt’s perceptron does, using a different algorithm.



While the perceptron convergence proof we saw in chapter 2 showed
clearly why the perceptron finds the linearly separating hyperplane, if one
exists, it wasn’t exactly clear why the rough-and-ready LMS algorithm
worked. Years later, Widrow was waiting for a flight in Newark, New
Jersey. He had a United Airlines ticket. “Those days, your ticket was in a
jacket. And there was some blank space on it. So, I sat down and started
doing some algebra and said, ‘Goddamn, this thing is an unbiased
estimate.’ ”

He was able to show that the LMS algorithm, if you took extremely
small steps, got you to the answer: the optimal value for the weights of
either the neuron or the adaptive filter. “By making the steps small, having a
lot of them, we are getting an averaging effect that takes you down to the
bottom of the bowl,” Widrow said.

Hoff finished his Ph.D. with Widrow and was doing his postdoctoral
studies when a small Silicon Valley start-up came calling. Widrow told him
to take the job. It was sound advice: The start-up was Intel. Hoff went on to
become one of the key people behind the development of the company’s
first general-purpose microprocessor, the Intel 4004.

Widrow continued using the LMS algorithm to build adaptive filters—
for noise cancelation and for antennas that adapt to remove noise and
interference. He worked on ADALINE (a single layer of adaptive neurons)
and MADALINE (for “Many ADALINE”), which had three layers: input,
hidden, and output. But it was hard to train MADALINE. Still, Widrow’s
work began making waves.

In a 1963 episode of Science in Action titled “Computers that Learn,”
produced by the California Academy of Sciences, the host and presenter,
Earl S. Herald, introduces a robotic assembly that seems to be balancing a
broom. “This may not seem very startling, because anyone can balance a
broom. But this is a machine that can learn to do this…This is the story of
MADALINE, the machine that in some respects thinks like a man [italics
mine].” The sexism of the time rears its head again when Herald, barely two
minutes into the episode, queries Widrow: “Let me ask you about the name
‘ADALINE.’ Why ‘ADALINE’? Why not a masculine name?” Widrow



replies, “Well, this happens to spell ‘Adaptive Linear Neuron.’ And that’s
it.”

The line connecting ADALINE to modern neural networks (which have
multiple layers and are trained using an algorithm called backpropagation)
is clear. “The LMS algorithm is the foundation of backprop. And backprop
is the foundation of AI,” Widrow told me. “In other words, if you trace it
back, this whole field of AI right now, [it] all starts with ADALINE.”

In terms of the backpropagation algorithm, this is a fair assessment. Of
course, Rosenblatt’s perceptron algorithm can make similar claims.
Together, Rosenblatt and Widrow laid some of the foundation stones for
modern-day deep neural networks. But these weren’t the only such efforts.
Other algorithms, also foundational, were being invented, and they’d rule
the roost in the decades during which neural network research floundered,
primarily because of Minsky and Papert’s unduly harsh assessment of its
limitations. And these non-neural network approaches were establishing the
governing principles for machines that learn based on, for example,
probability and statistics, our next waystation.
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In All Probability

robability deals with reasoning in the presence of uncertainty. And it’s
a fraught business for the best of us. There’s no better illustration of

how uncertainty messes with our minds than the Monty Hall dilemma. The
problem, named after the host of the American television show Let’s Make a
Deal, became a public obsession in 1990 when a reader of the Parade
magazine column “Ask Marilyn” posed the following question to columnist
Marilyn vos Savant:

“Suppose you are on a game show, and you’re given the choice of three
doors. Behind one is a car; behind the others, goats. You pick a door, say,
No. 1, and the host, who knows what’s behind the doors, opens another
door, say, No. 3, which has a goat. He then says to you, ‘Do you want to
pick No. 2?’ Is it to your advantage to switch your choice?” The person
playing the game has a quandary. Do they switch their choice from door
No. 1 to door No. 2? Is there any benefit to doing so, in that they will
increase their odds of choosing the door hiding the car? Before we look at
vos Savant’s answer, let’s try to tackle the problem ourselves. Here’s my
intuitive answer:

Before the host opens one of the doors, the probability that a car is
behind the door I’ve picked (Door No. 1) is one-third. But then the host
opens Door No. 3 and reveals that there’s a goat behind it. Now there are
two closed doors, and behind one of them is the car. I figure that the car is
equally likely to be behind one or the other door. There’s no reason to
switch my choice.

You may or may not have reasoned similarly. Kudos if you didn’t.



Here’s what vos Savant advised regarding whether you should switch
your choice: “Yes; you should switch. The first door has a one-third chance
of winning, but the second door has a two-thirds chance.” And she’s correct.

Americans were outraged—and not just folks untrained in the nuances
of probability theory. As mathematician Anthony Lo Bello writes in an
essay about this fracas, “Shortly thereafter, Savant received an avalanche of
harsh rebukes from PhD’s [sic] on the faculties of several American
universities, reproving her for giving, as they claimed, the wrong answer;
the instructors, three of whose names were published in the issue of 2
December 1990 [of Parade magazine], argued that once the host had
opened the losing third door, both the first and second doors then each had a
probability of 1/2 of winning.”

Vos Savant stood her ground and provided the critics with different
ways of arriving at her answer. One of her best intuitive arguments,
paraphrasing her, asks you to consider a different situation. Say there are a
million doors, and behind one of them is a car; all the others hide goats. You
choose Door No. 1. There’s a one-in-a-million chance you are correct. The
host then opens all the other doors you did not choose, except one. Now
there are two unopened doors, your choice and the one the host left closed.
Sure, the latter door could hide a goat. But of all the doors the host chose
not to open, why did he choose that one? “You’d switch to that door pretty
fast, wouldn’t you?” wrote vos Savant.

Mathematician Keith Devlin gave another take on it. Put a mental box
around your choice, Door No. 1, and another box around Doors No. 2 and 3
combined. The box around Door No. 1 has a one-third probability
associated with it, and the box around Doors No. 2 and 3 has a two-thirds
probability associated with it, in terms of containing the car. Now the host
opens one of the doors inside the bigger box to reveal a goat. The two-thirds
probability of the bigger box shifts to the unopened door. To switch is the
correct answer.

But here’s the thing. It’s impossible to rely on intuition to solve this
problem, because it’s just as easy to conceive of it slightly differently and
be convinced that you shouldn’t switch (as I was in my earlier analysis).



And if you didn’t switch, you’d be in august company, and I don’t mean
mine.

In his book Which Door Has the Cadillac?, the Hungarian
mathematician Andrew Vázsonyi writes about the inability of another
Hungarian mathematician, Paul Erdős—“arguably the most prolific
mathematician of the 20th century, in terms of both the number of problems
he solved and the number of problems he convinced others to tackle”—to
agree that switching doors is the better option. While Erdős was visiting
Vázsonyi in 1995, the two discussed the Monty Hall dilemma. When
Vázsonyi told Erdős that switching increased one’s odds of winning, Erdős
refused to accept the answer: “He reacted as if he had just been stung by a
bee. ‘No, that is impossible,’ he said. ‘It should make no difference if you
switch.’ ” Vázsonyi tried to convince him that probabilities are not static,
that they change as contexts change. Erdős wasn’t swayed. Eventually,
Vázsonyi used a computer program he had written to run one hundred
thousand simulations of the game and showed that the host won and you
lost two-thirds of the time if you didn’t switch, but the host lost and you
won two-thirds of the time if you did switch. “Erdős objected that he still
did not understand the reason why, but was reluctantly convinced that I was
right,” Vázsonyi wrote.

Encapsulated in this story about the Monty Hall dilemma is the tale of
an eternal dispute between two ways of thinking about probability:
frequentist and Bayesian. The former approach, which makes use of the
simulation, is what seemingly convinced Erdős. The frequentist notion of
the probability of occurrence of an event (say, a coin coming up heads) is
simply to divide the number of times the event occurs by the total number
of trials (the total number of coin flips). When the number of trials is small,
the probability of the event can be wildly off from its true value, but as the
number of trials becomes very large, we get the correct measure of the
probability. The following figure shows the results of ten thousand trials of
the Monty Hall dilemma. (Data scientist Paul van der Laken shows how to
plot the probabilities of winning if you switch and if you don’t switch. This
is one version.)



You can see clearly that when the number of trials is small, the
probabilities fluctuate. But they settle into the correct values as the trials go
beyond about four thousand: 0.67, or two-thirds, for switching, and 0.33, or
one-third, for not switching.

But simulations are not the only way of answering such questions.
Another approach is to rely on Bayes’s theorem, one of the cornerstones of
probability theory and, indeed, of machine learning.

TO BAYES OR NOT TO BAYES
There’s delicious irony in the uncertainty over Thomas Bayes’s year of
birth. It’s been said that he was “born in 1701 with probability 0.8.” The
date of his death, however, is firmly established: April 17, 1761, at Royal
Tunbridge Wells in England. Two years after his death, a close friend,
Richard Price, who was twenty-two years younger, presented a paper to the
Royal Society on Bayes’s behalf. Bayes and Price were kindred spirits:



intellectuals, dissenting ministers, and, of course, mathematicians. Price
wrote a letter, with an accompanying essay, dated November 10, 1763, to
his friend John Canton, and Canton read the correspondence to the Royal
Society on December 23: An Essay Towards Solving a Problem in the
Doctrine of Chances. Even though Price attributed the essay to Bayes,
scholars have estimated that Price made a substantial contribution to its
contents. Price submitted another paper on the topic to the Royal Society in
1764, this time as the sole author. Taken together, these submissions
cemented the status of Bayes as the man who gave us his eponymous
theorem, which birthed an entire way of thinking about probability and
statistics and has now become, almost 250 years later, a formidable force in
machine learning.

Bayes’s theorem gives us a way to draw conclusions, with mathematical
rigor, amid uncertainty.

It’s best to understand the theorem using a concrete example. Consider a
test for some disease that occurs in only about 1 in 1,000 people. Let’s say
that the test is 90 percent accurate, meaning that it comes back positive nine
out of ten times when the person has the disease and that it is negative nine
out of ten times when the person doesn’t have the disease. So, it gives false
negatives 10 percent of the time and false positives 10 percent of the time.
For the sake of simplicity, the rate of true positives (the sensitivity of the
test) and the rate of true negatives (the specificity) are taken to be the same
in this example; in reality, they can be different. Now you take the test, and
it’s positive. What’s the chance you have the disease? We assume that the
subject being tested—“you” in this case—has been picked at random from
the population.

Most of us would say 90 percent, because the test is accurate 9 out of 10
times. We’d be wrong. To calculate the actual probability that one has the
disease given a positive test, we need to take other factors into account. For
this, we can use Bayes’s theorem.

The theorem allows us to calculate the probability of a hypothesis H
(you have the disease) being true, given evidence E (the test is positive).

This is written as P(H|E): the probability of H given E.



Bayes’s theorem says:

Let’s unpack the various terms on the right-hand side of the equation.

P(H): The probability that someone picked at random from the
population has the disease. This is also called the prior probability
(before taking any evidence into account). In our case, we can assume it
is 1⁄1000, or 0.001, based on what’s been observed in the general
population thus far.

P(E|H): The probability of the evidence given the hypothesis or, to put it
simply, the probability of testing positive if you have the disease. We
know this. It’s the sensitivity of the test: 0.9.

P(E): The probability of testing positive. This is the sum of the
probabilities of two different ways someone can test positive given the
background rate of the disease in the population. The first is the prior
probability that one has the disease (0.001) multiplied by the probability
that one tests positive (0.9), which equals 0.0009. The second is the
prior probability that one doesn’t have the disease (0.999) times the
probability that one tests positive (0.1), which equals 0.0999.

So, P(E) = 0.0009 + 0.0999 = 0.1008
So, P(H|E) = 0.001 × 0.9 / 0.1008 = 0.0089, or a 0.89 percent chance.
That’s way lower than the 90 percent chance we intuited earlier. This

final number is called the posterior probability: It’s the prior probability
updated given the evidence. To get a sense of how the posterior probability
changes with alterations to the accuracy of the test, or with changes in the
background rate of the disease in the population, let’s look at some
numbers:



For a test accuracy rate of 99 percent—only 1 in 100 tests gives a false
positive or false negative—and a background rate of disease in the
population of 1 in 1,000, the probability that you have the disease given a
positive test rises to 0.09. That’s almost a 1-in-10 chance.

For a test accuracy rate of 99 percent (1 in 100 tests gives a false
positive or false negative), and a background rate of disease in the
population of 1 in 100 (the disease has become more common now), the
probability that you have the disease given a positive test rises to 0.5. That’s
a 50 percent chance.

Improve the test accuracy to 99.9 percent and keep the background rate
at 1 in 100, and we get a posterior probability of 0.91. There’s a very high
chance you have the disease if you tested positive.

With this whirlwind introduction to Bayes’s theorem, we are ready to
tackle the Monty Hall problem. (This is a bit involved. Feel free to skip to
the end of this section if you think it’s too much, though it’s quite revealing
to see how Bayes’s theorem gets us to Marilyn vos Savant’s answer.)

We start by assuming that the car is hidden at random behind one of the
three doors.

Let’s start by stating our hypothesis and our priors. We pick Door No. 1.
The host opens Door No. 3, behind which is a goat. We must figure out
whether it’s worth switching our guess from Door No. 1 to Door No. 2, to
maximize our chances of choosing the door that hides the car. To do this,
we must figure out the probabilities for two hypotheses and pick the higher
of the two.

The first hypothesis is: Car is behind Door No. 1, given that host has
opened Door No. 3 and revealed a goat. The second hypothesis is: Car is
behind Door No. 2, given that host has opened Door No. 3 and revealed a
goat. Consider the probability of the first hypothesis:

P (H=car is behind Door No. 1 | E=host has opened Door No. 3,
revealing a goat).

From Bayes’s theorem:



Where:
P (E|H): the probability that the host opens Door No. 3, given that the

car is behind Door No. 1. At the start of the game, you picked Door No. 1.
If the car is behind it, the host can see that and, hence, has a choice of two
doors to open, either No. 2 or No. 3, both of which hide goats. The
probability they’ll open one of them is simply 1/2.

P (H): the prior probability that the car is behind Door No. 1, before any
door is opened. It’s 1/3.

P (E): the probability that the host opens Door No. 3. This must be
carefully evaluated, given that the host knows that you have picked Door
No. 1 and they can see what’s behind each door. So,

P (host picks Door No. 3) = P1 + P2 + P3
P1 = P (car is behind Door No. 1) × P (host picks Door No. 3, given car

is behind Door No. 1) = P (C1) × P (H3|C1)
P2 = P (car is behind Door No. 2) × P (host picks Door No. 3, given car

is behind Door No. 2) = P (C2) × P(H3|C2)
P3 = P (car is behind Door No. 3) × P (host picks Door No. 3, given car

is behind Door No. 3) = P (C3) × P(H3|C3)
Take each part of the right-hand side of the equation:

P1: P (C1) × P (H3|C1).
P (C1) = P (car is behind Door No. 1) = 1/3.
P (H3|C1)—if the car is behind Door No. 1, then the probability
that the host opens Door No. 3 is 1/2. They could have picked
either Door No. 2 or Door No. 3.
So, P1 = 1/3 × 1/2 = 1/6.

P2: P (C2) x P (H3|C2).
P (C2) = P (car is behind Door No. 2) = 1/3.



P (H3|C2)—if the car is behind Door No. 2, then the probability
that the host opens Door No. 3 is 1, because they cannot pick
Door No. 2, otherwise it’ll reveal the car.
So, P2 = 1/3 × 1 = 1/3

P3: P (C3) × P (H3|C3).
P (C3) = P (car is behind Door No. 3) = 1/3.
P (H3|C3)—if the car is behind Door No. 3, then the probability
that the host opens Door No. 3 is 0, otherwise it’ll reveal the car.
So, P3 = 1/3 × 0 = 0

So, P (E) = P1 + P2 + P3 = 1/6 + 1/3 + 0 = 3/6 = 1/2
We can now calculate the probability that hypothesis 1 is true, given the

evidence:

The probability that the car is behind the door you have picked is 1/3.

Now let’s calculate the probability for the second hypothesis: The car is
behind Door No. 2 given that the host has opened Door No. 3, revealing a
goat. We can do a similar analysis.

P (E|H): Probability that the host opens Door No. 3, given that the car is
behind Door No. 2. The host cannot open Door No. 2. They have to open
Door No. 3, so the probability of this event is 1.

P (H): The prior probability that the car is behind Door No. 2, before
any door is opened. It’s 1/3.

P (E): As computed before, it’s ½.



Very clearly, the second hypothesis—that the car is behind Door No. 2,
given that the host has opened Door No. 3—has a higher probability
compared to the probability that the car is behind Door No. 1 (your original
choice). You should switch doors!

If all this feels counterintuitive and you still refuse to change your
choice of doors, it’s understandable. Probabilities aren’t necessarily
intuitive. But when machines incorporate such reasoning into the decisions
they make, our intuition doesn’t get in the way.

WHO GIVES A TOSS?
Most machine learning is inherently probabilistic, even if the algorithm is
not explicitly designed to be so. But that notion gets lost in the myriad
claims about the capabilities of modern artificial intelligence. Let’s take the
perceptron algorithm we encountered earlier. Given two sets of data that are
linearly separable, the algorithm will find a hyperplane that can divide the
data that exists in some coordinate space into two. As we’ll see in more
detail soon, the algorithm finds a hyperplane, not necessarily the best one
(for some definition of “best”). Then, given a new instance of data, the
algorithm checks to see whether the data point lands on one side of the
hyperplane or the other and classifies that data point accordingly. Sounds
pretty deterministic, doesn’t it? What’s probabilistic about the perceptron?

The prediction is probabilistic in the sense that there’s a finite chance
that the algorithm will make an error when classifying a new data point.
The classification depends entirely upon the hyperplane found by the
perceptron. An infinite number of hyperplanes can separate the original data
into two. So, one hyperplane might classify a new data point as belonging
to class A, while another might classify the same data point as belonging to
class B. It’s possible, mathematically, to derive the risk of error inherent in
a perceptron’s predictions. That’s what makes the prediction probabilistic,
even though the algorithm’s output is rather black and white (or -1 and 1).

This brings us to a valuable way of thinking about machine learning: in
terms of probabilities, distributions, and statistics. To get there, we need a



crash course in the basics behind these ideas.
We start with the notion of an experiment. An experiment can be

anything: the toss of one coin, or two consecutive tosses of a coin, or the
measurement of the temperature outside. All experiments have outcomes,
and depending on how you define an experiment, you get a different set of
outcomes. In each of these experiments, we can assign a number to that
outcome, and this number is known as a random variable. Let’s call it X
(you can call it anything). Here are examples of how X can take on
numerical values:

For one toss of a coin:

For two consecutive tosses of a coin:

For the measurement of temperature:

X = {a real-valued number between abs zero (-273 C) and ∞

Let’s toss our single coin, say, ten times. For each toss, the random
variable X can be either 0 or 1. We plot the value of X on the x-axis, against
the number of trials on the y-axis, to get a bar chart. For example,
something like this (6 heads and 4 tails):



Given the relatively small number of trials, the number of heads versus
the number of tails can vary a lot. We can plot the same data in terms of the
experimental probability of X being 0 or X being 1. The use of the adjective
“experimental” before the word “probability” signifies that it’s an empirical
result. Experimental, or empirical, probability is somewhat different from
theoretical probability.

The theoretical probability of getting heads on a single coin toss is
simply one-half, but the empirical probability depends upon the outcomes
of our actual experiments. I’m going to avoid the adjective “empirical” or
“theoretical” in the discussions that follow unless the type of probability
isn’t clear from the context.

For our experiment with 10 coin tosses, the probability of X = 0 is 0.6,
and the probability of X = 1 is 0.4. The total probability should add up to 1.



What we have just seen is the simplest example of a probability
distribution. It’s called a Bernoulli distribution, and it dictates the way the
values of a “discrete” random variable X are distributed. In this case, X can
take on only discrete values, 0 or 1. Formally, the Bernoulli probability
distribution is specified by the function P(X):

P(X) is also called the probability mass function, and it states that the
probability of the random variable X taking on the value 1 is p, and the
probability of X being 0 is (1-p). For a fair coin, one that is equally likely to
come up heads or tails, p equals 0.5.

This prepares us for the idea of sampling from an underlying
distribution. An underlying distribution is the ground truth for some random
variable—in this case, the outcome of the toss of a fair coin. Every toss of
the coin is a sample from the underlying distribution. Here’s an example of
what happens when we sample a 100,000 times. (Thanks to something



called the square root law, the counts of heads and tails will differ by a
value that’s on the order of the square root of the total number of trials; in
this case, it will be on the order of the square root of 100,000, or about
316.)

In machine learning, we start with data. The distribution of the data we
have in hand is representative of some underlying distribution of the data.
So, if all we had were the results of 100,000 coin tosses, then that
distribution of heads and tails would be our best insight into the underlying
distribution describing the toss of a fair coin. Just hold that thought in mind
while we take one more example of a discrete distribution.

Consider a weird digital display that, when you press a button, shows a
number between 0 and 6. Here, the random variable X is the number that is
displayed. So, X can be one of [0, 1, 2, 3, 4, 5, 6]. But the display is rigged.
The probabilities for the different values of X are not equal. Let’s say the
underlying distribution is given by:



These are the theoretical probabilities.
If we pushed the button 1,000 times, we would be sampling the

underlying distribution 1,000 times, and we might get this distribution of
the observed values of X and the corresponding empirical probabilities:

Given this distribution, there are some statistical parameters of interest.
One is something called the expected value. We encountered it while
discussing Bernard Widrow’s LMS algorithm and put off an explanation.
Well, you get the expected value of X by taking each value of X and
multiplying it by its probability and summing them all up. So, for our
experiment:



⇒ E(X) =

0 × P(0) + 1 × P(1) + 2 × P(2) + 3 × P(3) + 4 × P(4) + 5 × P(5) + 6 ×
P(6)

⇒ E(X) =

0 × 0.032 + 1 × 0.056 + 2 × 0.116 + 3 × 0.584 + 4 × 0.127 + 5 × 0.056 +
6 × 0.029

⇒ E(X) = 3

This is the value you’d expect to get for the random variable X over
some large-number trials. We know this by another name: the mean of the
distribution. If the probabilities of all the values of X were identical, then
the expected value, or mean of the distribution, would be the same as the
arithmetic average. (Sum up all the values and divide by the total number of
values.)

Now come two other extremely important statistical parameters: the
variance and the standard deviation. First, the variance:

Basically, take each value of X, subtract from it the expected value of X,
square it, multiply the result with the probability of that value of X, and sum
over all values of X. That’s the variance.

The standard deviation is defined as the square root of the variance. In
standard terminology:



Both the variance and the standard deviation are indicative of the
dispersion, or spread, of X about the mean.

We will change tack now. What if the random variable took on
continuous values, instead of discrete ones? There’s folklore that one of the
most common distributions in nature for continuous random variables is the
so-called normal distribution, with the familiar bell-shaped curve. I thought
so, too, until Philip Stark, a professor at the University of California,
Berkeley, and an expert on probability and statistics, disabused me of the
notion. “The joke is that theoreticians think it’s an empirical fact, and
experimentalists think it’s a theoretical fact,” he told me, while
acknowledging he couldn’t recall who first came up with the quip. “The
normal approximation works when it works. The problem is knowing when
it works.” Oh, well. It was a nice delusion while it lasted. Still, it’s well
worth taking a closer look at the normal distribution, given the outsize role
it plays in machine learning.

Consider a random variable that’s equal to a person’s average resting
body temperature, in Fahrenheit. We know that our body temperature varies
from day to day, from hour to hour; not by much, unless you are ill, but it
varies nonetheless. Yet, we all have an average resting body temperature,
which, it turns out, is slightly different for each one of us. Let’s plot the
average resting body temperature of a very large sample of individuals (see
figure, below).

The x-axis is the value of the random variable X, which equals the
average resting body temperature in degrees Fahrenheit (F). For now, let’s
take the y-axis as a measure of the empirical probability that X takes on
some value between 95 and 102. (There’s a more precise meaning for what
the y-axis stands for, but we’ll come to that.)



This idealized curve peaks at 98.25°F and is symmetric about it. This
value is the mean of the distribution, and the curve is called a “normal,” or
Gaussian, distribution.

Our curve has a standard deviation of 0.73, a parameter that has a very
specific meaning in the context of a normal distribution. If you draw two
vertical lines one standard deviation to the left of the mean (98.25 - 0.73)
and one standard deviation to the right of the mean (98.25 + 0.73), you get a
region under the curve that contains 68 percent of the observed values of X.
The region is shown in gray in the following image (see figure, below). And
almost all the observed values of X will lie within 3 standard deviations of
the mean.

Again, the variance is simply the square of the standard deviation. So,
the variance and standard deviation are telling you something about the
spread of values away from the mean. A larger standard deviation would
give you a broader, squatter plot. (If the mean is zero and the standard
deviation equals 1, we have what’s called a “standard” normal distribution.



Let’s revisit the y-axis in our plot of the continuous random variable.
While a discrete random variable is characterized by its probability mass
function (PMF), a continuous random variable is characterized by what’s
called the probability density function (PDF).

In the case of a discrete random variable, one can use a PMF to
determine the probability that X has a certain value. (In one of our
experiments above, the probability that X = 0, for heads, is 0.50279.) But
one cannot do something similar for a continuous random variable. When
the variable’s value is continuous, it means that you can keep getting more
and more precise about its exact value. Let’s say the thermometer recording
body temperature is arbitrarily precise. That implies the thermometer
reading can be one of an infinite number of possible values between 95 and
102. So, even though a normal distribution can be used to characterize the
random variable, the probability that it has some specific, infinitely precise
value is actually zero.

That’s why when dealing with probability density functions and
continuous random variables, one can speak in terms only of the probability
that the random variable will take on a value between two numbers (say,



between 98.25 and 98.5). Then, the probability that the random variable has
a value in that range is given by the area under the probability density
function, bounded by the end points of that range. Also, because the total
probability must add up to 1, the area under the entire PDF equals 1.

The key message so far, for our purposes, is this: Whether it’s a
probability mass function for a discrete random variable or a probability
density function for a continuous random variable, some well-known and
analytically well-understood functions, with characteristic parameters, can
be used to describe the probability distributions. For example, we just need
the probability p for the Bernoulli distribution. For the normal distribution,
we need the mean and variance; those two numbers give you the exact
shape of the bell curve. These parameters are a way to model some
underlying distribution.

With these barest of bare-minimum basics of probability and statistics in
hand, we can get back to thinking about machine learning as probabilistic
reasoning and statistical learning.

SIX OF ONE, HALF A DOZEN OF THE OTHER
Let’s start with the most common form of machine learning, one we have
already encountered, called supervised learning. We are given some labeled
data, X. Each instance of X is a d-dimensional vector, meaning it has d
components. So, X is a matrix, where each row of the matrix is one instance
of the data.

[x1, x2, x3, x4,…, xd]

Each instance of X could represent, say, a person. And the components
[x1, x2, x3,…, xd] could be values for the person’s height, weight, body
mass, cholesterol levels, blood pressure, and so on. Associated with each
instance of X is a label, y. Let’s say y is -1 if the person did not have a heart
attack in the five years following the date their physiological parameters



were measured, and 1 if they did. In supervised learning, some algorithm—
the perceptron, for example—is given the training data: a set of data points
representing n people (so X is an n x d matrix, n rows, d columns); each
row of X has a corresponding label y, equal to -1 or 1. All values of y taken
together form the vector y. The algorithm uses these data to learn something
about the underlying distribution of X and y.

Let’s say that P (X, y) is the underlying probability distribution, which
captures our knowledge about all humans as to their risk of having a heart
attack in the next five years, given a person’s current physiological state.
When we create a dataset of several individuals, assuming that these
individuals are randomly chosen, the dataset is akin to drawing from, or
sampling, this underlying distribution. The ML algorithm, given data about
a new unlabeled individual, must predict whether that person is at risk of a
heart attack in the next five years. Now, if you knew the underlying
distribution, you could very simply figure out the probability that the person
was at risk given x and the probability that the person was not at risk given
x (where x refers to the vector for a single person or an instance of X).

P (y = at-risk | x) and P (y = not-at-risk | x)

Then, one way to make a prediction would be to choose the category
that had the higher probability. Later in the chapter, we’ll come to just how
you can do this (it involves using Bayes’s theorem), but for now, all we
need to appreciate is that this is the best an ML algorithm can do, because it
has access to the underlying distribution. Such a classifier is called a Bayes
optimal classifier.

But in just about every case, it’s impossible to know the underlying
distribution. So, the task of probabilistic ML algorithms, one can say, comes
down to estimating the distribution from data. Some algorithms do it better
than others, and all make mistakes. So, when you hear claims that an AI is
making accurate predictions, remember that it’s well-nigh impossible to be
100 percent accurate. Whether an algorithm is implicitly (as in the case of



the perceptron) or explicitly probabilistic (we’ll see examples of these in a
bit), it can be wrong. And yet, this is not a knock against machine learning.
As humans, while we seem to think we make rational, error-free decisions,
we also make probabilistic decisions. It’s just that these probabilistic
goings-on happen under the hood, so to speak, and we are mostly unaware
of them.

Estimating underlying distributions is not trivial. For starters, it’s often
easier to make some simplifying assumptions about the shape of the
distribution. Is it a Bernoulli distribution? Is it a normal distribution? Keep
in mind that these idealized descriptions of distributions are just that:
idealized; they make the math easier, but there’s no guarantee that the
underlying distribution hews exactly to these mathematical forms. Also,
when we have data, we have access to rates. For example, how many times
a biased coin came up heads. We must turn rates into probabilities: The two
are not the same, and equating them can be problematic; as Stark told me,
“That’s a huge epistemic jump.” Nonetheless, it’s one we make with
caution.

Let’s say you do assume the type of underlying distribution. In each
case, the distribution is characterized by some parameters. We saw that a
Bernoulli distribution, for example, is characterized by the value p, which
then allows you to write down this probability mass function:

A normal distribution is characterized by the mean and standard
deviation. There are other types of distributions. Some have their own set of
parameters, denoted by the Greek letter θ (theta). (Let’s ignore for now so-
called nonparametric distributions, which are not specified with some set of
parameters.) The underlying distribution is then written as:

Pθ(X, y)



Or we can refer to both X and y with a single letter “D” (for “data”), and
write the distribution in this way:

Pθ(D) or, P(D; θ)

All this is leading up to a broad statement about ML algorithms. We can
focus on two important approaches. (There are others, but these two get us
to the heart of some interesting issues.)

In the first method, given data, the ML algorithm figures out the best
θ, for some choice of distribution type (Bernoulli or Gaussian or
something else), which maximizes the likelihood of seeing the data,
D. In other words, you are estimating the best underlying distribution,
with parameter θ, such that if you were to sample from that
distribution, you would maximize the likelihood of observing the
labeled data you already had in hand. Not surprisingly, this method is
called maximum likelihood estimation (MLE). It maximizes P (D | θ),
the probability of observing D given θ, and is loosely associated with
frequentist methodology.

As a concrete example, let’s take two populations of people, one tall and
the other short. We have a few hundred samples of the heights of people
from each group. Our job is to estimate the underlying distribution P (D) by
maximizing P (D | θ). Let’s say that each set of heights (short and tall) is
modeled as a Gaussian distribution, with its own mean and variance, and
the overall distribution will be a combination of these two Gaussians. MLE
makes no assumptions about which Gaussians are more likely than others,
meaning that all values for the parameters are equally likely. Given this
assumption, or lack of one, MLE maximizes P (D | θ), where θ here refers
to the mean and variance. Again, by treating all values of θ as equally
likely, MLE gives us the θ that maximizes the likelihood of observing the
data we collected.



In the second method, given the sampled data, the ML algorithm
maximizes P (θ | D), i.e., it finds the most likely θ, given the data.
Hidden in that statement is something that causes frequentists to tear
their hair out, as Kilian Weinberger, professor of computer science at
Cornell University, eloquently told his students in one of his ML
lectures. The idea that you are going to find the most likely θ implies
that θ itself follows a distribution, meaning it is being treated as a
random variable. This second method now makes assumptions about
which θ is most likely, without having seen the data. This is the prior
probability distribution. Bayesian statisticians argue that it’s entirely
reasonable to have a prior belief for the value of θ.

The argument will become clearer if we revisit our tall-short dataset.
Surely, not all Gaussian distributions are equally likely. We can, based on
our knowledge about the world, make a fair assumption that the Gaussian
for short people has a mean of, say, five feet, while the Gaussian for tall
people has a mean of six feet or something along those lines. (You get the
picture.) And we can make similar assumptions about their variances.

With this prior distribution in hand and the sampled data, one can
estimate the posterior distribution, which is the most likely θ, given the
data. This second method is called MAP, for “maximum a posteriori”
estimation. It’s a Bayesian approach, though not the only one.

In both MLE and MAP, the actual math can get sophisticated, but
conceptually, it involves these basic steps:

Write down the function that needs to be maximized, while
incorporating any necessary assumptions.

Take the derivative of the function. In the case of MLE, the derivative
is taken with respect to x, the data; in the case of MAP, the derivative
is taken with respect to θ. Now set the derivative to zero. (This is the
place where the function has no slope; it’s at a maximum. Of course,



the derivative can be zero at a minimum, too, and there are ways to
check.) Now solve the equation(s) you get by setting the derivative to
zero.

Sometimes—in fact, most times—there’s no closed-form solution to
the problem. In this case, instead of trying to find the maximum, you
take the negative of the function and try to find the minimum. We
already know how to find the minimum, at least for convex functions:
You do gradient descent. That’ll give you the relevant results.

MLE is powerful when you have a lot of sampled data, while MAP
works best with fewer data. And as the amount of sampled data grows,
MAP and MLE begin converging in their estimate of the underlying
distribution.

Most of us are intuitively frequentists. But the Bayesian approach to
statistics is extremely powerful. (Note: Bayesian statistics is not the same as
Bayes’s theorem. Even frequentists value Bayes’s theorem. They just object
to this whole idea of having prior beliefs about the parameters of a
distribution when trying to discern the properties of that very distribution
from data.)

One of the first large-scale demonstrations of using Bayesian reasoning
for machine learning was due to two statisticians, Frederick Mosteller and
David Wallace, who used the technique to figure out something that had
been bothering historians for centuries: the authorship of the disputed
Federalist Papers.

WHO WROTE THEM PAPERS?
Months after the U.S. Constitution was drafted in Philadelphia in the
summer of 1787, a series of essays, published anonymously under the pen
name “Publius,” began appearing in newspapers in New York State.
Seventy-seven such essays were published, written to convince New
Yorkers to ratify the Constitution. These essays, plus eight more, for a total
of eighty-five, were then published in a two-volume set titled The



Federalist: A Collection of Essays, Written in Favour of the New
Constitution, as Agreed upon by the Federal Convention, September 17,
1787. Eventually, it became known that the essays had been written by
Alexander Hamilton, John Jay, and James Madison, three of the “founding
fathers” of the United States. About two decades later, and after Hamilton
had died (following a fatal duel between him and Aaron Burr, the then-U.S.
vice president), the essays began to be assigned to individual authors. For
seventy of the papers, the writers were known. But of the remaining papers,
twelve were thought to have been written by either Hamilton or Madison,
and three were thought to have been co-authored.

You’d think that Madison, who was still alive, would have clearly
identified the authors of each paper. But as Frederick Mosteller writes in
The Pleasures of Statistics, “the primary reason the dispute existed is that
Madison and Hamilton did not hurry to enter their claims. Within a few
years after writing the essays, they had become bitter political enemies and
each occasionally took positions opposing some of his own Federalist
writings.” They behaved like lawyers writing briefs for clients, Mosteller
writes: “They did not need to believe or endorse every argument they put
forward favoring the new Constitution.” Consequently, the authorship of
these fifteen documents remained unresolved.

In 1941, Mosteller and a political scientist named Frederick Williams
decided to tackle the problem. They looked at the lengths of sentences used
by Madison and Hamilton in the papers whose authorship was not in
dispute. The idea was to identify each author’s unique “signatures”—maybe
one author used longer sentences than the other—and then use those
signatures to check the sentence lengths of the disputed papers and, hence,
their authorship. But the effort led nowhere. “When we assembled the
results for the known papers the average lengths for Hamilton and Madison
were 34.55 and 34.59, respectively—a complete disaster because these
averages are practically identical and so could not distinguish authors.”

Mosteller and Williams also calculated the standard deviation (SD),
which provided a measure of the spread of the sentence lengths. Again, the
numbers were very close. The SD for Hamilton was 19, and 20 for



Madison. If you were to draw the normal distribution of sentence lengths
for each author, the two curves would overlap substantially, providing little
discriminatory power. This work became a teaching moment. Mosteller,
while lecturing at Harvard, used this analysis of The Federalist Papers to
educate his students on the difficulties of applying statistical methods.

By the mid-1950s, Mosteller and statistician David Wallace, who was at
the University of Chicago, began wondering about using Bayesian methods
for making inferences. At the time, there were no examples of applying
Bayesian analysis to large, practical problems.

It was about then that Mosteller received a letter from the historian
Douglass Adair, who had become aware of the courses being taught by
Mosteller at Harvard. Adair wanted Mosteller to revisit the issue of the
authorship of The Federalist Papers. “[Adair]…was stimulated to write
suggesting that I (or more generally, statisticians) should get back to this
problem. He pointed out that words might be the key, because he had
noticed that Hamilton nearly always used the form ‘while’ and Madison the
form ‘whilst.’ The only trouble was that many papers contained neither of
them,” Mosteller writes. “We were spurred to action.” There was no
deadline. “True, Adair was in a hurry to know, but history is good at
waiting.”

One of their ideas that bore fruit was to look at so-called function words,
words that have a function rather than a meaning—prepositions,
conjunctions, and articles. First, they had to count the occurrence of such
words in documents written by Hamilton and Madison. It was a laborious
process. With the help of others, the duo began typing each word from each
article, one word per line, on a long paper tape. Then they began the even
more laborious task of cutting the paper tape into slips, such that each slip
had just one word on it, and then arranging the slips in alphabetical order.
“That was in 1959–60; it all seems primitive, even laughable now,”
Mosteller writes. “When the counting was going on, if someone opened a
door, slips of paper would fly about the room.”

Eventually they figured out how to use a computer to count and
alphabetize the words. But the computer came with its own idiosyncrasies.



“The program did this beautifully up to some indeterminate point around
3000 words, and then it would go crazy, destroying everything it had done
so far,” Mosteller writes, adding that “1500 words of The Federalist was as
much as anyone (even a computer) could stand, however important these
political writings may be.” And so it went, a few thousand words at a time,
until they had the counts for certain function words that appeared in a large
number of articles written by Hamilton and Madison.

Now it was time to figure out the authorship of one of the disputed
papers. They used Bayesian analysis to calculate the probability of two
hypotheses: (1) the author is Madison, and (2) the author is Hamilton. If
hypothesis 1 has a greater probability, the author is more likely to be
Madison. Otherwise, it’s Hamilton. Take one function word, say, “upon,”
and calculate the probability of hypothesis 1 given the word and hypothesis
2 given the word, and ascribe authorship appropriately. Of course, using
multiple words at once makes the analysis sharper.

The key insight here is that given a bunch of known documents by
Madison, the usage of some word, such as “upon,” follows a distribution.
Madison used the word more in some documents, less so in others. The
same can be said of Hamilton. As we saw in the issue with sentence length,
if these distributions are alike, they cannot be used to tell the authors apart.
But if they are different, they possess the power to discriminate. Mosteller
makes this point eloquently: “The more widely the distributions of rates [of
words] of the two authors are separated, the stronger the discriminating
power of the word. Here, [the word] by discriminates better than [the word]
to, which in turn is better than [the word] from.”

Mosteller and Wallace then turned such evidence from word rates into
an appropriate model to do statistical inference. They tried various models;
each model implied certain assumptions about the underlying probability
distribution that made the math tractable. The results were unanimous. “By
whatever methods are used, the results are the same: overwhelming
evidence for Madison’s authorship of the disputed papers. Our data
independently supplement the evidence of the historians. Madison is
extremely likely, in the sense of degree of belief, to have written the



disputed Federalist papers, with the possible exception of paper number 55,
and there our evidence yields odds of 80 to 1 for Madison—strong, but not
overwhelming.”

Patrick Juola, professor of computer science at Duquesne University in
Pittsburgh, Pennsylvania, and a modern-day expert in stylometry (the use of
the statistics of variations in writing style to determine authorship), said that
Mosteller and Wallace’s work was a seminal moment for statisticians. “It
was very influential in statistical theory. And they were justifiably lauded,”
Juola told me. “Historians had been looking at the problem for a hundred
years. And the historians had mostly come to the same decisions that
Mosteller and Wallace did. And what made [their] study so groundbreaking
was [that] for the first time, this was done in a completely objective,
algorithmic fashion, which is to say it was machine learning [italics mine].”

A WADDLE OF PENGUINS
To get further insights into the probabilistic nature of machine learning, let’s
head to the Palmer Archipelago, Antarctica. There, a team led by marine
biologist Kristen Gorman painstakingly collected data on 334 penguins
from three islands. Yes, penguins. Three species of penguins: Adélie,
Gentoo, and Chinstrap. Each penguin is characterized by its species name,
the island where it lives, its bill length (in millimeters), its bill depth (mm),
its flipper length (mm), its body mass (grams), its sex (male or female), and
the year it was studied, data that were made freely available by Gorman and
her colleagues Allison Horst and Alison Hill.

For our purposes, let’s disregard the information about the island of
origin and the year the penguin was studied. Sans those data, each penguin
has these five attributes: bill length, bill depth, flipper length, body mass,
and sex. These attributes can be thought of as the components of a vector
[x1, x2, x3, x4, x5], where x1 = bill length, x2 = bill depth, and so on.

So, each penguin is characterized by a vector x = [x1, x2, x3, x4, x5].
And each penguin has a label y = Adélie (0), Gentoo (1), or Chinstrap (2). A



penguin, then, is a point in 5D space, and that point can be classified as
belonging to one of three species.

The task for an ML algorithm is to learn the correlation among the
attributes of a penguin and the species to which those attributes belong.
Basically, the algorithm needs to learn a function that maps x to y.

f(x) = y

Then, given a new x, it can spit out the predicted value for y (0, 1, or 2).
Or, we can say that the ML algorithm must estimate the underlying
distribution P (X, y). And then, given some new data x, it can calculate P (y
= Adélie | x) and P (y = Gentoo | x) and P (y = Chinstrap | x). The largest of
the three conditional probabilities gives us the most likely species, given the
new, unknown penguin’s attributes.

For a moment, let’s take just two species. If the 5D data are linearly
separable—meaning one can draw a 4D hyperplane that cleanly separates,
say, the data representing Adélie penguins from those of the Chinstrap
penguins in 5D coordinate space—then we can use a perceptron algorithm
to find that hyperplane. Then, given data about a new, as-yet-unclassified
penguin, the perceptron can tell us whether the penguin falls on one side of
the hyperplane or the other and classify it accordingly. But we know by
now that the perceptron algorithm finds one of the infinitely many possible
hyperplanes. The perceptron’s ability to classify new data can be error-
prone. An Adélie could get classified as a Chinstrap, and vice versa.

But there’s a bigger problem staring at us: the assumption of linearly
separable data. For starters, even if the data representing a few hundred
penguins were linearly separable, there’s no guarantee the distinction would
hold if you kept collecting more and more data. But even with a small
sampling of penguins, as is the case here, it’s clear that the assumption is
suspect. We can see it for ourselves.

It’s hard to visualize data in anything more than two dimensions, so let’s
look at the data in different ways using only two features—say, bill length



and depth—to get a sense of the problem. First, here’s a plot of two species
of penguins, Adélie and Gentoo, characterized by those two attributes. In
these two dimensions, the two species show a separation, but only just
about. One Gentoo penguin has attribute values that are very much like
those of the Adélie penguins; if it weren’t for the one outlier, the separation
would be cleaner.

To mix things up, let’s plot all three species on the same graph, for the
same two attributes (see figure opposite).

The picture is much more muddled now. If we had to build an ML
model that could cleanly separate the three species of penguins from one
another, it’s not going to be clear-cut. Even with this limited sampling of the
penguins, the data overlap, particularly when we compare the Adélie and
Chinstrap penguins or the Chinstrap and Gentoo penguins.



So, any classifier we build that learns the function f(x) to map the
features of a penguin to its species will always make some mistakes. Or,
looking at it another way, if the classifier is given new data about a penguin,
and the classifier predicts that the penguin is, say, an Adélie, then that
prediction will have a certain probability of being wrong. Our task is to
build a classifier that minimizes the likelihood of a mistake.

This is where an entire field of machine learning, called Bayesian
decision theory, comes in. It establishes the bounds for the best we can do
given the data at hand. But first, to make things even easier to visualize and
grasp, let’s whittle the data down to just one attribute.

Consider the following histogram showing the numbers of Adélie
penguins plotted against their bill depth (see below).

There are ten bins for the value of bill depth, and in each bin, there are
some Adélie penguins whose bill depths belong in that bin. The plot gives
you a rough sense of the distribution of bill depths of Adélie penguins.



In nature, the distribution would likely be continuous. The chart that
follows shows a normal bell-shaped distribution with a mean and standard
deviation fitted to the data we have. (Notice that the y-axis now reads
“probability density,” rather than “number of penguins”—it’s giving us a
way to get at the probability that the bill depth has some value in Adélie
penguins.)



Let’s imagine for a moment that the smooth curve above is the actual,
underlying distribution of bill depths of Adélie penguins. If we had access
to that curve, it would allow us to calculate the probability that the bill
depth has some value, given the penguin is an Adélie. (I’m being a bit
imprecise here, in talking about the probability of an Adélie penguin having
a specific bill depth; we know from our earlier analysis that when the
distribution is continuous, we can talk of the probability only for some
range of bill depths.) So, we calculate something called a class-conditional
probability, meaning, a probability conditioned on the fact that the penguin
belongs to a particular class, in this case Adélie.

So, the distribution gives us P (x | y = Adélie). Ideally, the P needs a
subscript, indicating that it’s the probability for bill depth, but it’s clear
from the context, so I’m going to eschew the subscript.

We could do the same for Gentoo penguins. Here’s a plot of the sampled
data:



We can fit a normal distribution to the data:



Again, assuming the curve is nature’s real, underlying distribution of bill
depths of Gentoo penguins, and assuming we have access to that
distribution, then we can calculate, for some x:

P (x | y = Gentoo)

Here are the two curves in the same plot, side by side:



It’s clear that Gentoo penguins have a smaller mean bill depth and that
the bill depths are somewhat more tightly clustered around the mean than
they are for Adélie penguins, which have a larger mean bill depth. From the
perspective of making predictions, if we had access to these supposed
underlying natural distributions, and we were then given the bill depth for
an unidentified penguin—all we were told is that it’s either a Gentoo or an
Adélie—then we could calculate two probabilities:

P (y = Gentoo | x), which is the probability that the penguin is a Gentoo,
given a value for the bill depth; and

P (y = Adélie | x), the probability that the penguin is an Adélie, given the
bill depth.

If the former is greater, then we predict that the penguin is a Gentoo; if
the latter value is larger, then we predict that it’s an Adélie. But how do we
calculate the two probabilities? This is where Bayes’s theorem comes in.



Recall that, in terms of a hypothesis (H) and evidence (E):

We have two hypotheses: (1) The penguin is a Gentoo, and (2) the
penguin is an Adélie. The evidence we have is some bill depth.

So, we must calculate the probabilities of each of our two hypotheses:

Let’s tackle the first hypothesis and see how we can arrive at the
probability for it. It involves calculating the values for each term on the
right-hand side of the equation.

P (y = Gentoo): This is simply the “prior” probability that the penguin is
a Gentoo. We can estimate this from the data at hand. In our sample of
penguins, there were 119 Gentoo penguins and 146 Adélie penguins. So, an
estimate of the prior probability that a penguin is a Gentoo is simply 119 /
(119+146) = 0.45.

P (x | y = Gentoo): We can read off this value from the distribution
depicted above. Find the bill depth on the x-axis and figure out the
probability on the y-axis on the “Gentoo” part of the plot.

P(x): This is the probability that the bill has some particular depth. In
much the same way that we calculated the probability that someone could
test positive when administered a test for a disease (where we had to
account for both true positives and false negatives), we can also take into
account that we are dealing with two types of penguins. So:

P(x) = P (x | Adélie) × P (Adélie) + P (x | Gentoo) × P (Gentoo)



We can read off P (x | Adélie) from our distribution. P (Adélie) is the
prior probability that a penguin is an Adélie. We know how to calculate this.
The same goes for Gentoo penguins. Also, note that P(x) is the same for
both hypotheses and is therefore often ignored in the calculations,
especially in situations where it can be tricky or even impossible to
determine.

Using these data, we can calculate P (y = Gentoo | x): the “posterior”
probability that the penguin is a Gentoo, given some bill depth x.

We can do the same analysis for Adélie penguins and get the posterior
probability that the penguin is an Adélie, given the same bill depth x. Then,
we predict that the penguin is an Adélie or a Gentoo based on whichever
posterior probability is higher.

This simple classifier that we just analyzed, with only one feature of
penguins (bill depth) and two types of penguins, is called the Bayes optimal
classifier. It’s the best any ML algorithm can ever do. And in our analysis,
the result was contingent upon knowing or estimating the underlying
distribution of data.

But even the Bayes optimal classifier makes errors. Let’s say you are
handed data about an unclassified penguin, and it has a bill depth of about
16 mm. Our calculations might come up with, for example, a probability of
0.8 that the penguin is a Gentoo and 0.2 that it’s an Adélie. So, using our
algorithm, we predict that the penguin is a Gentoo, but there’s a 20 percent
chance we are wrong. It can be shown mathematically that this error cannot
be improved upon by any other technique, so it sets a lower bound for the
prediction risk.

If all this seems too easy, or trivial, let’s start pouring cold water. For
starters, we assumed that we had access to or could estimate the underlying
natural distributions. Of course, we almost never have access to the true
underlying distribution—which is why we do machine learning in the first
place. As we saw earlier, ML algorithms are basically trying to get at the
best possible approximation of the underlying distribution from a sampling
of data. There are any number of ways of doing this, including two we saw



earlier: maximum likelihood estimation (MLE) and maximum a posteriori
(MAP) estimation.

Also, it just so happens that in the case we analyzed, bill depth can help
distinguish Adélie penguins from Gentoo penguins without huge errors
being made. But that’s not the case if one compares Adélie and Chinstrap
penguins. Here’s a plot of the two penguin species, overlaid. They are
indistinguishable when evaluated using only bill depth. Even the Bayes
optimal classifier will get things wrong a lot of the time.

This is where extra features come in. If we were to add bill length to the
mix, and plot the two types of penguins on the xy plane, here’s what we’d
get:



There’s some overlap between the circles (Adélie) and triangles
(Chinstrap), but the two are mostly distinct groups. We can again build a
Bayes optimal classifier if we can estimate the underlying distributions.
Getting to these distributions is going to take some mental calisthenics. Just
as we fit a bell-shaped curve to represent the probability density function
for bill depth, we can fit a bell-shaped surface to represent the PDF for bill
length and depth taken together.



For example, above is such a 3D plot. The 2D surface at the bottom
shows the “heat map” of the distribution of points: The whiter regions
closer to the center will have more points, and the points will get scarcer as
you move outward, toward darker regions. The 3D surface is the probability
density function.

Now imagine such surfaces for our plot of bill length and depth for the
two types of penguins. There would be two, one centered over the circles
and another over the triangles. The precise shapes of these surfaces would
be slightly different. Even by simply eyeballing the 2D scatter plot, you can
imagine that the surface over the Adélie penguins would be more rounded
and spread out, whereas the one over the Chinstrap penguins would be
narrower and more ellipsoidal. Those two surfaces would overlap, just like
the two curves did when we were interested only in bill depth.

If we could estimate those underlying distributions, we’d be able to
classify a new penguin (given its bill length and depth) as either an Adélie
or a Chinstrap. And in much the same way, the classification would be
error-prone, but it’s the best we can do.

All this must still seem straightforward (and some of the ease might
have to do with the disarming penguins and their tractable characteristics).
But let’s start thinking about why this method, the Bayes optimal classifier,
gets computationally impossible very quickly.



At the heart of this approach is the ability to estimate probability
distributions given a set of features. For one feature, bill depth, we had to
estimate the shape of a 2D function. Maybe a set of one hundred or so
penguins of a certain class would be enough to get a good sense of the
underlying function. We then bumped up the set of features to two (bill
length and depth) and had to estimate the shape of a 3D surface. The same
sample size, one hundred penguins per class, may still be adequate to get at
that 3D surface. But the sample size becomes an issue as we add more
features.

In real-life ML problems, the features can number in the tens, hundreds,
thousands, or even more. This is where the scope of the problem becomes
terrifying. Estimating the shape of the probability distribution with
reasonable accuracy in higher and higher dimensions is going to require
more and more data. A few hundred samples are not going to cut it. And the
more data you add, the more compute-intensive estimating the distribution
gets, if it’s possible at all.

So, some simplifications are in order.

IT PAYS TO BE NAÏVE
Let’s restate our problem. If we have, say, five features that are being used
to describe a penguin (bill depth, bill length, flipper length, body mass, and
sex), then we see that each penguin is essentially a vector (a point) in 5D
space. The feature vector x is:

[x1, x2, x3, x4, x5]

If we are given these attributes for some as-yet-unidentified penguin,
then our job is to figure out:

P (y = Adélie | x): the probability the penguin is an Adélie, given the
evidence, or feature vector, x;



P (y = Gentoo | x): the probability the penguin is a Gentoo, given x;
and

P (y = Chinstrap | x): the probability the penguin is a Chinstrap, given
x.

Take any one of these computations:

P (y = Adélie | x) = P (y = Adélie | x1, x2, x3, x4, x5)

Computing this will require first estimating the class condition
probability density function P (x | y = Adélie):

P (x | y = Adélie) = P (x1, x2, x3, x4, x5 | y = Adélie)

This is a complicated surface in six dimensions, which depends on all
five features. We have already established that reconstructing or estimating
this is near impossible with limited samples of data and constrained
computational resources.

Here’s a trick that statisticians and probability theorists use to make the
problem more tractable. They assume that all features are sampled from
their own distributions independently of one another. So, the values for bill
depth in Adéline penguins are values sampled independently from an
underlying distribution for bill depth alone, and the values for bill length are
values sampled independently from an underlying distribution for bill
length alone. This implies that the variation in, say, bill depth has nothing to
do with variation in bill length. This is, of course, never really going to be
true in nature. But it’s an assumption that works wonders when it comes to
making the mathematics easier. Given this assumption of mutually
independent features, we can use Bayes’s theorem to get at what we desire:



The function that we need to estimate or know a priori and one that
causes problems in higher dimensions is:

P(x | y = Adélie) = P(x1, x2, x3, x4, x5 | y = Adélie)

The mutual independence assumption makes the task simpler. Given
that assumption (and using A for Adélie):

P(x1, x2, x3, x4, x5 | y = A)

= P(x1 | y = A) × P(x2 | y = A) × P(x3 | y = A) × P(x4 | y = A) × P(x5 | y = A)

The problem has been broken down into many sub-problems, each
involving the estimation of a probability distribution for just one feature, or
random variable. This can be done with fewer samples and is
computationally far less intensive. Using more compact mathematical
symbols, we have:

P(x|y = A)

The “pi” symbol signifies multiplication; it’s multiplication’s equivalent
of the “sigma” symbol for addition. With this simplification in hand, we can
compute the various class-conditional probabilities (the penguin is an
Adélie given the 5D evidence, x; the penguin is a Gentoo given x; and a
Chinstrap given x), and then basically predict the type of penguin based on
the highest conditional probability. Such a classifier, with the assumption of
mutually independent features, is called a naïve Bayes or, somewhat
pejoratively, an idiot Bayes classifier. But it’s a powerful technique that



works well in many situations. For example, such a classifier does well in
predicting whether an email is spam.

By now, you may be wondering, even worried about, how exactly we
estimate the probability distributions, even if the features are taken to be
mutually independent. Well, we have already seen an example of this, when
we fit a curve over the histogram of bill depths for a given penguin type.
Let’s revisit it:

We assume that the underlying distribution is a Gaussian, or normal,
distribution, and we basically use the sampled Gentoo penguin data (of their
bill depths) to find a curve with a mean and standard deviation—these
constitute the parameter θ of the distribution—that best fits the data. Once
we have θ, we have an estimate of the underlying distribution, and we don’t
need any more data. In this case, we have modeled our random variable as
continuous. We do this for each feature and use each probability density
function for the calculations.

Or we can also simply model each feature as a discrete random variable.
In the figure below, there are ten bins. Each bin has penguins with bill



depths that fall within a certain range.
For example, there are 19 Gentoo penguins in the fourth bin, out of a

total of 119. So, the probability that the bill depth falls in the fourth bin is
19/119 = 0.16. Similarly, the probability that the bill depth falls in the
eighth bin is 11/119 = 0.09. And so on…

Calculating such probabilities for the discrete random variable, we saw
earlier, gives us the probability mass function. We can use these
probabilities to make our predictions. It’s obvious that the more samples we
have, the better the histogram will be in representing the true underlying
distribution and, thus, will make the predictions more accurate.

WRAP-UP
It’s understandable if this foray into probability and statistics felt a bit
overwhelming, especially if you came to it—as I once did—with little prior
knowledge of the subject. We have tried to grapple with two massive fields
of mathematics, all in the space of a chapter, and connect them to machine



learning. I’d be surprised if it didn’t feel a touch too much. Even if
everything else becomes a blur, we can take away from this chapter a few
succinct conceptual messages.

In supervised machine learning, all data is drawn (or sampled) from an
underlying distribution. D is our data. One part of D is a matrix of feature
vectors, X. Each row represents one instance of the data (say, features for
one penguin, x). The data D also has a corresponding label for each row of
X (say, the species of penguin). These labels form a column vector y. The
data D is said to be sampled from the underlying distribution P (X, y). So:

D ~ P(X, y)

The true nature of the overall underlying distribution is almost always
hidden from us. The task of many ML algorithms is to estimate this
distribution, implicitly or explicitly, as well as possible and then use that to
make predictions about new data.

Let’s say the estimated distribution is given by:

Pθ(X, y)

The symbol θ represents the parameters of the distribution. The
parameters mean different things for different types of distributions. For
example: A Bernoulli distribution requires figuring out one parameter “p”; a
normal distribution requires figuring out the mean and standard deviation.
(I’m ignoring a whole class of distributions that don’t have parameters and,
hence, are called nonparametric.) The process starts with making an
assumption about the type of underlying distribution—is it, for example, a
Bernoulli or a normal distribution or something else?—and then figuring
the best θ.

Estimating θ can be done, broadly speaking, in one of two ways. (There
are other methods, but these two give us a great sense of how things are
done in machine learning.) The first is called maximum likelihood



estimation (MLE), which, given the data, tries to find the θ that maximizes
the likelihood of the data. What that means is that Pθ(X, y) will give us
different probability distributions for different θ, and the algorithm finds the
θ that maximizes the probability of observing the data we have in hand.

The second method of estimating the probability distribution is called
maximum a posteriori (MAP) estimation. This assumes that θ is itself a
random variable, which means that you can specify a probability
distribution for it. (As we saw earlier, it’s a Bayesian claim that makes
frequentists livid.) So, MAP starts with an initial assumption about how θ is
distributed. This is also called the prior. For example, if you are modeling a
coin toss, you can assume a priori that the coin is fair; or you can assume
that it’s biased. Then, given the data and the prior, MAP finds the posterior
probability distribution Pθ(X, y), such that if you were to sample several
instances of data from this distribution, the probability that the sampled data
matched the original data would be maximized.

If we can somehow learn or estimate the entire joint probability
distribution Pθ(X, y), which is some complex surface in a hyperdimensional
space, we will have a model of all the data, the feature vectors, and the
labels. This enables us to do something very powerful: generate new data
that resemble the training data by sampling from the distribution, giving us
what has come to be called generative AI.

ML algorithms can also use the model to make predictions about new,
unlabeled data. The naïve Bayes (or idiot Bayes) classifier is an example: It
first learns the joint probability distribution, albeit with some simplifying
assumptions, and then uses Bayes’s theorem to discriminate between
different classes of data.

There are algorithms that eschew learning the complex joint probability
distribution; instead, they focus on the conditional probabilities of the data
belonging to one class or the other. This approach allows one to do
something called discriminative learning. An algorithm can do
discriminative learning by calculating the probability distribution Pθ(y|x).
This means that given a new feature vector x and some optimal θ, we now



can calculate the probability of the most likely class for x: The class that has
the higher conditional probability gets the nod, as the prediction of our ML
algorithm.

Any algorithm that figures out how to separate one cluster of data points
from another by identifying a boundary between them is doing
discriminative learning. It doesn’t have to deal specifically in probability
distributions. For example, maybe it finds a linear hyperplane à la the
perceptron, or finds a curved nonlinear surface or boundary, an example of
which we’ll see in the next chapter. An example of this latter algorithm—
whose roots probably lie in intuitions harbored by the first humans—got its
start at Stanford in the 1960s (a few years after Bernard Widrow developed
ADALINE). It came to be called the nearest neighbor (NN) algorithm, and
it showed a very different way to do pattern recognition. And in much the
way the perceptron’s convergence proof made people sit up and take notice,
the NN algorithm achieved the same, doing almost as well, in ideal
scenarios, as the Bayes optimal classifier, which we now know is the best
ML game in town. But the NN algorithm does so without making any
assumptions about the underlying distribution of the data.
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Birds of a Feather

o street in the Cholera area was without death.” This is just one
of the many stark, sobering sentences found in a report submitted

by the Cholera Inquiry Committee in July 1855, about a particularly severe
outbreak of the disease that had struck a London parish the previous year.
The outbreak was concentrated in what came to be called the “Cholera
area” of Soho, in the city’s West End. “In Broad Street, the very heart of the
area, the deaths were rather more than 10 per cent, or 1,000 to every 10,000
persons living. In Cambridge Street, Pulteney Court, and Kemp’s Court, the
population was also decimated,” the members of the committee wrote.

One of the committee members was a physician named John Snow, who
had been making major contributions to two fields of medical science,
anesthesiology and epidemiology. Today, anesthesiologists revere Snow for
his scientific study of ether and chloroform. His methods allowed him to
administer “chloroform to Queen Victoria for the births of Prince Leopold
and Princess Beatrice,” bringing “obstetric anesthesia into acceptance
against religious, ethical, and medical beliefs.” And epidemiologists
celebrate Snow for his extraordinary analysis of the 1854 cholera outbreak.
He was able to show that the outbreak was clustered around a water pump
on Broad Street, which lent credence to his hypothesis that cholera was a
waterborne disease. Snow’s epidemiological legwork forced authorities to
inspect the pump and its surroundings, and they eventually established that
a cesspool with decaying brickwork, located within a few feet of the Broad
Street well, was leaking wastewater into the soil around the well. The pump
was drawing water from that well.



The Cholera Inquiry Committee report contains a section written by
Snow, including an annotated map of Soho’s “Cholera area” that’s
considered a classic by epidemiologists. But more recently, the map caught
the attention of computer scientists, because the technique Snow used is a
striking illustration of something that forms the conceptual heart of a
popular and powerful ML algorithm.

Snow’s map had a few key elements. First was a dotted line that
circumscribed a region in Soho; all deaths due to cholera during six weeks
in August and September 1854 occurred in this region. Each death was
denoted as a small black rectangle, marking the address of the house in
which the person had died or contracted the disease. (Some houses had
multiple such markers.) Water pumps were drawn as small black dots. Most
important, Snow drew an inner black dotted line that showed “the various
points which have been found by careful measurement to be at an equal
distance by the nearest road from the pump in Broad Street and the
surrounding pumps.” In other words, if you stood anywhere on this inner
dotted line, you’d be equidistant from the location of the disease-ridden
Broad Street pump and some other pump in Soho, as long as you walked
along streets and roads to get to the pumps (so, not as the crow flies). When
inside the perimeter of this latter dotted line, people were closer to the
Broad Street pump; outside, they were closer to some other pump.

After making allowances for one confounding pump, Snow concluded,
“It will be observed that the deaths very much diminish, or cease altogether,
at every point where it becomes decidedly nearer to send to another pump
than to the one in Broad Street.” People who were nearer to some other
pump and who went there for water, rather than to the Broad Street pump,
were better off. The Broad Street pump was the problem.

Snow’s inner dotted line represents the contours of what in modern
parlance is called a Voronoi cell, after the Ukrainian mathematician Georgy
Voronoi (or Voronoy, as the name is also spelled), who developed the
formal mathematics for the eponymous diagrams decades after Snow’s
analysis. Think of the 2D map of Soho, with a sprinkling of water pumps,
each pump represented by a small black dot. You can draw a Voronoi cell



around each dot, or “seed,” such that any point inside the cell is closer to its
seed than to any other seed. So, for a Voronoi diagram drawn for a mid-
nineteenth-century map of Soho, each cell has a water pump as its seed, and
every location within each cell is closer to its “seed” water pump than to
any other pump. There are different ways to measure closeness from
someplace inside the cell to the pumps. Normally, you’d use straight lines,
an “as the crow flies” measure of distance. But in this case, Snow had to be
smarter. The closest pump had to be discerned based on the distance
covered to the pumps when one walked along the streets.

Here’s an example of a simple Voronoi diagram:

The diagram is a tessellation of irregular polygons, or cells. Think of
each dot as a water pump. For now, let’s stick to the “as the crow flies”
metric to measure the distance to a pump. In the Voronoi diagram above, if
we are within a cell, the closest pump is the one inside the cell. If we are
walking along a polygon edge, and because that edge is shared by two cells,
we are equidistant from the two pumps that lie within those cells. And if we
are standing at the vertex formed by the intersection of edges, we are
equidistant from three (or more) pumps.



What does this have to do with machines that learn? Quite a lot. Let’s
start with a hypothetical problem. Imagine Midtown Manhattan, with its
mostly neat grid of streets and avenues.

Let’s say the U.S. Postal Service installs six brand-spanking-new
branches in this neighborhood. We are given the task of assigning each
building in Midtown to the nearest new post office branch. (Ignore the fact
that buildings have postcodes; using such codes makes the task trivial.)
How would we do it? We could come up with a Voronoi diagram for all of
Midtown on the xy plane (substituting post office branches for water
pumps). In the map shown above, the point (0, 0) is the bottom-left corner,
at the intersection of Twenty-Third Street and Eleventh Avenue. Each post
office branch gets an (x, y) coordinate relative to (0, 0), based on which we
can construct a Voronoi diagram. Once we have the Voronoi diagram, the



assignment of buildings to post office branches becomes straightforward. If
a given building lies within a Voronoi cell, it’s served by the post office
branch that is the seed for that cell. If the building is on the edge of two
cells or on a vertex, it’s equidistant from multiple post office branches, so
we assign it to the branch that’s handling the least number of buildings.

But what’s the correct notion of distance from a building to a post
office? Let’s assume we use the “as the crow flies” measure of distance,
also called the Euclidean distance (after the Greek mathematician Euclid).
If the post office branch is at coordinate (x1, y1) and the apartment building
is at (x2, y2), then the Euclidean distance is given by:

This is simply the length of the hypotenuse formed by a right-angled
triangle, with the coordinates (x1, y1) and (x2, y2) forming two vertices of
the triangle. The triangle has two sides that are perpendicular to each other.
One side, along the x-direction, has the length (x2-x1) and the other, in the
y-direction, has the length (y2-y1). It’s trivial to calculate the length of the
hypotenuse (see figure opposite).



But it turns out that this is not a good measure of distance in a place like
Midtown Manhattan. People aren’t crows, and they want the distance to the
nearest post office branch measured in terms of the distance traveled by
sidewalk/street. Well, there’s a simple measure of such a distance:

(x2-x1)+(y2 - y1)

Because of Midtown Manhattan’s grid (ignoring Broadway, which cuts
across the grid), this is the same as walking (x2-x1) units of length along
streets and (y2-y1) units of length along avenues, even if you have to zigzag
your way down different streets and avenues. No wonder this measure of
distance is formally called the Manhattan distance between two points.
Now, if someone constructs a new building on vacant land, that’s a new
data point. It’s simple to figure out that building’s post office branch: Find
the building’s Voronoi cell and assign that building to the cell’s seed, or post
office branch.

The problem we’ve just analyzed is more generally cast as the search for
nearest neighbors. Software implementations of such searches rank among
the most influential algorithms in machine learning. We’ll soon see why.
But first, we must go back in time to the Islamic Golden Age and the work
of Abu Ali al-Hasan Ibn al-Haytham, or Alhazen, a Muslim Arab
mathematician, astronomer, and physicist. It was Alhazen who, in his
attempt to explain visual perception, came up with a technique that closely
mirrors modern nearest neighbor search algorithms. Marcello Pelillo, a
computer scientist at the University of Venice, Italy, has been doing his best
to draw attention to Alhazen’s ideas.

THE MAKINGS OF AN ALGORITHM
One day, when he wandered into a bookstore in New Haven, Connecticut,
Pelillo stumbled upon a slim book called Theories of Vision from Al-Kindi
to Kepler. It was the late 1990s, and Pelillo was then a visiting professor at



Yale. Besides doing research in computer vision, pattern recognition, and
machine learning, he had a penchant for the history and philosophy of
science and a love of math. The slim book, at just over two hundred pages,
was alluring. It argued that Alhazen was “the most significant figure in the
history of optics between antiquity and the seventeenth century.” Before
Alhazen, humanity’s attempts at understanding vision—our ability to see
and perceive the world around us—were, in hindsight, very strange. One
idea was known as the “intromission” theory, which essentially posited that
we see an object because bits of matter of some form emanate from that
object and enter our eyes: “Material replicas issue in all directions from
visible bodies and enter the eye of an observer to produce visual sensation.”
Some believed that those bits of matter were atoms. “The essential feature
of this theory is that the atoms streaming in various directions from a
particular object form coherent units—films or simulacra—which
communicate the shape and color of the object to the soul of an observer;
encountering the simulacrum of an object is, as far as the soul is concerned,
equivalent to encountering the object itself.”

Less influential by this time was an alternative idea, under the rubric of
“extramission” theories, which argued that our eyes emanate rays that
intercept objects, allowing us to see those objects. Euclid, back in about 300
B.C., gave the first entirely geometrical account, using seven theorems of
how such rays could explain aspects of our vision. Then there were those
who tried, unsuccessfully, to combine the intromission and extramission
theories into a cohesive explanation of vision.

All this was patently wrong, but, again, only in hindsight. Alhazen came
up with an alternative theory that put paid to these ideas. He proposed a
new type of intromission, one that relied not on bits of matter leaving an
object and entering our eyes but, rather, one that required light radiating out
in straight lines from every point of a colored object. Some of that light
would enter our eyes and lead to perception. We don’t have to concern
ourselves with Alhazen’s amazing analysis of the eye’s anatomy or the
optics of it all. Suffice it to say his work was instrumental in “transforming
the intromission theory into a mathematical theory of vision.”



Marcello Pelillo was most interested in Alhazen’s account of what
happens once the light and color are registered in the eye: the act of
recognizing what the eye is seeing. Alhazen wrote, “When sight perceives
some visible object, the faculty of discrimination immediately seeks its
counterpart among the forms persisting in the imagination, and when it
finds some form in the imagination that is like the form of that visible
object, it will recognize that visible object and will perceive what kind of
thing it is.”

Basically, Alhazen argued that once a visible object registered in the
eye, some cognitive process—the “faculty of discrimination”—compared
what was being seen to what had already been seen and categorized in one’s
imagination, or memory. So, if what’s being seen is a dog, that image is
recognized as such when cognition connects it to some stored memory of a
dog.

Alhazen even had a solution for when no such comparison was possible
because the object had never been seen before. “If it does not find a form
similar to the form of that visible object among the forms persisting in the
imagination, it will not recognize that visible object or perceive what kind
of thing it is,” he wrote.

Note that Alhazen talked of one form being “similar” to another, but he
didn’t say what “similarity” meant. In computer science, similarity has to
do, for example, with the distance of one data point from another in some
hyperdimensional space, be it Euclidean, Manhattan, or some other measure
of distance. (The closer that two data points are to each other according to
some given measure, the more similar they are.) We’ll get back to these
issues soon enough.

When Pelillo looked at Alhazen’s writing, it became clear to him that
Alhazen’s method was “a surprisingly clear, almost algorithmic, exposition”
of an idea that was formally invented in the 1950s and analyzed
mathematically in the ’60s, thanks mainly to Thomas Cover, a young, whip-
smart information theorist and electrical engineer at Stanford, and Cover’s
precocious graduate student Peter Hart. Their algorithm came to be called
the nearest neighbor (NN) rule; it became an extremely important algorithm



for pattern recognition, which classifies data as belonging to one category
or another. (Is what’s being seen a dog or a cat?)

“I don’t know whether [Alhazen’s work] was the very first time that that
idea was put forward, namely, that in order for me to recognize an object, I
have to compare that object with something that I have in my memory, and
then I just look for the closest one according to a certain notion of
similarity,” Pelillo told me. “[That] is exactly the nearest neighbor rule. My
conjecture is that probably it was the first time.”

PATTERNS, VECTORS, AND NEIGHBORS
Alhazen had clearly envisioned aspects of Cover and Hart’s NN algorithm
almost a thousand years before them, but Peter Hart thinks the intuition
goes back farther, probably to our cave-dwelling forebears. To make his
point, he starts with some simple mathematics, of the kind we have already
encountered. Think of 2D vectors and the xy plane. Each point in the xy
plane, given by some point (x, y) is a vector, an arrow drawn from the
origin (0, 0) to (x, y). The same is true of the 3D xyz coordinate system:
Each vector is an arrow drawn from (0, 0, 0) to (x, y, z). Similarly, a 3D
vector is simply a point in 3D space. This can be extended to any number of
dimensions. We run out of letters of the alphabet soon, so it’s customary to
refer to vectors using [x1, x2, x3,…, xd], for a d-dimensional vector. The
key now is to connect vectors to patterns.

Let’s say we are looking at a 7×9 image, a total of 63 pixels, where each
pixel can be either white (0) or black (1). You can easily depict the digits 0
to 9 using such an image by making some pixels black and others white.
And each image, or pattern, can be written as a vector, [x1, x2,…x63]: a set
of 63 numbers, where each number is either a 0 or a 1. We have simply
transformed each 7×9 image into a 63-dimensional vector.



Now, what if you were shown a blank 7×9 grid on the touch screen of
your tablet and were asked to draw the numeral 2 or the numeral 8 using
your finger? Each time you draw the numeral, some squares in the grid turn
black, while others remain white. The pattern then gets stored as a number
that is 63 bits long. You do that a few times and then pass the tablet to
someone else, and they do the same. Many people take turns at generating
the data, and soon, you have hundreds of samples of vectors representing
two hand-drawn digits, 2 and 8. Each pattern, mathematically, is a point in
the 63-dimensional vector space. Ask yourself this: Given that each vector
is a point (which is how machine learning thinks of vectors), how would
these vectors be clustered in that hyperdimensional space?

Well, most of us will draw the numeral 2 in much the same way, but
each effort might be slightly different from another, even if the drawings
were made by the same person. (Because we are using black and white
pixels, the difference may not be significant between drawings, but it would
be a lot more if, say, finger pressure converted each pixel into something on
the grayscale and gave it a number from 0 to 255. But let’s go with 0 and 1
for white and black.) So, each time the pattern 2 is stored as a set of 63
numbers, it represents a vector, a point that’s more or less in the same
location as the vectors representing other hand-drawn 2s. Now, the points
representing all the hand-drawn 2s will be clustered near one another in the



63-dimensional space. The same goes for the numeral 8. But the two
numerals are different enough that the vectors constituting the cluster for
the numeral 2 will be in one region of the 63D space, and the cluster of
vectors for the numeral 8 will be somewhere else.

Assume that the touch screen also generates a label for each pattern,
tagging it as either 2 or 8. What we have done now is generate a sample
dataset where each vector has an associated label. The question now for us
—or, rather, for any ML algorithm—is this: Given a new unlabeled, or
untagged, pattern, can the algorithm tell whether it’s a 2 or an 8?

Algorithmically, there’s something very simple one can do. Just plot the
new, unlabeled vector as a point. Find the point that’s nearest to it in the
63D space. If the nearest point has the label 2, then the new point is most
likely a 2, too. If the nearest neighbor is an 8, the new entrant is most likely
an 8. “That’s the nearest neighbor rule. That’s the caveman intuition: If they
look alike, they probably are alike,” Hart told me.

Cave dwellers and Alhazen’s seminal work notwithstanding, the first
mathematical mention of the nearest neighbor rule appeared in a 1951
technical report of the U.S. Air Force School of Aviation Medicine,
Randolph Field, Texas. The authors were Evelyn Fix and Joseph L. Hodges,
Jr. In 1940, Fix came to work at the University of California, Berkeley, as a
research assistant in the Statistical Laboratory, assigned to a project for the
National Defense Research Committee. U.S. researchers were getting
drawn into the war raging in Europe. “The war years were hard,” Hodges
and others wrote in a memorial tribute to Fix.

They brought difficult, but occasionally interesting problems. Every
demand on the Laboratory emphasized urgency; the practical
solutions of the problems meant the determination of optimal plans,
the probability of success of this plan, of that plan, numbers and
more numbers. High speed computers did not exist; all the numerical
work had to be done on desk calculators consuming much time and
effort. Endowed with unusual energy and with a special spirit of
getting the job done and done right, Evelyn [Fix] spent days and



nights at her machine, aided by a group of students and some faculty
wives, so that the needed results could be transmitted on time,
usually to New York but occasionally directly to England. During
these years Evelyn also continued her own studies and lectured to
students.
Fix’s efforts gave her valuable expertise in the practical use of statistics

and probability theory. She got her Ph.D. in 1948 and stayed on at UC
Berkeley, enjoying many productive collaborations. One of them was with
Joseph Hodges, which resulted in the technical report of 1951. The very last
equation of this extremely short but important paper refers to the rule we
elucidated earlier: Given a set of labeled, or tagged, data points, a new,
unlabeled data point can be assigned the same label, or tag, as that of its
nearest neighbor in the hyperdimensional vector space.

As a graduate student looking for a doctoral thesis topic related to
pattern recognition, Peter Hart stumbled upon the Fix and Hodges paper
and the nearest neighbor rule. He was intrigued and wanted to figure out its
theoretical properties. “The most practical thing in the world is a good
theory,” Hart told me. “If you know the theoretical properties of a
procedure, you can have confidence employing that without having the
bother of conducting endless experiments to figure out what it does or when
it works and when it doesn’t work.”

Hart approached Thomas Cover, who had just joined Stanford as an
acting assistant professor, and the two discussed working on the theoretical
properties of the nearest neighbor rule. Their two-hour conversation left
Hart convinced he wanted Cover as his thesis advisor; but there was an
administrative hitch. Because he was only an “acting” assistant professor,
Cover couldn’t formally be the first reader on a dissertation. Hart was
prescient, though. “Even back then I was a pretty good judge of talent,” he
told me. “I thought, you know, by the time I need a signature, I bet he’ll get
promoted all the way up to assistant professor.” Hart signed on with Cover
as the young academic’s very first graduate student and began working on
understanding the theory behind the nearest neighbor rule. His work
established the lower and upper bounds for the algorithm: the good and the



bad. The good was almost as good as the best possible solution, if you
assumed that the number of data samples went to infinity. The bad wasn’t
that bad at all. Crucially, the strength of the nearest neighbor rule was that it
didn’t make any assumptions about the underlying data distribution.

IT DOESN’T GET SIMPLER
ML algorithms don’t get much simpler than the nearest neighbor rule for
classifying data. Especially considering the algorithm’s powerful abilities.
Let’s start with a mock dataset of gray circles and black triangles.

Recall the perceptron algorithm. It will fail to tell apart the circles from
the triangles, because this dataset is not linearly separable: There’s no single
straight line you can draw to delineate the two classes of data. A naïve
Bayes classifier can find a windy line that separates the circles from the
triangles, though. We’ll come back to that in a bit, but for now, let’s tackle
the nearest neighbor algorithm. The problem we must solve is this: When
given a new data point, we have to classify it as either a circle or a triangle.



The nearest neighbor algorithm, in its simplest form, essentially plots
that new data point and calculates its distance to each data point in the
initial dataset, which can be thought of as the training data. (We’ll use the
Euclidean distance measure for our purposes.) If the data point nearest to
the new data is a black triangle, the new data is classified as a black
triangle; if it’s a gray circle, the new data is classified as a gray circle. It’s as
simple as that. The following two panels show how a new data point is
labeled based on its nearest neighbor. (The new data point is shown as a
star, but is colored either gray or black, depending on whether it’s classified
as a gray circle or a black triangle.) The original dataset is the same as the
one shown in the previous panel.

Going back to the perceptron algorithm, recall that the linearly
separating hyperplane divides the coordinate space into two regions. The
nearest neighbor algorithm does the same, except in this case, the boundary
between the two regions is not a straight line (or a hyperplane in higher
dimensions). Rather, it’s squiggly, nonlinear. Look at the two plots above,
and you can imagine a boundary such that if the new data point fell on one
side of the boundary, it’d be closer to a gray circle, or else to a black
triangle. Here’s what the boundary looks like for the same dataset when the
NN algorithm examines just one nearest neighbor. You can see that a new
data point (a gray star) that’s closest to a gray circle lies in the region that



contains all the gray circles, and one that’s closest to a black triangle lies in
the region containing all the black triangles.

This simple algorithm—we’ll come to the details in a moment—
achieves something quite remarkable: It finds a nonlinear boundary to
separate one class of data from another. But the simplicity of the algorithm
that uses just one nearest neighbor belies a serious problem. Can you figure
it out before reading further?



To help understand the potential problem, consider another dataset
(shown above), one that includes a data point that’s misclassified by
humans as a black triangle and that lies amid the gray circles. What do you
think might happen, in terms of finding the boundary separating the circles
from the triangles? The machine, it must be said, would have no way of
knowing that the errant black triangle had been misclassified as such.

Given the data, the algorithm will find a nonlinear boundary that’s quite
intricate. Here’s the solution:

Notice how the nonlinear boundaries split up the coordinate space into
more than two gray-and-white regions. There’s a small “island” surrounding
the misclassified black triangle. If your new data point is within that small
island, it’ll get classified as a black triangle even though it’s surrounded by
gray circles.

What we have seen is an example of what ML researchers call
overfitting. Our algorithm has overfit the data. It finds a boundary that
doesn’t ignore even a single erroneous outlier. This happens because the
algorithm is paying attention to just one nearest neighbor. There’s a simple
fix, however, that addresses this problem. We can simply increase the
number of nearest neighbors against which to compare the new data point.
The number of neighbors must be odd (say, three or five or more). Why an
odd number? Well, because if it were even, we could end up with a tie, and



that’s of no use. An odd number ensures we’ll get an answer, right or
wrong. This is assuming that we are working only with data that can be
clustered into two classes (in this case, the gray circles and the black
triangles).

Here’s the same dataset, but now the algorithm looks for three nearest
neighbors and classifies the new data point based on the majority vote:

The nonlinear boundary no longer gives undue attention to the one lone
triangle amid the circles. If a new data point were to fall near this lone
triangle, it’d still be classified as a circle, because the triangle would be
outvoted by the nearby circles. The boundary has become somewhat
smoother; it’s not contorting to account for the noise in the data, which in
our case is the misclassified triangle. Such smoother boundaries, using a
larger number of nearest neighbors, are more likely to correctly classify a
new data point when compared with the boundary we got using just one
nearest neighbor. The algorithm is said to be generalizing better to unseen
data. (Though, there’s a gray circle that’s ended up on the wrong side of the
boundary. We’ll come to such transgressors in a moment.)



Here’s another example (see panel below), with the number of nearest
neighbors being considered bumped up to seven. The shape of the nonlinear
separating boundary looks slightly different for the same initial dataset.

Note something crucial, though. If you examine the nonlinear boundary
that the algorithm achieves using seven nearest neighbors, you can see that
while the errant triangle falls within the region meant for circles, its
influence is largely diminished. That’s good, because the errant triangle is
“noise,” a circle that was accidently misclassified in the training data as a
triangle. But there’s a circle that, unfortunately, falls inside the region meant
for triangles. This circle, however, was correctly classified in the training
data and yet has ended up on the wrong side of the boundary. This is the
price you pay if you don’t want to overfit. The classifier—which is
characterized by the boundary—can misclassify some data points in the
training dataset. The reason this is desirable, despite some errors made in
the training data, is because when you test this classifier using data it hasn’t
yet seen, it’ll likely make fewer errors than if you used a classifier that had



overfit the training data. Just keep this in mind for now; we will come to a
more serious analysis of overfitting versus generalization later.

As simple as this algorithm is, the mathematics needed to determine its
efficacy—in terms of the probability that the algorithm makes errors while
classifying new data—was anything but simple. Peter Hart recalled
struggling initially to develop the intuition needed to prove that the
algorithm could converge to a result and perform satisfactorily when
compared with the Bayes optimal classifier (which, as we saw, is the best a
machine algorithm can do). Of course, the Bayes optimal classifier is an
idealization, in that one assumes access to the underlying probability
distributions of the data, or our best estimates of such distributions. The NN
algorithm functions at the other extreme. All one has is data, and the
algorithm makes barely any assumptions about, and indeed has little
knowledge of, the underlying distributions. There’s no assumption, for
example, that the data follows a Gaussian (bell-shaped) distribution with
some mean and variance.

Needing to make sense of the math, Hart sought out Kai-lai Chung, a
brilliant Chinese American mathematician at Stanford. Hart explained to
Chung the problem he was trying to solve. Chung asked Hart if he knew of
two mathematical results called Jensen’s inequality and the dominated
convergence theorem. Hart said that he did. “And, with a straight face, he
said, ‘Well, you know enough. Now you just have to be smarter.’ And then
he waved me out of his office,” Hart told me.

And so, Hart did just that: He got smarter.



We can get a taste of the intuitions that Hart wanted to turn into rigorous
results. (The actual theorems and proofs are a touch too abstruse for us.)
Let’s go back to the two penguin species, Adélie and Gentoo, and one
feature, bill depth (see figure, above).

If you had access to the two underlying distributions, then given a new,
unclassified penguin and its bill depth, you could use the Bayes theorem to
simply calculate the probability that the penguin is an Adélie given the bill
depth and the probability that the penguin is a Gentoo given the bill depth.
Let’s say that, for some given bill depth, the probability of the penguin
being an Adélie turns out to be 0.75 and of it being a Gentoo, 0.25. For the
Bayes optimal classifier, the higher probability wins each time. The
algorithm will always classify the new penguin as an Adélie, even though
there is a 25 percent chance it could be wrong.

What about the nearest neighbor algorithm? Here’s a mental picture of
what the 1–nearest neighbor, or 1-NN, rule accomplishes. It looks for points
representing Adélie penguins and Gentoo penguins in the immediate
neighborhood of the new data point. If the algorithm had access to all



possible points representing the two types of penguins, then 75 percent of
those nearby data points would be those of Adélie penguins and 25 percent
would represent Gentoo penguins. But we have only a small sample of
penguins. And the 1-NN algorithm must make its decision based on that
limited dataset. It’s as if it had a biased coin that came up heads 75 percent
of the time and tails 25 percent of the time. The coin, of course, is specific
to a new, unclassified penguin’s bill depth: heads, it’s an Adélie; tails, it’s a
Gentoo. So, unlike the Bayes optimal classifier, which will always claim it’s
an Adélie, the 1-NN rule will say that the new penguin is an Adélie three-
quarters of the time and a Gentoo one-quarter of the time. This intuition in
hand, Hart eventually figured out the math needed to establish the lower
and upper bounds of the errors made by the 1-NN rule and then extended it
to k nearest neighbors, the k-NN rule. It was a seminal, memorable result.
The above plot shows a comparison between probability of error (or risk) of
the Bayes optimal classifier versus the NN classifier.

The k-NN algorithm can do no better than the Bayes optimal classifier
(the dashed line, the lower bound). For 1-NN and large samples of data (n),
the algorithm’s upper bound of the risk of being wrong is shown as the solid
parabolic line: It can do no worse. But as k increases, and k/n remains
small, the classifier’s performance starts approaching that of the Bayes
optimal classifier: The parabola flattens and gets even closer to the dashed
line.

Again, the intuition for it goes something like this: As you collect more
and more samples, the immediate neighborhood of the new data point gets
dense with data points representing Adélie and Gentoo penguins. For our
example, the local region around the new data point will have 75 percent
Adélie penguins and 25 percent Gentoo penguins. If the total number of
samples gets very large, then the probability that a majority of the k nearest
neighbors are Adélie penguins will approach one. In this idealized scenario,
the k-NN algorithm (for large values of k) will always classify the new data
point as an Adélie—as would the Bayes optimal classifier.

All this work, from start to finish, took about three months. Hart had
started talking with his advisor, Tom Cover, in the spring of 1964. By late



spring, Cover was heading to Cambridge for a summer stint at MIT. “We
already had these results,” Hart said. “Tom, even as a brand-new advisor,
was very well aware of the fact that you’re not supposed to give a Stanford
Ph.D. on the basis of three months’ worth of dissertation work, no matter
how fabulous the results. So, he looks at me and he says, ‘Can you extend
these results?’ ”

Hart had already proven the results for almost all types of probability
distributions: continuous ones, distributions that had discontinuities (or
breaks), and those with infinitely many discontinuities. Cover asked Hart to
extend the math to all measurable functions (where the functions
represented probability distributions). “Now we get into the realm of
measure theory. Nobody who’s not a mathematician has ever heard of it.
You don’t want to go there. This is like a pure mathematician’s
generalization. [There’s this] famous quote, ‘Here’s to pure mathematics—
may it never be of any use to anybody,’ ” Hart said. “I kept a straight face
and nodded. Tom took off for Cambridge.”

Hart came home to the “love of his life,” who had started off as a math
major but then switched to history and would become a well-published
author. He told her about Cover’s suggestion and added, “I have no idea
how to even begin.” The couple took the summer off and learned how to
sail at the Stanford sailing club, at times running their fifteen-foot sloop into
some trees in the middle of a lake. The summer ended, and Cover came
back and asked Hart about his progress. “I very truthfully replied, ‘I didn’t
make any progress at all.’ Tom just nodded and said, ‘Yeah, I didn’t think
you would,’ ” Hart said.

Hart did some more work to optimize the algorithm. It was more than
enough for a dissertation: all of sixty-five pages, triple-spaced, typed up on
an IBM Selectric typewriter. He got his Ph.D. in 1966. “I was barely
twenty-five, and I was launched,” he said.



The k-NN algorithm has been extraordinarily successful, both because
of and despite its simplicity. From the perspective of someone writing a
piece of code, here’s some pseudo-code to illustrate how little it takes.
(Let’s stick with Adélie and Gentoo penguins for now, so two classes of
penguins, and two features, bill depth and bill length; the algorithm can be
easily generalized to include more than two classes and any number of
features.)

Step 1. Store all instances of sample data.
Each penguin is a vector [x1, x2], where x1=bill depth and x2=bill
length. The entire dataset is stored in a matrix X, where X has m
rows (number of penguins) and n columns (number of features).
Each penguin is also associated with a label y, which is equal to
-1 (Adélie) or 1 (Gentoo). So, y, which stores all the
corresponding labels, is an m-dimensional vector.

Step 2. Given a new data point, representing an unclassified penguin,
in the form of a vector x with elements for bill depth and bill length
[x1, x2], do the following:



Calculate the distance of the new data point to each of the data
points in the original dataset, X. This gives us a list of m
distances, d.
Sort the list d in the order of increasing distance (the first element
has the minimum distance to the new point, and the last element
has the maximum).
As you sort d, simultaneously rearrange the elements of y, so that
the appropriate labels (-1 or 1) remain associated with each
penguin in the sorted list.

Step 3. Take the first k elements of the sorted list d. These represent
the k nearest neighbors. Collect the labels (-1 or 1) associated with
each of these nearest neighbors. Count the number of 1s and the
number of -1s.

Step 4. If the 1s outnumber -1s, the new data point has the label 1
(Gentoo); else it’s an Adélie.

What can such a simple algorithm achieve? How about all the stuff that
you get asked to buy on the internet? If companies, which shall not be
named, want to recommend that you buy certain books or watch certain
movies, they can do this by representing you as a vector in some high-
dimensional space (in terms of your taste in books or movies), find your
nearest neighbors, see what they like, and recommend those books or
movies to you. Even fruit flies are thought to use some form of a k-NN
algorithm to react to odors: When a fly senses some odor, it makes the
connection between the new odor and another odor most like it for which it
already has the neural mechanisms to respond behaviorally.

Perhaps the most important feature of the k-NN algorithm is that it’s a
so-called nonparametric model. Cast your mind back to the perceptron.
Once you have a trained model, using some initial training dataset, the
perceptron is simply characterized by its weight vector, w. The number of
elements of this vector equals the number of parameters that define the



perceptron. This number is not dependent on the amount of training data.
You could train the perceptron with one hundred instances of data or a
million, but at the end of the training session, the hyperplane would still be
defined by w.

A nonparametric model, by contrast, has no fixed number of parameters.
The k-NN model is an example. You basically store all the instances of the
training data (whether one hundred or one million) and use all the instances
when doing the inference about a new piece of data. And therein,
unfortunately, lies one of the biggest concerns with the k-NN algorithm. As
the size of datasets has exploded, making inferences using k-NN requires
increasing amounts of computational power and memory, to the point where
it can become mind-numbingly slow and resource-intensive.

There’s one more glaring disadvantage, brought about by the strange
behavior of data in very high dimensions. Our 3D minds are incredibly ill-
equipped to appreciate all that can go wrong.

THE CURSE OF DIMENSIONALITY
In the preface to his 1957 book, Dynamic Programming, the American
applied mathematician Richard Bellman wrote about the problems of
dealing with extremely high-dimensional data and coined the phrase “the
curse of dimensionality.”

There are many ways to appreciate this curse. Let’s start with something
rather simple. Take a sample of data that can be described using one feature:
something that takes a value between 0 and 2. Let’s assume that the random
variable representing the value of the data sample is uniformly distributed,
meaning that the random variable can take any value between 0 and 2 with
equal probability.



If we were to sample twenty times from this distribution, we might get a
sampling that looked something like the plot shown on above, with an
almost equal number of data points between 0 and 1 as there are between 1
and 2. (Note that the y-axis is irrelevant in this plot; all the points lie on the
x-axis.)

Now imagine that the object you are describing requires two features,
each with a value that can be between 0 and 2. Again, you sample 20 points
from a uniform distribution, but now this distribution is over the 2D xy
plane: The probability of drawing a sample from anywhere in this 2x2
square is the same. This is what you might get:



Note that the region of space for which the feature values lie between 0
and 1 forms only a quarter of the total space. (In the 1D space, it formed
half the length of the total line segment.) So, now you are likely to find far
fewer data samples in this region of space, which is the unit square. (In the
example plot above, only 4 out of 20 end up in our prescribed region.)

Let’s move on to three dimensions. Now there are three features, and
each can have a value anywhere between 0 and 2. Again, we are interested
in the volume of space for which the features lie between 0 and 1; the
volume is the unit cube. In the 3D case, the volume of interest is now an
eighth of the total volume. So, if you drew 20 samples of data that were
uniformly distributed over the total volume, which is a cube with sides 2
units long, then the number you’d find in the unit cube would be drastically
reduced. (In the example shown below, only 2 are black dots; the gray dots
lie outside.)



ML algorithms can be thought of as methods that are often examining
such volumes of space in order to see, for example, whether one data point
is like another. And these data are usually randomly sampled from some
underlying distribution. In our toy example with features that have values
between 0 and 2, when the number of dimensions (or the number of
features that are needed to describe a data point) rises, say, to 1,000 or
10,000 or more, the chance of finding a data point within a unit hypercube
rapidly diminishes. (The length of each side of a unit hypercube is equal to
1.) That’s assuming, of course, that we are sticking to 20 randomly drawn
samples scattered over this extremely high-dimensional space; in this case,
a unit hypercube in the hyperdimensional space may be devoid of any data.
As Julie Delon of the Université Paris–Descartes says in her talks on the
subject, “In high dimensional spaces, nobody can hear you scream.”

One way to mitigate the problem would be to increase the number of
data samples (so that somebody can hear you scream in your immediate
neighborhood). Unfortunately, for the solution to work, this number must



grow exponentially with the number of dimensions, and so, the method runs
out of steam very quickly. The curse takes over.

In his lectures, Thomas Strohmer, professor of mathematics at the
University of California, Davis, describes another way to appreciate the
curse of dimensionality. Let’s take the k-NN algorithm: It works by
calculating distances between a new data point and each sample in the
training dataset. The assumption is that similar points have smaller
distances between them than those that are dissimilar. But something very
curious happens to distances between data points in high-dimensional
space. It has to do with the behavior of the volumes of objects such as
hyperspheres and hypercubes.

Let’s start with a 2D circle of radius one, also called a unit circle. Take a
smattering of 20 data samples distributed uniformly over the area
circumscribed by the circle. Intuition tells us that the samples are spread
evenly over the entire area, and our intuition is correct. The same intuition
holds true for a unit sphere with a radius of one. We can visualize the
volume of the sphere and the data points distributed uniformly inside that
volume. However, our imagination and intuition falter when we move to
higher dimensions. To see why, consider the volume of a unit sphere in
some higher dimension, d. The volume is given by this formula:

For whole numbers:

Γ(n) = (n-1)! = (n-1) × (n-2) × … × 2 × 1

The Gamma function is also defined for real and complex numbers.



We don’t need to worry about the specifics of the rest of this formula.

As Strohmer points out, all we need to know is that the term  in the

denominator increases much, much faster than the term in the

numerator, for increasing values of the dimension, d. This has extraordinary
consequences. As the number of dimensions tends to infinity, the volume of
the unit sphere tends to zero! However, the volume of a unit hypercube is
always 1 regardless of the dimensionality of the hypercube.

This allows us to compare what happens to the volume of a sphere that’s
embedded, or inscribed, within a cube, such that the sphere touches each of
the cube’s surfaces. (This problem is elegantly analyzed by Alon Amit, in a
detailed post on Quora.) Again, let’s start with dimensions that are familiar.
Here are the two volumes in 3D space:

Let the cube and the sphere be centered at the origin, and the surfaces of
the cube, at the point where they touch the sphere, be a unit length away



from the origin. But the vertices of the cube are farther away.
For example, the vertex at (1, 1, 1) is at a Euclidean distance of:

, from the origin, which is

defined by (0, 0, 0).
So are the 7 other vertices.
Similarly, in 4D space, the cube has 16 vertices. The vertex at (1, 1, 1, 1)

is at a distance of:

So are the 15 other vertices.
Similarly, for a 5D hypercube, the 25 (= 32) vertices are 2.23 units

away; and for a 10D hypercube, the 210 (= 1,024) vertices are each 3.16
units away. This gets out of hand very quickly. A 1,000-dimensional
hypercube has 21000 (= 10.72300) vertices, which is way, way more than the
number of atoms in the observable universe, and each of these vertices is
31.6 units away from the origin.

Despite the enormous number of vertices and their increasing distance
from the origin, the surfaces of the hypercube, at the point where they touch
the unit hypersphere, are still only 1 unit away from the origin. What does
this say about how much of the volume of the hypercube is occupied by the
enclosed hypersphere and how much of it by the volume that extends to the
vertices?

We know that in 3D space a large fraction of the volume of the cube is
taken up by the enclosed sphere. This fraction starts decreasing as we move
up in dimensions. We saw that as the number of dimensions tends to
infinity, the volume of the unit hypersphere tends to zero. This means that
the internal volume of the hypercube taken up by the unit hypersphere
vanishes, most of the volume of the hypercube ends up near the vertices,
and all the vertices are equally far away from each other.

What’s all this got to do with the k-NN algorithm and machine learning?
Well, let’s say that data points that we are interested in are embedded in the
volume of a hyperdimensional cube. They are vectors, or points, in this



space. As the dimensionality grows, these points don’t occupy the internal
volume of the unit sphere, because that’s going to zero; there’s no volume
there to be occupied. The data points end up populating the corners of the
hypercube. But given the extraordinarily large number of corners, most
corners are devoid of data points, and the data points that do lie in some
corners end up being almost equidistant from all other points, whether they
belong to the same class or not. The whole idea of measuring distances to
determine similarity falls apart. The k-NN algorithm’s central premise, that
nearby points are similar, doesn’t hold water anymore. The algorithm works
best for low-dimensional data.

Given this curse, machine learning sometimes turns to a powerful
technique that has long been the staple of statisticians: principal component
analysis (PCA). Often, it turns out that though the data may be very high-
dimensional, much of the variation in the data that is needed to distinguish
clusters lies in some lower-dimensional space. PCA is a powerful technique
to reduce the data to some tractable number of lower dimensions, allowing
an ML algorithm to do its magic.

After having introduced the curse of dimensionality, Bellman writes in
Dynamic Programming, “Since this is a curse which has hung over the head
of the physicist and astronomer for many a year, there is no need to feel
discouraged about the possibility of obtaining significant results despite it.”
Far from being discouraged, PCA reveals the awesome power of
dimensionality reduction. That’s our next stop.



W

C H A P T E R  6

There’s Magic in Them Matrices

hen Emery Brown was doing his medical residency to become an
anesthesiologist, one of his attending doctors said to him, “Now,

watch this.” All of a sudden, the patient in whom they were inducing
anesthesia fell unconscious. It was a profound moment. Now, after decades
of practice, Brown—a professor of anesthesia at Harvard Medical School’s
Massachusetts General Hospital, a computational neuroscientist at MIT, and
a trained statistician and applied mathematician—still finds the transition
from consciousness to unconsciousness in his patients “amazing.” Except,
these days, he’s the attending telling his residents to watch not just the
patients’ physiological patterns (such as changes in breathing), but also the
EEG signals being recorded from their brains.

Most anesthesiologists don’t pay much attention to EEG signals as a
means of monitoring a patient’s state of consciousness. Brown and his
colleagues want to change that. They want ML algorithms to help
anesthesiologists determine the dosage of anesthetics, either to induce
unconsciousness or to bring patients out of it. And that means listening to
the brain. Part of being able to do that involves collecting high-dimensional
EEG data. (The dimensionality is determined by how much data there is
and the number of features in each instance of the data, which, in this case,
depends on the number of electrodes being used, the different frequencies at
which the signals are being analyzed, and the duration of the recordings.)
But working with high-dimensional data can drain computational resources.
In one study done by Brown’s team, each person’s data, from just one
electrode, yielded 100 different frequency components per time interval and
5,400 two-second time intervals (for a total of three hours of data). That’s a



100 x 5400 matrix, or 540,000 data points, for one electrode per person.
The question the researchers were asking of this data was this: If one looks
at the power in the EEG signal in each of the 100 frequency bands in any
given time interval, can one tell whether a person is conscious or
unconscious?

One way to make the problem tractable is to borrow a tool from the
statistician’s toolbox: a simple, elegant, and long-standing method called
principal component analysis (PCA), which involves projecting high-
dimensional data onto a much smaller number of axes to find the
dimensions along which the data vary the most. The trick lies in finding the
correct set of low-dimensional axes. First, we need to get an intuition for
PCA, one of the most important methods in all of data science and machine
learning.

BABY PCA
Here’s a very simple example of some made-up data to illustrate the basic
idea behind principal component analysis.

Consider the first plot. Each data point, shown as a circle or a triangle, is
characterized by two values, or features, x1 (plotted along the x-axis) and
x2 (plotted along the y-axis). As depicted, there is as much variation in the
data along the x-axis as there is along the y-axis. Our job now is to reduce



the dimensionality of this data, from two to one, such that most of the
variation in the data is captured along one dimension. Can we draw a line
representing one axis, or dimension, and project the data onto that axis?

This example was chosen because it is particularly easy and intuitive.
There’s a relatively obvious answer. We can draw a dashed line that runs at
an angle of 45 degrees and make that the x-axis.

Now imagine the dashed line as being the new x-axis. Draw another line
at 90 degrees to it, making that the y-axis. Here’s what the data look like in
the transformed coordinate space:

Now you can clearly see that there’s more variation in the data along the
x-axis than along the y-axis. It’s also clear that if we now project the data
onto the new x-axis, we’ll see a clear separation between the circles and the
triangles, but if you were to project the data onto the y-axis, the points
representing the two shapes would be bunched together. So, if we had to
pick one axis, or dimension, to analyze the data, we’d pick the new x-axis.
If we project the data onto that axis, we’d get this plot:



We’ve just performed a principal component analysis. We took a two-
dimensional dataset; found a one-dimensional component, or axis, that
captured most of the variation in the data; and projected the data onto that
one-dimensional axis. You might wonder about the rationale for doing so.
Well, for one, what we did makes it easy to find (and, in this case, visualize)
the separation in the data—the circles lie to the left, and the triangles to the
right. It’s easy for a classification algorithm, such as the perceptron
algorithm, to find that boundary. (In this 1D case, the boundary is any point
that separates the circles from the triangles.) The algorithm need work only
in 1D space. Once it has found that boundary, then given a new data point
of unknown type—we don’t know if it’s a circle or a triangle—we can just
project it onto the single “principal component” axis and see if it falls to the
right or the left of the boundary and classify it accordingly. This, of course,
assumes that the new data point is drawn from the same distribution of data
on which we performed PCA.

Granted, this was a trivial example. We didn’t gain much,
computationally speaking, by reducing dimensions from two to one to
separate the circles from the triangles. But if the original dataset had been
high-dimensional (as it was in Brown’s anesthesia study), then reducing the
number of dimensions to some smaller number, such that those lower
dimensions, or principal components, capture most of the variation in the
data, would be a huge computational advantage. There’s always a risk that
the dimensions along which there isn’t much variation, which we are
throwing away, are important. Also, we are assuming that the dimensions
along which there’s a lot of variation have a high predictive value. Such
risks notwithstanding, we’d be projecting data from tens or hundreds of
thousands of dimensions (or even more) down to a handful and then using
computationally tractable algorithms to find patterns in the data.

To make more formal sense of all this, we begin with an introduction to
the German word Eigen, the first mention of which (in the context that
interests us) appears in a 1912 work by the German mathematician
extraordinaire David Hilbert (1862–1943), titled Grundzüge einer
allgemeinen Theorie der linearen Integralgleichungen (Fundamentals of a



General Theory of Linear Integral Equations). Eigen means “characteristic,
peculiar, intrinsic, or inherent.” Hilbert used Eigenfunktionen, for
“eigenfunctions,” and Eigenwerte, for “eigenvalues.” Our focus will be on
two uses of “eigen”: eigenvalues and eigenvectors. They will lay the
groundwork for our understanding of principal component analysis.

EIGENVALUES AND EIGENVECTORS
Much of machine learning, as you well know by now, comes down to
manipulating vectors and matrices. A vector is simply a set of numbers
arranged as a row or a column. The number of elements in the vector is its
dimensionality.

[3 4 5 9 0 1] is a row vector

These are two ways of representing the same vector. Its dimensionality,
in this case, is 6. If you were to think of a 6-dimensional coordinate space
(say, with axes x, y, z, p, q, r), then this vector would be a point in that 6D
space. It’s, of course, challenging for us to visualize anything in higher than
three spatial dimensions. But conceptually, this is not a difficult idea: Just
like the vector [3 4 5] is a point in 3D space (3 units along the x-axis, 4
units along the y-axis, and 5 units along the z-axis), [3 4 5 9 0 1] is a point
in 6D space, with the requisite number of units along each axis.

We also know from our earlier discussion about vectors that sometimes
it’s worth thinking of a vector as having a direction: it’s the orientation of



the line drawn from the origin to the point in n-dimensional space. But for
the purposes of machine learning, it’s best to get used to vectors simply as a
sequence of numbers, or as a matrix with one row or one column.

To recap, a matrix is a rectangular array of numbers. Generically, an m ×
n matrix has m rows and n columns. Here’s an example of a 3×3 matrix.
The rows run horizontally, the columns vertically.

So, a12 is an element of the matrix that belongs to the first row, second
column, and a32 is an element that belongs to the third row, second column.
More generically, an m × n matrix is given by:

, and aij is an element of row i and column j.

Earlier, we saw some of the basic operations you can do with vectors.
The one operation that’s of concern to us now is the multiplication of a
vector by a matrix. Consider:

Ax = y, where A is a matrix and x and y are vectors

Taking an example, and expanding the elements, we get:



If the matrix A has m rows (m=2, in the above example) and n columns
(=3, in our example), then the vector x has to be a column vector with n
elements (or rows), or dimensionality of n (=3, above). If you look
carefully, a matrix-vector multiplication involves taking the dot product of
each row of the matrix with the column vector. You are treating each row of
the matrix as a row vector. That’s why the number of columns of the matrix
A must equal the number of rows, or dimensionality, of the column vector
x.

In the above example, the output vector y has a dimensionality of 2.
This output dimensionality depends entirely on the number of rows in the
matrix A. If matrix A has 4 rows, the output vector y would have a
dimensionality of 4.

Now, each vector is a point in some n-dimensional space. In our
example above, the input vector x is a point in 3D space. But the output
vector is a point in 4D space. Multiplying a vector by a matrix can
transform the vector, by changing not just its magnitude and orientation, but
the very dimensionality of the space it inhabits.

If you want to preserve the dimensionality of the vector during a vector-
matrix multiplication, what should be the shape of the matrix? A moment’s
thought, and it’s clear that the matrix must be square. For the dot products
to work, the number of the matrix’s columns should be the same as the
dimensionality of the vector x. The number of its rows should also be the
same as the dimensionality of the vector x, to get an output vector y with
the same number of elements. It’s this operation—the multiplication of a



vector with a square matrix—that gets us to the concept of eigenvectors and
eigenvalues.

Such a multiplication simply moves a vector from one location in its
coordinate space to another point in the same space or moves a point from
one location to another. In general, moving a point—say, in 2D space—
from one location to another will change both the magnitude and the
orientation of the vector.

For example: the vector  multiplied by the matrix  results

in the vector  The graph above shows the transformation.

In the figure, the old vector is the arrow pointing to (1, 2), and the new
vector is pointing to (1, -3). Note that the new vector has changed in
magnitude and orientation. For almost all the vectors that are in this 2D
plane, multiplying by a 2x2 matrix (let’s restrict ourselves to a square
matrix with real numbers as its elements) will result in a similar
transformation: a change in magnitude and orientation.



But there are some orientations associated with each square matrix that
are special, or characteristic (hence, the notion of “eigen”). There are
algebraic ways of figuring out what these directions are for a given matrix.
For our purposes, let’s take it as given that there are such methods. In fact,
if you are programming in Python, there’s code that will do this for you, or
you could just type the matrix values into a Web interface provided by
Wolfram Alpha, and it’d spit out the values for you. For our example matrix

, here are those orientations:

Depicted in the figure are two vectors of length 1, or so-called unit
vectors. These represent special orientations for our example matrix. If you
take a vector that lies along one of these orientations and multiply it by the
example matrix, you’ll get a new vector that has the same orientation but
may have a different length. In other words, the new vector is simply
rescaled, or multiplied by some scalar value. Note that you can multiply the
old vector by a negative scalar value and get a vector that is flipped over,
relative to the origin, but is still considered to have the same orientation,
because it lies on the same line.



These special orientations, or vectors, associated with a square matrix
are called eigenvectors. Corresponding to each eigenvector is an
eigenvalue. So, if you take a vector with the same orientation as one of the
eigenvectors and multiply it by the matrix, you’ll get a new vector that is
scaled by the corresponding eigenvalue. Continuing with our example, the
two eigenvalues for our example matrix are -2 and 1, and the corresponding
eigenvectors are [0, 1] and [3, 1]. Again, you can find these eigenvectors
and eigenvalues using either algebraic methods or code, or simply by
asking Wolfram Alpha.

So, let’s take a vector that lies along the y-axis, say, [0, 2], and multiply
it by our matrix. We get:

The new vector is a scaled version of the original vector (by -2, the
eigenvalue), but it lies along the same line as before (see figure, below). So,
-2 is an eigenvalue, and the corresponding eigenvector is [0, 1].

More generally, eigenvectors and eigenvalues are written in this way:



Ax = λx, where A is a matrix and x is an eigenvector and λ is an
eigenvalue. That’s saying that multiplying the vector x by the matrix A
results in a vector that equals x multiplied by a scalar value λ.

For a 2×2 matrix, there are at most two eigenvectors and two
eigenvalues. The eigenvalues may or may not be distinct.

In his Stanford lectures, Anand Avati shows a neat way to visualize what
a matrix does to vectors and the connection of that transformation to
eigenvectors and eigenvalues. Let’s start with a set of unit vectors, arranged
such that their tips (the points) form the circumference of a circle of unit
radius. Multiply each of those vectors with a square matrix. When you plot
the transformed vectors, you get an ellipse. The matrix has squished and
stretched the circle into an ellipse.

Again, for our example matrix , you get the plot shown above.

Notice the two black vectors. Those are the directions of the eigenvectors,
one of which scales a unit vector by -2 and the other by 1, as dictated by the
corresponding eigenvalues.



Now we come to a very special type of matrix: a square symmetric
matrix (with real values, for our purposes; no imaginary numbers, please).

One such matrix would be: 

Note that the matrix is symmetric about the diagonal that goes from the
top left (number 3) to the bottom right (number 2). (We’ll use such square
symmetric matrices when we come to principal component analysis.)
Here’s what this matrix would do to a set of unit vectors that formed a
circle:

There’s something quite elegant about the transformation. Each original
input unit vector is transformed into an “output” vector, and the output
vectors taken together form an ellipse. It turns out that the eigenvectors lie
along the major and minor axes of the ellipse. These eigenvectors are
perpendicular to each other; they are called orthogonal eigenvectors. Note
that the eigenvectors won’t be orthogonal when the matrix is not square
symmetric (as in the previous example).

We have been looking at 2x2 matrices operating on 2D vectors. But
everything we have discussed holds true for a space of any dimension. Say



you were working in 10,000 dimensions. Then a set of unit vectors in
10,000-dimensional space (the equivalent of a circle in 2D space) would be
transformed by a square, symmetric matrix (which has 10,000 rows and
10,000 columns) into the equivalent of an ellipsoid in 10,000-dimensional
space.

In the 2D case, the square symmetric matrix with real-valued elements
has two eigenvectors and two corresponding eigenvalues. In the 10,000-
dimensional case, the matrix has 10,000 eigenvectors and 10,000
eigenvalues, and those 10,000 eigenvectors would be orthogonal to each
other. It’s pointless attempting to visualize it.

COVARIANCE MATRIX
We have one more crucial concept to get through before we can tackle a
real dataset with principal component analysis. Let’s start with a simple 3×2
matrix.

It’s a tiny dataset that represents three data points: (h1, w1), (h2, w2),
and (h3, w3). Let’s say that each row of the matrix represents a person, with
the first column of the row being the person’s height and the second column
their weight. If we plot the height on the x-axis and the weight on the y-
axis, we’ll have three points, each representing one person.

For argument’s sake, consider a plot of 500 such persons. The data
would be represented by a 500×2 matrix (500 rows, 2 columns). If all the
people in the dataset were men of similar phenotype and genotype, from the
same geographical region and ethnicity, who ate the same kind of food and
had much the same behaviors regarding exercise, you’d expect their heights
and weights to be related. As the height increases, so does the weight. But
what if the data included people who were heavier or skinnier? Now you’d



see many people with the same height but with wildly different weights.
What if you added women to the mix? The relationship between the height
and weight would again likely change somewhat.

There’s a way in which this information can be captured in a matrix.

Let’s go back to our small 3×2 matrix .

First, from each element of the matrix, we subtract the expected value,
or the mean, of that feature. So, for the first column, the heights have a
mean of E(h); and similarly, the mean for the weights is E(w). When we
subtract these mean values from their respective elements in the matrix, this
is what we get:

This procedure of setting each element to its mean-corrected value is
also called centering. The reasons for doing this are a bit involved, so let’s
take it as something that is done implicitly. For the calculations that follow,
assume that the matrix X is mean-corrected.

Now we take the dot product of the transpose of X with itself. We saw
earlier that the transpose of a column vector turns it into a row vector, and
vice versa. The transpose of a matrix, XT, similarly flips the rows and
columns. So,

 (Note: this is a mean-corrected matrix)



This matrix, the result of taking the dot product of a 2×3 matrix with a
3×2 matrix, has two rows and two columns, and hence, is a square matrix.

Take a close look at the values of each element of the matrix. The first
element (row 1, column 1) is simply the sum of the squares of the heights of
the three people in our original dataset. Or, rather, it’s the sum of the
squares of mean-corrected heights.

h12 + h22 + h32 = (h1 - E(h))2 + (h2 - E(h))2 + (h3 - E(h))2

As we saw in chapter 4, if height were a random variable, then this sum
is also the variance of h. Similarly, the diagonal element (row 2, column 2)
is the sum of the squares of the three mean-corrected weights and, hence, is
the variance of w.

w12 + w22 + w32 = (w1 - E(w))2 +(w2 - E(w))2 + (w3 - E(w))2

So, the diagonal terms of the XT.X matrix are the variances of the
individual features: The larger these values are, the more variance, or
spread, there is in the dataset for that aspect of people.

The off-diagonal elements tell us something even more interesting. First,
both off-diagonal elements are the same. This is a square symmetric matrix.
(Keep this in mind, for we’ll come back to why it is important.) The off-
diagonal element is the sum of the products of the mean-corrected height



and weight of each person and gives us what’s called the covariance
between pairs of random variables.

Let’s take a small example. Here are the heights (in feet) and weights (in
pounds) of three people, in matrix form:

Mean of heights is: (5 + 6 + 7)/3 = 6
Mean of weights is: (120 + 160 + 220)/3=166.67
The mean-corrected matrix is:

Now let’s suppose that the three people had somewhat different weights,
for the same heights. The first two persons, who are 5 feet and 6 feet tall,
respectively, are heavier, and the 7-foot-tall person is severely underweight.

After mean correction:



Note that the off-diagonal values are lower (-40) than in the previous
case (100). These off-diagonal values are telling us that the heights and
weights in the first case are more related to each other (an increase in height
is associated with an increase in weight) than the heights and weights in the
second case (where one person’s weight drops dramatically despite the
increase in height).

The upshot of all this is that the diagonal elements capture the variance,
or spread, in the values of individual features of a dataset, whereas the off-
diagonal elements capture the covariance between the features. In our
example, it’s the covariance of the height and weight. In theory, you can
have any number of features in the dataset (height, weight, cholesterol
level, diabetes status, etc.). If so, the matrix we’ve just calculated—also
called the covariance matrix—will get bigger and bigger, and each off-
diagonal element will capture the covariance of a different pair of features.
But it’ll always remain square and symmetric.

All this analysis has been leading up to this statement: The eigenvectors
of a covariance matrix are the principal components of the original matrix
X. Explaining exactly why requires far more analysis, but here’s an
intuition that might help: The covariance matrix describes how the
dimensions relate to one another, and the eigenvectors of the covariance
matrix yield the primary dimensions along which the original data vary. It’s



challenging, however, to arrive at the intuition, so we’ll leave that aside;
rather, let’s focus on how to make use of the statement.

You start with, say, an m×2 matrix X, with m rows and 2 columns,
where m is the number of individuals and 2 is the number of features.
Calculate the mean-corrected covariance matrix XT.X. This will be a 2x2
square, symmetric covariance matrix. Find its eigenvectors and eigenvalues.
Then, for each eigenvector of the covariance matrix, the associated
eigenvalue tells you how much variance there is in the data along the
direction of the eigenvector. For example, you might discover—once you
calculate the two eigenvectors and their eigenvalues—that almost all the
variation in the original data lies in the direction of one of the eigenvectors
(the major axis of the ellipse). You can ignore the other direction, for it tells
you little. A 2D problem has been reduced to a 1D problem. All you must
do now is project the original data onto the axis represented by that one
eigenvector.

Again, reducing 2D to 1D is trivial and usually unnecessary. But if the
data has hundreds of features (with each feature describing, say, some
aspect of an individual), then finding the handful of eigenvectors of the
covariance matrix or the principal components of the original dataset makes
our task immensely easier, in terms of understanding the patterns hiding in
the data.

It’s worthwhile examining another example problem, which John Abel,
a postdoc on Brown’s team, often uses to highlight ways in which PCA may
be useful. Let’s say we have a dataset of vehicles that are categorized based
on six features, such as the height, length, number of wheels, number of
passengers, size, and shape. Each feature corresponds to a dimension along
which the vehicle is being analyzed. Most of the variation in this dataset
will likely lie along the dimensions that map onto the size and shape of
vehicles. If you did principal component analysis on this dataset, the first
principal component would capture most of this variation. And if your
intent was to use the variation in size and shape to classify the vehicles,
then the first principal component would be extremely useful. But what if
the vehicles had one other feature: say, number of ladders? The only type of



vehicle that would have ladders would be a fire truck. All other vehicle
types would have zero ladders. So, in the original dataset, there would be
very little variation along this dimension. If you did PCA, and looked only
at the first principal component, it would not be informative about the
number of ladders. If your task were to classify vehicles as fire trucks, then
finding the first principal component and discarding the rest (particularly,
information about the number of ladders) would likely make it impossible
to tell which vehicle was a fire truck and which one wasn’t. As Kenny
Rogers sang, “You’ve got to know when to hold ’em and know when to fold
’em.”

THE IRIS DATASET
Many books and lectures on machine learning invariably mention the Iris
dataset. It is data about, as the name suggests, irises. The data were first
formally published in a 1936 paper titled “The Use of Multiple
Measurements in Taxonomic Problems,” by Ronald Aylmer Fisher, a British
biologist, mathematician, statistician, and geneticist, among other things.
Fisher was also a staunch eugenicist. It is little wonder that the paper,
published originally in the Annals of Eugenics and now made available
online by the journal Annals of Human Genetics, comes with this
disclaimer: “The work of eugenicists was often pervaded by prejudice
against racial, ethnic and disabled groups. Publication of this material
online is for scholarly research purposes [and] is not an endorsement or
promotion of the views expressed in any of these articles or eugenics in
general.”

The Iris dataset is a bit of a marvel as a didactic tool for modern
machine learning. Fisher used it to illustrate some statistical techniques. But
he wasn’t the creator of the data. They were collected, painstakingly, by an
American botanist named Edgar Anderson, who, in his paper titled “The
Irises of the Gaspe Peninsula,” poetically recalled how he went about
gathering them. Anderson wrote about the abundance of these flowers on a
stretch from L’Isle-Verte to Trois-Pistoles on the peninsular coast in



Quebec, Canada: “There for mile after mile one could gather irises at will
and assemble for comparison one hundred full-blown flowers of Iris
versicolor and of Iris setosa canadensis, each from a different plant, but all
from the same pasture, and picked on the same day and measured at the
same time by the same person with the same apparatus. The result is, to
ordinary eyes, a few pages of singularly dry statistics, but to the
biomathematician a juicy morsel quite worth looking ten years to find.”

Anderson’s data, as collated in Fisher’s paper, were of three types of
irises: Iris setosa, Iris versicolor, and Iris virginica. For each flower,
Anderson measured four characteristics, or features: the sepal length, the
sepal width, the petal length, and the petal width. The sepal is the green,
leaflike protection around a flower bud that opens out underneath a
blossoming flower. There are 50 entries per type of flower. All those data
are captured in a 150x4 matrix (150 rows, one row for each flower, 4
columns, one column per feature of the flower). There’s also a 150-column
vector (or the fifth column of the matrix) that tells you the type of the
flower. We’ll leave this information aside for now.

Here’s our problem: Can we visually discern any structure or pattern in
this dataset? We cannot plot the data, because there are four features, and
hence, each flower exists as a vector in 4D space. So, we cannot visually
tell anything about the axis or axes along which you find the most variance
among the flowers. What if we find the two main principal components and
project the data down to 2D space? Then we can plot the data and see if any
pattern emerges.

We start with the data matrix X, which contains the information about
150 flowers. Assume X is mean-corrected.

The covariance matrix is: XT.X
Because X is a 150x4 matrix and XT is a 4×150 matrix, the covariance

matrix is the dot product of a (4×150) matrix with a (150×4) matrix. So, it’s
a (4×4) matrix. Given that the covariance matrix is square symmetric with
real values, it has 4 orthogonal eigenvectors. So, each eigenvector is a 4D
row or column vector. Put the four of them together, and you get another
(4×4) matrix. Call it W.



We must ensure that W is ordered: The first column is the eigenvector
with the largest eigenvalue, the second column with the next biggest, and so
on. The first eigenvector is the direction in which the data have the most
variance; the variance associated with the next eigenvector is a little less,
and so on.

We’ll take the first two eigenvectors. These are our two main principal
components. We are taking two so that we can plot and easily visualize the
data; within the confines of an ML algorithm, you can work with any
number of lower dimensions. Arrange the two eigenvectors side by side,
and we get a 4×2 matrix; call it Wr (for W-reduced).

We now must project the original dataset X onto these two axes. The
original dataset had 4 columns, or features. The transformed dataset, call it
T, will have two columns, or features. Taking the dot product of Wr and X
gives us T.

T = X. Wr
X is a (150×4) matrix.
Wr is a (4×2) matrix.
So, T is a (150×2) matrix.
Our 150 flowers have now been reduced from 4D vectors to 2D vectors.

In the original dataset, each feature, or dimension, had a meaning: sepal
length or petal width, for example. But in the 2D space, the two features
don’t have a physical meaning. But each feature in two dimensions
encapsulates something about how much each of the original dimensions
contributes to it.

Now let’s see what happens when all the 150 flowers are plotted on a
2D plane, where the x-axis is the first principal component and the y-axis is
the second principal component. You get the figure shown below. It’s kind
of hard to tell anything except that one group of points is well separated
from another, larger group.



It’s somewhat informative, but we can do more. It’s time to look at the
fifth column of data that we have kept aside. The fifth column had
associated each row in the original 150x4 matrix with a flower type. What if
we plot the same figure that we just did but give a different shape and color
(gray circle, gray square, or black triangle) to the data point, depending on
whether it’s Iris setosa, Iris versicolor, or Iris virginica. Something magical
happens. The flowers clearly cluster in the 2D plot:



We have just seen the power of principal component analysis. By
reducing the dimensionality of the data from four to two, we can visualize
the data. And it so happened that the two main principal components
captured almost all the variance in the data—there are ways to figure out
exactly how much—and the variance was such that it allowed us to clearly
see the pattern in 2D. We got lucky. However, there can be high-
dimensional data that shows considerable variance along most of, if not all,
its principal components. For example, in the 2D case, when the unit circle
was transformed into an ellipse, what if the major and minor axes of the
ellipse were almost equally long? In that case, both axes would contain
equal amounts of variation. In such a situation, there’s little benefit to doing
this analysis. You may as well stick to your original data, as there’s no way
to effectively reduce the dimensionality and not lose valuable information.

There’s another way of thinking about what we’ve just done. We
projected our data into a lower-dimensional, more computationally tractable
space and then labeled the various flowers as being of one type or another.
Here’s where machine learning comes in. If we are now given a new data
point, but it’s missing the label for the type of flower, what can we do?
Well, first we project that data point onto the same two principal
components and plot it. We can see where it lands and tell, just by
eyeballing it, the type of flower it is. Or we could use some of the
algorithms we saw earlier, such as the nearest neighbor algorithm, to
classify the new data point.

But what if we didn’t have the original labels? Let’s say Anderson,
despite his finicky data collection habits, forgot to write down the type of
flower alongside each row describing the four features of the flower. What’s
an ML engineer to do?

Well, there’s a whole field called unsupervised learning that tries to find
patterns or structure in unlabeled data. One analysis method that might be
considered a precursor to unsupervised learning is clustering, an intuitive
example of which is called the K-means clustering algorithm. It needs to be
told how many clusters there are in the data. Given that information, the
algorithm iteratively tries to find the geometric center of each cluster. Once



it finds those “centroids,” it assigns the appropriate label (in this case, 0, 1,
or 2) to each data point, depending on its closest centroid. We can run this
algorithm on the low-dimensional Iris dataset, sans the labels. The
algorithm finds three centroids, shown as black dots.

You can see that despite our not knowing the flower types, the
combination of principal component analysis and K-means brings us close
to identifying distinct clusters in the dataset. Though, if you look closely,
the clusters identified in this manner don’t exactly match up with the
original clusters, but they are close. Also, of course, in this case we
wouldn’t know what each cluster meant—is it Iris setosa, Iris versicolor, or
Iris virginica? Nonetheless, the ability to find clusters in data, particularly
high-dimensional data, is invaluable.

We now have the tools to tackle the problem we opened the chapter with
—Emery Brown and his team’s work with people under anesthesia.

CONSCIOUSNESS AND ANESTHESIA
Principal component analysis could one day help deliver the correct dose of
an anesthetic while we lie on a surgeon’s table. At least, Brown and his
colleagues would like to add PCA-enabled machine learning to an



anesthesiologist’s tool kit. And their study demonstrated in no small
measure some of the steps needed to get there.

First, the data. The team collected what has to be one of the cleanest
datasets of EEG signals of people being put under an anesthetic. Ten
subjects were each administered the anesthetic propofol over a period of
about 2.5 hours. The propofol was gradually increased until the estimated
concentration of the anesthetic in the blood at a given location in the body
went from 0 to 5 micrograms per milliliter and then back down to zero.
Every two seconds, the subject was asked to respond to an auditory
command by pressing an appropriate button. The response was used to
assess their state of consciousness. Meanwhile, the researchers recorded
EEG signals using sixty-four scalp electrodes. “It’s a very rich dataset in the
sense that it [was collected] in such a tightly controlled environment,” team
member John Abel told me. Such data would have been near impossible to
gather from patients undergoing surgery in an OR. “It’s challenging to
collect EEG in the OR. Recording EEG is low on the list of priorities when
you’re actually doing surgery.”

For the PCA part of their analysis, the team looked at the EEG signals
recorded at just one location on the prefrontal cortex. Using the data
collected from that one electrode, they calculated the power spectral
density: the power in the signal as a function of frequency. So, for every
two-second time interval, this resulted in a vector of a hundred dimensions,
where each element of the vector contained the power in the signal in some
frequency band. The overall frequency ranged from 0 to 50 Hz, with each
band corresponding to a hundredth of that range.

If the subject is monitored for three hours, say, then the monitoring
generates a 100-dimensional vector every two seconds, for a total of 5,400
such vectors. Once the data acquisition and processing are complete, a
subject’s EEG is encapsulated in a (5400×100) matrix, S. Each row of the
matrix represents the power spectral density for a two-second interval; each
column represents the power spectral density in each frequency bin.



, where m = 5,400 (rows), n = 100 (columns)

The other data that’s generated apart from the time series of the power
spectral density is the inferred state of the subject: conscious or not. Every
two seconds, you get a 1 if the subject is inferred to be conscious, 0 if not.
That’s another 5,400-dimensional vector c, one entry for each 2-second
time slot.

, m = 5400

The team collected such data for ten patients. We are now ready to do
PCA. Here’s one way to go about it.

Let’s take matrices for only seven of the ten subjects. (We’ll leave three
aside for testing, which we’ll come to in a bit.) First, stack the matrices of
all seven, one below the other, so that we get a (37,800×100) matrix. The
reason for doing this? It increases the amount of information you have in
each of the 100 columns. Each column now contains the power spectral
density for not just one subject, but seven.

This giant (37,800×100) matrix is our matrix X. Perform mean
correction.

The covariance matrix is XTX, which is a (100×37,800) matrix dotted
with a (37,800×100) matrix, giving us a (100×100) matrix W. This has 100
eigenvectors and 100 eigenvalues. We’ll take the first three eigenvectors
(associated with the three biggest eigenvalues), and we get a (100×3) matrix
Wr.

These three eigenvectors are our first three principal components. It
turns out, said Abel, that the first eigenvector is not very informative with
respect to the state of consciousness. While it does capture the maximum
amount of variation in the data along that axis, that variation doesn’t reveal
much about whether a patient is conscious or unconscious. (This is the kind



of poking around that a data scientist must do to extract information from
the data.) So, we drop the first principal component and just use the next
two. So, Wr now is a (100×2) matrix.

Now we can project any subject’s high-dimensional data onto these two
principal components, or axes. This involves taking the dot product of the
matrix for one subject, a (5400×100) matrix, with Wr, a (100×2) matrix.
The result: a (5400×2) matrix. Each row of the matrix represents the state of
consciousness of the patient projected down from a hundred dimensions (of
power spectral density data) to two. There are 5,400 such states, for every
two-second time slot. If you plot these states on the xy plane, using gray
circles for “conscious” and black triangles for “unconscious” (recall that we
have this data in the form of a 5,400-dimensional vector for each subject),
here’s what you get, as an example:

This is pretty amazing. The conscious and unconscious states needn’t
have separated. But they do, albeit not very cleanly—you can see some
black triangles among the gray circles, and vice versa—and this is where
machine learning enters the picture. Given such data in two dimensions, one
can build an efficient classifier that finds the boundary that best separates
the gray circles from the black triangles. A linear classifier that finds a



good-enough straight line to separate the two clusters will do—“good” here
implies the best possible. It’s clear that there’s no line that can be drawn that
will classify all the gray circles as lying on one side and all the black
triangles as lying on the other: There’s some overlap in the data, and so,
there will be some mistakes. The task is to minimize the mistakes. The
perceptron algorithm, for instance, will never find a solution, because a
linearly separating hyperplane doesn’t exist in this case. But a naïve Bayes
classifier will find a solution, and of course, so will a k-nearest neighbor
algorithm. (In the final chapter, we’ll address this rather profound issue of
choosing a simple model versus a more complex model—a topic that is
typically referred to as the bias–variance problem, and the perils and
promises of preferring one over the other.)

Once you have trained a classifier, you can test it. This is where those
three subjects we kept aside come in. We can pretend we don’t know the
state of consciousness of the subject in any given two-second time slot. All
we have to do is project the 100-dimensional vector that captures that state
down to two dimensions (the two principal axes used above), and see what
the classifier says it should be: gray (conscious) or black (unconscious). But
we also have actual data about the state of the subject for that two-second
time slot, the so-called ground truth. We can compare the prediction against
the ground truth and see how well the classifier generalizes data it hasn’t
seen. The aim of this entire effort is to ensure that one builds a classifier
that minimizes prediction error. However, as was mentioned in chapter 2,
minimizing prediction error is no simple matter. The overall objective
matters, and the nuances depend on the exact problem being tackled. But
let’s say that the prediction error was minimized keeping the right objective
in mind. Only then can something like this be introduced into a real-world
setting, involving a patient undergoing surgery and a machine that’s
recommending the dosage of the anesthetic to an anesthesiologist, who
factors it into their decision-making process. While there’s considerably
more research and engineering required to build such a machine, predicting
the state of consciousness of a patient by using EEG data would be central
to such an effort. And principal component analysis might play a role.



So far, we have encountered situations where high-dimensional data
posed problems. PCA showed us one way to find a lower-dimensional space
in which to make sense of data. But sometimes, data in low dimensions can
be problematic. For example, what if all you had was the lower-dimensional
data that could not be linearly separated, but you wanted to use a linear
classifier, because it works so well? It’d be impossible to do so in the lower-
dimensional space. Well, you could do the opposite of what PCA does and
project the data into higher dimensions, sometimes even into an infinite-
dimensional space, where there always exists some linearly separating
hyperplane. An algorithm that used this trick and, the subject of the next
chapter, rocked the machine learning community in the 1990s.
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The Great Kernel Rope Trick

ernhard Boser was biding his time at AT&T Bell Labs in Holmdel,
New Jersey. It was the fall of 1991. He had been offered a position at

the University of California, Berkeley, but there were still three months to
his start date. At Bell Labs, he had been a member of the technical staff,
working on hardware implementations of artificial neural networks. But in
those intervening three months, he didn’t want to start a new hardware
project. Looking to keep busy, he started talking to one of his colleagues at
Bell Labs, Vladimir Vapnik, an eminent Russian mathematician, a
formidable expert in statistics and machine learning, and a recent immigrant
to the United States. Vapnik asked Boser to work on an algorithm that
Vapnik had designed back in the 1960s and that now appeared in an
addendum to the English-language translation of his seminal book,
Estimation of Dependencies Based on Empirical Data. The addendum was
called “Remarks about Algorithms.” Vapnik wanted Boser to implement the
algorithm detailed in Remark No. 4, “Methods for Constructing an Optimal
Separating Hyperplane.”

A separating hyperplane, as we saw earlier, is the linear boundary
between two regions of coordinate space: a line separating two regions of
2D space, or a plane separating two regions of 3D space, or a hyperplane
dividing some higher-dimensional space into two. Such a separating
hyperplane delineates data points into two clusters. Points that lie to one
side of the hyperplane belong to one category, and those that lie on the other
side belong to another. Given labeled data, the perceptron algorithm devised
by Frank Rosenblatt can find such a hyperplane, if one exists. However, for



a linearly separable dataset, there exists an infinity of separating
hyperplanes. And some are better than others.

Below is an example of the perceptron algorithm finding a hyperplane
that separates the circles from the triangles. It’s a perfectly valid
hyperplane, given the initial set of data on which the perceptron is trained.

Now imagine you are given a new data point, a triangle that lies close to
the original cluster of triangles. The perceptron must classify it based on the
hyperplane it previously found. Here’s what it’ll do: It’ll classify the point
as a circle (shown in gray). And it will be wrong.



It’s easy to imagine another hyperplane—shown as a dashed gray line,
say, one that’s rotated a few degrees—that would correctly classify the new
point as a triangle.

Of course, even with the new hyperplane, it’s possible that a new data
point gets misclassified. And while one can eyeball a 2D plot of points to
imagine yet another hyperplane that might do better, this is not a sustainable
method. Also, let’s not forget that this process of finding a hyperplane often
involves operating in dimensions that are far greater than two, making
visualization impossible. What’s needed is a systematic method for finding
the best possible separating hyperplane that would minimize errors when
classifying new data points. Vapnik’s method did just that: It found an
optimal hyperplane from an infinity of choices.



The first figure on the opposite page visualizes Vapnik’s algorithm.
Given some linearly separable sets of data points, the algorithm finds a

hyperplane (the black line) that maximizes the margins on either side of it.
Note that some data points are black, while the others are gray. The black
ones are nearest to the separating hyperplane. In the example, there’s one
black circle and two black triangles. The separating hyperplane is
equidistant from the black circle and the two black triangles. It’s as if we
cleared a path through the thicket of data points, a “no-one’s-land,” if you
will. By definition, no data points lie inside the path. The closest ones from
either cluster come at most to the edges, or margins, of the path, and those
are the ones in black. The hyperplane is the line that goes through the
middle of the path.



Once you find such a hyperplane, it’s more likely to correctly classify a
new data point as being a circle or a triangle than the hyperplane found by
the perceptron. Boser implemented and tested the algorithm in no time at
all. It worked.

The math behind Vapnik’s algorithm is elegant and puts to use much of
the terminology we have encountered so far. But it’s an involved analysis.
(See a pointer to an excellent exposition of the math.) We’ll aim for an
intuitive understanding.



The goal of the analysis is to find the hyperplane depicted below. Note
that the figure now has a vector w. This is the weight vector characterizing
the hyperplane and is perpendicular to it. The hyperplane is also
characterized by a bias b, which is its offset from the origin. Also note this
time that there are two black circles and one black triangle and that each
serves as an instance of data closest to the hyperplane. This is deliberate, to
make the point that the number of data points of each class that lie on the
edges of the maximally wide path can be anything; it depends on your
training dataset. The only guarantee is that there is bound to be, by
definition, at least one of each category.

Let’s say that circles are labeled -1 and triangles +1. There are n data
points (both circles and triangles). After some nifty vector algebra, Vapnik
proved that the weight vector that maximizes the separation between points
on either side of the hyperplane can be found by minimizing the function

, where  is the magnitude of the weight vector, while



simultaneously satisfying this equation for every data point xi (a vector) and
its associated label, yi (a scalar, equal to -1 or +1):

yi(w.xi + b) ≥ 1

w.xi is the dot product of the weight vector with the ith data point. The
above equation is also called the margin rule; it ensures that points on either
side of the hyperplane can get only so close and no closer, thereby creating
the no-one’s-land.

So, we have some function, given by , which must be minimized.

If it were simply a question of finding the minimum of a quadratic function
(a polynomial of degree 2, which is what we have), that would be
straightforward. The function is bowl-shaped, and we can use gradient
descent to find the minimum. But minimizing while accounting for the
second set of equations yi(w.xi + b) ≥ 1, complicates things somewhat.

We now have a constrained optimization problem. We must descend the
bowl to a location that simultaneously satisfies the constraint and is a
minimum. One solution for such a problem was devised by Joseph-Louis
Lagrange (1736–1813), an Italian mathematician and astronomer whose
work had such elegance that William Rowan Hamilton—we met Hamilton
in chapter 2; he was the one who etched an equation onto the stones of an
Irish bridge—was moved to praise some of Lagrange’s work as “a kind of
scientific poem.”

NOT JUST THE BOTTOM OF THE BOWL
Before we come to Lagrange’s work, here’s a fun, but entirely
unreasonable, mental exercise to motivate the mathematical discussion to
follow. Imagine you are clambering up the slope of a hill over a valley. You
are a prospector and have been told that there is a vein of some rather exotic
mineral beneath the hills that forms a circle centered on the valley floor and



about a mile in radius. It’s rather far away to dig horizontally toward the
vein from the bottom of the valley. But there’s another option. The
surrounding hillsides go up very gently. You could walk up the slopes such
that you were over the vein and, yet, be at a height that’s far less than a mile
—say, a few hundred feet at most—and dig down from there. So, you walk
up and reach a location that’s directly over the supposed vein of mineral
underground. But there’s a problem. As you walk the hillside along a
circular path around the valley, making sure you are always above the
mineral vein, you are tracing a circle, but your altitude might go up and
down, because the hillside is not necessarily level. Your job is to find the
place on that circular path that has the least altitude, so that when you do
drill down, it’ll require the minimum amount of digging.

What we have just done is pose a constrained optimization problem. If
you had simply been told to find the place with the least altitude in the
valley (the minimum), well, that would have been easy. You just walk down
to the valley floor, doing your own version of gradient descent. But now
you must find a minimum altitude (a value along the z, or vertical,
direction) given a constraint, which is that you must be a certain horizontal
distance away from the valley’s bottom. The x and y coordinates (measured
along the plane of the valley floor) must lie on a circle with a radius of one
mile, with the circle centered on the middle of the valley.

Here’s a depiction of the problem:



The dashed circle is the mineral vein. The solid wavy line is the path
you walk along on the slopes, such that you are directly above the vein.
Note that the altitude varies as you walk along the solid line, and you must
find the spot where the altitude is at a minimum (there may be multiple
such locations). Of course, if you were an actual prospector, you could just
walk around with an altimeter and find the lowest point on that path and
start drilling down. How would you do it mathematically?

The mathematical equation depicting the surface shown above is a bit
gnarly:

f(x, y) = x2 + sin4(xy) + xy

Given the x and y coordinates, the function calculates the height of the
surface in the z direction. Let’s take a much simpler function to work with:

f(x, y) = xy + 30

Here’s how the function looks. You can see that it rises along two sides
and drops off along two other sides. Such a surface has a saddle point, the
flat bit in the middle, but it has no maximum or minimum.



Now think of our constrained optimization problem. Let’s add the
constraint that the (x, y) coordinates must lie on a circle of radius 2. So, the
(x, y) coordinates are constrained by the equation of a circle:

x2 + y2 = r2 = 22 = 4

In the figure, the dashed circle lies on the xy plane. The solid circle is
what you get when you satisfy the constraint as you move along the 3D
surface. Even though the original 3D surface sans the constraints had no
minimum or maximum, the constrained path along the surface does have a
minimum and maximum.

Lagrange came up with an elegant solution to find the extrema (the
minima and the maxima) of such a constrained path. To understand his
solution, we need a few different ways of looking at the problem. For
starters, here’s a depiction of the surface using contour lines (or the terraces
of rice paddies on hillsides that we encountered earlier, which are paths
along the hillsides that are at the same altitude, or height).

Because we must find the minimum and maximum along the solid
circle, we are really interested in the smallest and the largest values of the
contour lines, respectively, that touch the solid line. It’s clear that we can
ignore contour lines that don’t intersect the constraining curve. They are of



no interest, for they clearly don’t satisfy the constraint. The contour lines
that either touch or intersect the curve do satisfy the constraint at certain
points. Let’s think about them, while focusing on finding the minimum,
first. To find a minimum, we need to go down a slope. As we do, we
encounter different contour lines, including ones that intersect the
constraining curve, one that just touches the constraining curve at a single
point, and then contour lines that don’t intersect the curve. As we move
from higher ground to lower ground, the values of these contour lines, or
the heights they represent, keep decreasing. The contour line that grazes the
constraining curve is the one of interest to us. It represents the minimum
height while simultaneously satisfying the constraint. The same analysis
holds for finding the maximum. In both cases, we are interested in contour
lines that tangentially touch the constraining curve.

It’s easier to see this in 2D. Here are the contour lines projected down to
the 2D xy plane (fewer lines are shown for clarity). Note that the
constraining curve is a circle, as it should be.



The contour lines get darker as they decrease in value (the surface is
falling) and fade away with increasing value (the surface is rising). In this
figure, you can see four contour lines touching the constraining curve. We
must find the values of those contour lines. They represent the extrema of
our surface, given the constraint.

Lagrange noticed that the tangent to the constraining curve and the
tangent to the contour line, at each extremum, are essentially the same line
at the point of contact. If we draw an arrow that is perpendicular to each of
those tangent lines, those two arrows will point in the same direction. But
what does an arrow that’s perpendicular to the tangent to the contour line
represent? We have seen it before. It’s the gradient of the surface, the
direction of steepest ascent. So, what we are saying is that at the point
where the tangents to the constraining curve and the contour line are
parallel, or are in essence the same line, their gradients point in the same
direction.

Recall that the gradient is a vector. The fact that two gradients point in
the same direction doesn’t mean they have identical lengths, or values.
They may differ in their magnitude: One could be a scalar multiple of the
other.

For our example function, the gradient of the 3D surface is given by:
∇f(x,y); Read that as “delta f of x y”
Let’s call the constraining function g (x,y). So:

g (x,y) = x2 + y2 = 4

The gradient of the constraining function is:

∇g(x,y)

Lagrange’s insight was:

∇f(x,y) = λ∇g(x,y)



The gradient of one function is a scalar multiple, λ, of the gradient of the
other function.

We saw in chapter 3 that the gradient of a function that represents a
surface in 3D space is a two-dimensional vector. The first element of the
vector is the partial derivative of the function with respect to x, and the
second element of the vector is the partial derivative with respect to y.

f(x,y) = xy + 30

Similarly,

g (x,y) = x2 + y2

Now, according to Lagrange’s method:

∇f(x,y) = λ∇g(x,y)

Or,



This gives us two equations:

y = λ2x and x = λ2y

But we have three unknowns, (x, y, λ), and only two equations. We need
at least one more equation to solve for all the unknowns. That’s, of course,
the constraining equation:

x2 + y2 = 4

Solving these three equations, we get values for the three unknowns:

We don’t really care about the value for lambda. That was just a
placeholder, a trick to let us calculate the values for the (x, y) coordinates of
the extrema.

Those coordinates are:

Plug these values into the equation representing the surface, and you get
the values for the corresponding z coordinates:



There are two points that represent the constrained minima and two that
represent the constrained maxima. This makes sense, because the surface is
symmetric about the center, and the constraining curve is a circle. Here’s
what the points look like in the 2D and 3D contour plots:

More generally, the problem of constrained optimization can be thought
of as finding the extrema of the so-called Lagrange function, given by:

L(x,λ) = f(x) -λg(x)

The logic here is straightforward. First, let’s take the gradient of both
sides of this equation.

∇L(x,λ) = ∇f(x) -∇λg(x)

At the extrema, the gradient of L must be zero. If we set the left-hand
side to zero, then we get back the equality that we analyzed above:



∇f(x) = ∇λg(x)

What this means is that the optimization problem boils down to finding
the extrema of the Lagrange function. The example we looked at was rather
easy, and we could find the extrema analytically. But in most real-world
cases, the process is far more complicated. Also, we looked only at a
constraint that was an equality. Constraints can also be inequalities (say,
something must be greater than or equal to some number). Regardless, it’s
this method, often called the method of Lagrange multipliers (λ being the
Lagrange multiplier) that will help us move farther along in our discussion
of finding the optimal separating hyperplane.

THE OPTIMAL MARGIN
Our purpose, before we segued into talking about Lagrange multipliers, was

to find the weight vector w such that  was minimized. There was an

additional constraint, which was that the following equation (the margin
rule) had to be satisfied for data points that either lie on or beyond the
margins of no-one’s-land:

yi(w.xi + b) ≥ 1

Well, we are in Lagrange territory.

You’d write down the Lagrange function by treating  as f(x) and

(yi(w.x i+ b)-1) as g(x) and then follow the process described above.
However, the equations that you get are not always solvable analytically,
and you need specialized mathematical techniques to find the Lagrange
multipliers. (There are as many of these multipliers as there are constraining
equations, and we have one such equation for each data point.)



We’ll focus on the results of the constrained optimization. The first
result is that the weight vector turns out to be given by this formula:

Each αi (alpha sub-i) is a scalar and is specific to a given data point and
its associated label, (xi, yi). These alphas are the Lagrange multipliers. (We
are calling them alphas now instead of lambdas, to be consistent with much
of the literature.) Given some training data, specialized optimization
techniques can give us the alphas, and thus help us calculate the weight
vector and the bias term. A further key insight that arises from the
mathematical analysis is that the alphas depend only on the mutual dot
product of the vectors representing the data samples. Keep this in mind.

The weight vector, as you can see from the equation above, turns out to
be a linear combination of vectors that represent the data samples, with the
coefficients of the combination being the alphas. This is an amazing result.

So, once we have the alphas, we can calculate the weight vector, which
along with the bias, b, determines the hyperplane. Then it’s easy to figure
out whether a new data point—let’s call it u—lies to one side of the
hyperplane or the other.

The label for a new data point u 

We can substitute the value for w from the above equation, to get the
second result, the decision rule:

The label for a new data point u



Note that the decision rule similarly depends only on the dot product of
the new sample, with each of the vectors representing the training data. It
turns out that αi will be zero for samples that don’t lie on the margins; so,
effectively, we are dealing with only those data points that lie on the
margins.

The plot above shows only the data that lie on the margins. These data
points are, of course, vectors, and because they help define, or anchor, the
margins, they are called support vectors. Also, all this analysis holds for
vectors of any dimension, not just the 2D vectors we used for easy
visualization.



If this rather involved discussion got us to appreciate one thing, it is this:
The optimal separating hyperplane depends only on the dot products of the
support vectors with each other; and the decision rule, which tells us
whether a new data point u is classified as +1 or -1, depends only on the dot
product of u with each support vector. So, if your dataset had 10,000 data
points, but only ten of them were support vectors, you would need to worry
about calculating only the mutual dot products of these ten vectors and the
dot product of the new data point with each support vector. (This recap
glosses over the elaborate optimization that’s required to find the αi for each
support vector.)

Regardless, it’s a rather extraordinary finding, and it falls out of the
algorithm that Vapnik designed in 1964. It’s the algorithm that Boser
worked on at Bell Labs in the fall of 1991. He finished implementing and
testing it for linearly separable datasets, but he still had time to kill before
moving to Berkeley. Vapnik suggested that Boser try classifying linearly
inseparable datasets by projecting the data into higher dimensions. Boser
began thinking about it. The idea is that even though the data is linearly
inseparable in its original, low-dimensional space, one can project it into
some higher dimension, where it could potentially be linearly separable,
and one could use the optimal margin classifier to find the higher-
dimensional hyperplane. If you projected the hyperplane back into the low-
dimensional space, it’d look like some nonlinear curve separating the data
into clusters.

There are many ways to project data into higher-dimensional spaces. For
our purposes, such projections come with two major concerns. One has to
do with Vapnik’s original algorithm, which requires taking mutual dot
products of data samples. Let’s say the original dataset was in ten
dimensions. That would require taking dot products of ten-dimensional
vectors. If this data is linearly inseparable in 10D space, and if it were to be
projected into 1,000 dimensions, where the data cleanly clumped into two
separable categories, then each data point would be represented by a 1,000-
dimensional vector. The algorithm requires dot products of these extremely
large vectors. As you go into higher and higher dimensions, searching for



that optimal space where you can find a linearly separating hyperplane, the
computational costs of calculating dot products can get prohibitively high.

The other concern has to do with the fact that sometimes one wants to
project data into a space that has infinite dimensions. (We’ll soon see how
that’s possible.) This has enormous advantages, because in an infinite-
dimensional space, you can always find a separating hyperplane. But it isn’t
obvious how to compute dot products of vectors of infinite dimensions, let
alone store such vectors in computer memory. How, then, do you find the
hyperplane?

One morning, on their way to work together, Boser began discussing his
project with his wife, Isabelle Guyon, an ML expert whose mind had a
much more mathematical bent. She also worked at Bell Labs. Guyon had
thought a lot about such problems, especially for her Ph.D. thesis. She
immediately suggested a solution that would bypass the need to compute
dot products in the higher-dimensional space. It involved a neat trick, one
whose history goes back to work by other Russian mathematicians in the
1960s. Guyon’s insight, and her subsequent involvement in the project with
Vapnik and Boser, led to one of the most successful ML algorithms ever
invented.

THE KERNEL TRICK
In the early 1980s, Isabelle Guyon was a young engineering student in
Paris, interested in cybernetics and looking for an internship. One of her
professors, Gérard Dreyfus, who later became her dissertation advisor, told
her to read a paper by a physicist named John Hopfield. The paper
described a novel way of constructing neural networks that could be trained
to store memories. These networks, which came to be called Hopfield
networks (the subject of the next chapter) and were designed for storing
memories, caused a flutter among neural network researchers. As an intern,
Guyon began working on them and continued the research while doing her
master’s degree. She developed a more efficient method for training
Hopfield networks and tried to use those networks to classify images of



handwritten digits. But the peculiar nature of the networks made them
rather ineffective at such classification tasks. Guyon moved on to other
algorithms for pattern recognition. She picked up the “bible” of the field at
the time, a book on pattern classification by Richard Duda and Peter Hart—
we met Hart in chapter 5, as the co-inventor of the Cover-Hart k-nearest
neighbor algorithm—and began implementing and benchmarking various
pattern recognition algorithms.

Two ideas that Guyon encountered while obtaining her doctorate
directly connect to her later work at Bell Labs. One was the idea of optimal
margin classifiers. Even as she built linear classifiers using Hopfield
networks and other algorithms, Guyon became aware of work by two
physicists, Werner Krauth and Marc Mézard, who were working nearby in
Paris, at the École Normale Supérieure. Krauth and Mézard had published a
paper in 1987 showing how to train a Hopfield network such that the
network stored memories with minimum overlap. Their idea was, in a
manner of speaking, an algorithm for finding an optimal margin to separate
two regions of coordinate space. Their paper was published a year before
Guyon defended her Ph.D. thesis, for which she had tested numerous
algorithms for linear classification—but none of these was an optimal
margin classifier, meaning the algorithms found some linear boundary, not
necessarily the best one. Guyon could have used Krauth and Mézard’s
algorithm to implement an optimal margin classifier; she didn’t. “One of the
examiners of my Ph.D. asked me why I did not implement the algorithm of
Mézard and Krauth and benchmark it against the other things I was trying. I
said, ‘Well, I didn’t think it would make that much of a difference,’ ” Guyon
told me. “But the reality is that I just wanted to graduate, and I didn’t have
time.”

So, when Bernhard Boser told Guyon about Vapnik’s optimal margin
classifier, which he, Boser, had implemented in the fall of 1991, it rang a
bell. Vapnik’s request that Boser push data that was linearly inseparable in
lower dimensions into some higher dimensions rang even louder bells.
Guyon had come across such ideas while doing her Ph.D. One of the key
papers she had studied on the subject was written in 1964, by three Russian



researchers, M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, who
had worked in the same institute as Vapnik, but independently of him.

In their paper, the Russian trio, inspired by ideas in physics, had
developed an algorithm that allowed Rosenblatt’s perceptron to find
nonlinear boundaries. We can cut to the chase and examine the essence of
what they did, eschewing much of the contortions that imbue early works.
Recall that Rosenblatt’s perceptron algorithm works only when the data is
linearly separable. Here’s a simple dataset for which it wouldn’t work:

In the figure on the left, there’s no way to draw a straight line, or a
linearly separating hyperplane, to demarcate the circles from the triangles.
But if we project these data into three dimensions in such a way that the
triangles rise above the circles (the figure on the right), we can find such a
separating hyperplane.

Here’s one way to do it. Each original data point is two-dimensional,
characterized by features x1 and x2 (the values along each of the two axes,
in this case) and a label y, which can be either 1 (circles) or -1 (triangles).
We can project these data into three dimensions by creating a third feature,
(x12 + x22), which can be plotted on the z-axis. So, now each data point in
three dimensions is represented by (x1, x2, x12 + x22), for the values along
the x, y, and z axes. When plotted in 3D, the triangles rise above the circles;
a perceptron can find the depicted hyperplane to separate the two.



For the problem we’ve just tackled, it wasn’t very difficult to come up
with a third feature to help separate the data into two clusters. But what if
the 2D data look like this?

Now it’s not immediately obvious what to choose for the third feature;
(x12 + x22) won’t work. We need a more disciplined way to project data into
higher dimensions. The method would have to work even if the lower-
dimensional space were itself much higher than 2D (thus making it
impossible for us to visualize). Also, once we project the data into higher
dimensions, finding a linearly separating hyperplane in the augmented
space involves taking the dot product of the higher-dimensional vectors,
which can be computationally intractable. So, somehow, the algorithm
needs to simultaneously do two things: (1) create new features such that the
data can be mapped into some higher-dimensional space, and (2) avoid
having to perform dot products in that new space and still be able to find the
separating hyperplane.

Aizerman, Braverman, and Rozonoer showed just how to do that for the
perceptron algorithm in their 1964 paper. In their reformulation of the
algorithm, the weight vector characterizing the hyperplane is cast in terms
of a linear combination of the vectors that make up the training dataset, and



the decision rule to classify a data point depends only on the dot product of
that data point with every other data point in the training dataset.

We’ll explore the ideas put forth by Aizerman, Braverman, and
Rozonoer but avoid using the exact mappings the trio used; instead, we’ll
use a mapping that was developed about a decade later, as it’s simpler to
understand. Let’s start with data in two dimensions and map it into data in
three dimensions, using three features. Given a vector xj in the low-
dimensional space (2D in our case), it gets mapped to the vector φ(xj) in the
high-dimensional space (3D in our case).

xj → φ(xj)

Our map goes like this: 

So, if a point a in 2D is given by [a1 a2] and a point b is given by [b1
b2], then the same points, when projected into 3D space, become

 and .

To find a linearly separating hyperplane, we’d have to take dot products
of vectors in the higher-dimensional space. In this toy example, it’s no skin
off our backs to perform dot products of all the vectors in the 3D space. But
in the real world, the dimensionality of the augmented space can be
humungous, making the computation far too resource-intensive (in terms of
time and memory requirements). But Aizerman, Braverman, and Rozonoer
showed us a cool trick that avoids this complication altogether.

To restate, to find the linearly separating hyperplane in the higher-
dimensional space, we have to calculate dot products of φ(xj) with φ(xi), for
all combinations of i and j.

What if we could do calculations with the two lower-dimensional
vectors, xi and xj, that gave us the same answer as the dot product of the
corresponding vectors in the higher-dimensional space? What if we could
find a function K, such that:



K (xi, xj) → φ(xi). φ(xj)

In other words, if we were to pass the two low-dimensional vectors to
the function K, then the function should output a value that equals the dot
product of the augmented vectors in the higher-dimensional space. Let’s
look at a concrete example of the vectors a and b:

a = [a1 a2]

b = [b1 b2]

= (a12b12 + a22b22 + 2a1a2b1b2)

We need a function K, which produces the same output. Here’s one such
function:

K (x, y) = (x.y)2

Feed this function the two lower-dimensional vectors, a and b, and see
what happens:

K (a, b) = (a.b)2

= ([a1 a2].[b1 b2])2



= (a1b1 + a2b2)2

= (a12b12 + a22b22 + 2a1a2b1b2)
So, K (a, b)= φ(a).φ(b)
This is stupendous. Because we have been toying with 2D and 3D

spaces, the import of this may not be obvious. Let’s, for a moment, imagine
that a and b are 100-dimensional vectors and that φ(a) and φ(b) are million-
dimensional. If we can find the appropriate mapping of xj → φ(xj), such
that K (xi, xj)→ φ(xi).φ(xj), then we will be in a position to calculate the dot
products of the high-dimensional vectors without ever stepping into that
million-dimensional space; we can compute in one hundred dimensions.

The function K is called a kernel function. The method of using a kernel
function to compute dot products in some higher-dimensional space,
without ever morphing each lower-dimensional vector into its monstrously
large counterpart, is called the kernel trick. It’s one neat trick.

We can visualize the “kernelized” perceptron algorithm, using the
mapping we’ve just analyzed. Let’s start with circles and triangles that are
linearly inseparable in two dimensions (see above). Each data point is
projected into three dimensions, and then the perceptron algorithm is used



to find a linearly separating hyperplane. The figure opposite shows what
happens in three dimensions.

You can see that two types of data points are clearly separated in 3D,
allowing the algorithm to find a plane (in this case, any plane) that separates
the circles from the triangles. Now, given any new data point in 2D, we can
project it into 3D space and classify it as a circle or a triangle, depending on
its position relative to the hyperplane. When this delineated 3D space is
projected back into the original 2D space, we get a nonlinear boundary that
separates the circles from the triangles (see figure, below).

Guyon had played around with kernels during her Ph.D. thesis, and she
did so even after she started working. In particular, she had been using
something called a polynomial kernel, introduced by MIT computational
neuroscientist Tomaso Poggio in 1975. Here’s the general form of the
polynomial kernel:

K (x, y) = (c + x.y)d, where c and d are constants



If you choose the constants to be 0 and 2 for c and d, respectively, you’ll
get back the kernel we just used for the perceptron algorithm:

K (x, y) = (x.y)2

Let’s play around with one more variation, where the constants are 1
and 2, to get a better sense of why this works.

K (x, y) = (1 + x.y)2

For 2D data points:

a = [a1 a2]



b = [b1 b2]
We have:

K (a, b) = (1 + [a1 a2].[b1 b2])2

= (1 + a1b1 + a2b2)2

= 1 + (a1b1 + a2b2)2 + 2 (a1b1 + a2b2)

= 1 + a12 b12 + a22 b22 + 2a1a2b1b2 + 2a1b1+ 2a2b2

The question now is this: What should the mapping xj → φ(xj) be, such
that:

K (xi, xj) → φ(xi).φ(xj)

With a little bit of fiddling around, we can discover the mapping. (Don’t
worry if it’s not immediately obvious. This is not trivial; in fact, finding
such mappings is quite the art.)

xj → φ(xj)

(I have added commas to separate the elements of the larger vector, just
for clarity; normally, one wouldn’t use commas.)

So:



We have the 2D coordinates, or vectors, a and b transformed into their
6D counterparts, φ(a) and φ(b). The question is: Does φ(a).φ(b), evaluated
in the 6D space, give the same result as the kernel function operating on a
and b in 2D space? Let’s check:

φ(a).φ(b) = 

= 1 + a12b12 + a22b22 + 2a1a2b1b2 + 2a1b1 + 2a2b2

= K (a,b)

Voilà! They are the same. So, the kernel function lets us calculate the
dot product of 6D vectors, but we never have to formulate those vectors, or
compute, in 6D space. For our polynomial kernel, we used the constant
values of 1 and 2. You can verify that the kernel function works for any
value of the constants, and so we can project the data into ever-higher
dimensions, where we are more and more likely to find a linearly separating
hyperplane.

(An aside: The size of the higher-dimensional space is given by

; n is the size of the original, low-dimensional space,

and d is the value of the constant used in the polynomial kernel. Another
aside: Why is it so important to work with linear classifiers or to do linear
regression?)

Guyon knew of these kernels, but she hadn’t connected the dots between
optimal margin classifiers that worked with linearly separable data and
linear classifiers, like the perceptron algorithm, that could use the kernel
trick to do their magic in higher dimensions. That would have to wait until
1991, when her husband told her about Vapnik’s idea of pushing data into



higher dimensions by creating new features and building an optimal margin
classifier in the high-D space. These features could be generated by
multiplying individual features, for example:

xj → φ(xj)

From 2D to 3D: [x1 x2] = [x1 x2 x1x2]
Or, from 3D to 7D:

[x1 x2 x3] = [x1 x2 x3 x1x2 x1x3 x2x3 x1x2x3]

Vapnik wanted Bernhard Boser to implement the algorithm by creating
new features in this manner and then explicitly do the dot products in the
higher-dimensional space. When Boser mentioned this to Guyon that
morning on their way to work, she immediately saw the futility of such an
algorithm. “I told Bernhard, there’s no point in making these [dot] products
of features,” she said. “Let’s use the kernel trick.” She explained the trick to
her husband and then quickly rewrote Vapnik’s optimal margin algorithm to
use a kernel. “I rewrote it in a way that made it apparent how to kernelize it.
Everywhere there was a dot product [in higher dimensions], I replaced it by
a kernel. Once you see that, it’s trivial,” she said.

We saw earlier that the hyperplane found using a kernel and then
projected back into two dimensions might look like this:



Even a cursory visual inspection suggests that the boundary is too close
to the circles, and it’d be easy to misclassify a new point as a triangle when
in fact it is a circle. The solution would be to use an optimal margin
classifier in the higher dimensions, rather than a perceptron. The algorithm
would find support vectors in the higher dimensions and the appropriate
hyperplane running through the middle of no-one’s-land. Projected back to
2D, you’d get this new boundary:



Now the chances of correctly classifying new data points are higher
compared with those for the perceptron’s sub-optimal decision boundary.

Initially, Guyon and Vapnik argued over whether the kernel trick was
important. Boser, meanwhile, was more practical. “This was a very simple
change to the code. So, I just implemented it, while [they] were still
arguing,” Boser told me.

Guyon then showed Vapnik a footnote from the Duda and Hart book on
pattern classification. It referred to the kernel trick and to the work of
mathematicians Richard Courant and David Hilbert, giants in their fields.
According to Guyon, this convinced Vapnik. “He said, ‘Oh, wow, this is
something big,’ ” Guyon said.

The reference to Hilbert is particularly enticing. So-called Hilbert spaces
allow for infinite-dimensional vectors. There’s a kernel, called the radial
basis function (RBF) kernel, that equates K (a, b) with the dot product of
two corresponding high-dimensional vectors φ(a) and φ(b), even though it’s
impossible to do the mapping from the low-dimensional vector to the high-
dimensional space (a → φ(a), for example). That’s because the higher-



dimensional space is infinite. And yet, one can calculate K (a, b). The
import of this is rather stunning: Given some simple assumptions about the
dataset, it’s possible to turn the problem, regardless of the complexity of the
decision boundary in lower dimensions, into a linearly separable problem in
infinite dimensions. For the curious, here’s the kernel function:

The RBF kernel is the “Brad Pitt of kernels,” Weinberger joked in his
lectures on machine learning. It’s so perfect, “people sometimes faint when
they see it.”

Understanding Weinberger’s paean to the RBF kernel demands a segue
into decision boundaries. A decision boundary through some coordinate
space (such as 2D or 3D) can be thought of as a function. For example, the
nonlinear decision boundary we found earlier, using the kernelized
perceptron algorithm, is equivalent to finding a function that takes in two
values, x1 and x2, and helps us draw a curve that resembles the decision
boundary. These boundaries can be extremely complex, especially when the
input space itself is considerably higher dimensional than the two or three
we have been visualizing and when the two classes of data are way more
mixed than we have seen thus far. An RBF kernel, because it can help an
algorithm always find a linearly separable hyperplane in some infinite-
dimensional space, can find any decision boundary, or function, when
mapped to the lower-dimensional space, no matter how complex. It’s said to
be a “universal function approximator.” Keep this phrase in mind, for we’ll
devote an entire chapter to it when we discuss how certain types of artificial
neural networks are also universal function approximators; given enough
neurons, they can solve any problem.

The combination of Vapnik’s 1964 optimal margin classifier and the
kernel trick proved incredibly powerful. No dataset was off-limits now. It
didn’t matter how intermingled the different classes of data were in the
original low-dimensional space. One could project the data into extremely
high dimensions and then use the optimal margin classifier to find the best



linearly separating hyperplane, but do so using the kernel function, and thus
avoid ever having to compute in the high-dimensional space.

Boser did most of the work implementing and testing the algorithm,
particularly on the favorite dataset of the time: the Modified National
Institute of Standards and Technology (MNIST) database of handwritten
digits. Meanwhile, Guyon took it upon herself to write a paper to be
submitted to the annual Computational Learning Theory (COLT)
conference. Her colleagues and friends at Bell Labs, particularly Esther
Levin and Sara Solla, had written papers for this prestigious conference. “It
was kind of thought [that] if you have a paper in COLT, you are a real
machine learning person, because it’s a hard-core theory conference,”
Guyon said.

Guyon and Boser went to meet the COLT conference organizers,
Manfred Warmuth and David Haussler. “We asked them whether they
thought it was a paper that would fit into that conference. We gave a talk,
and then they told us, ‘Oh, yeah, we like application papers.’ For us, it was
the most theoretical work that we ever did, and for them, it was an
application paper,” Guyon told me, laughing at the memory.

Warmuth recalled being approached by Guyon and Boser. He and
Haussler were fascinated by the simplicity of the technique and “of course
by the KERNEL TRICK!!!” Warmuth wrote me in an email. They accepted
the paper, titled “A Training Algorithm for Optimal Margin Classifiers,”
and it appeared in July 1992 in the Proceedings of the Fifth Annual
Workshop on Computational Learning Theory.

It took a decade, but the paper eventually became a classic. Meanwhile,
others at Bell Labs furthered the work. Kristin Bennett’s Ph.D. work on
mathematical programming, which refers to the use of mathematical models
to solve problems, in this case ML problems, inspired Vapnik and Corinna
Cortes, a Danish data scientist who was then at Bell Labs and is now a VP
at Google Research, to develop what they called a “soft-margin” classifier.
This approach, published in 1995, made allowances for problematic data
points that would otherwise have made it impossible to find a linearly
separating hyperplane, even in the higher-dimensional space.



Vapnik and Cortes called their algorithm the support vector network.
Bernhard Schölkopf, a German computer scientist, who is now the director
of the Max Planck Institute for Intelligent Systems, in Tübingen, Germany,
renamed it by coining the term “support vector machine,” helping
distinguish the algorithm from neural networks. Thus did “support vector
machine” (SVM) enter the lexicon of machine learning.

With the math behind us, it’s rather simple to recap what SVMs do:
They take datasets that are linearly inseparable in their original, relatively
low-dimensional space and project these data into high enough dimensions
to find an optimal linearly separating hyperplane, but the calculations for
finding the hyperplane rely on kernel functions that keep the algorithm
firmly anchored in the more computationally tractable lower-dimensional
space. Support vectors, we saw, refer to those data points that lie on the
margins of no-one’s-land. The technique doesn’t find any old hyperplane in
the higher dimensions; it finds an optimal one. When projected back to
lower dimensions, this hyperplane can resemble a very convoluted but
nonetheless optimal decision boundary.

SVMs took off, becoming the darlings of the ML community through
much of the 1990s and 2000s. While Guyon had been instrumental in
redesigning Vapnik’s optimum margin classifier to incorporate the kernel
trick, she credits Vapnik for recognizing the power of kernelized SVMs and
for making sure the wider community understood it. “I didn’t really
recognize that this was an important invention,” she said. “For me it was
just a trick, a computational trick, and it was giving very nice results.”

Given Vapnik’s evangelism, it’s only relatively recently that the broader
ML community acknowledged Guyon and Boser, whose contributions had
been somewhat overshadowed, as it were, by Vapnik’s stature. Even
without SVMs, Vapnik had contributed heavily to the theory of machine
learning. “Manfred [Warmuth] and I gave Vapnik a kind of superstar status
from the beginning,” David Haussler wrote me in an email. Haussler and
Warmuth had coined the term “Vapnik-Chervonenkis (VC) dimension,”
which uses math developed by Vapnik and fellow mathematician Alexey
Chervonenkis to provide a measure of an ML model’s capacity to classify



data correctly. “After that, with the help of AT&T Bell Labs, where he was
treated as the ultimate guru, there emerged a narrative that Vapnik was the
true genius behind the emerging revolution in machine learning. I know he
personally felt a bit overwhelmed by it,” Haussler wrote in his email.

As far as SVMs go, this storyline is changing. In 2020, the BBVA
Foundation gave its Frontiers of Knowledge Award to Isabelle Guyon,
Bernhard Schölkopf, and Vladimir Vapnik; to Guyon and Vapnik for
inventing support vector machines and to Schölkopf for furthering their
power with the use of kernel methods. “The human tendency [is] to adopt a
simple narrative with a single hero when in fact the reality is quite a bit
more complex,” Haussler wrote to me.

The BBVA Foundation’s citation goes on to say, “Thanks to SVM and
kernel methods, intelligent machines can now be trained to classify datasets
with human precision, or at times even better, enabling them to recognize
everything from voices, handwriting or faces to cancer cells or the
fraudulent use of credit cards. SVMs are now being used in genomics,
cancer research, neurology, diagnostic imaging, and even in HIV drug
cocktail optimization, as well as finding diverse applications in climate
research, geophysics and astrophysics.”

As we’ll see in upcoming chapters, with the thawing of the first AI
winter, research in artificial neural networks began burgeoning in the 1980s.
But the abrupt arrival of SVMs and kernel methods in 1992 derailed the
advance of neural networks for a while. “It’s like Vapnik took a big beam of
light and showed it to everybody: ‘Look, there is this opportunity of
applying this kernel trick,’ ” Guyon said. And then Schölkopf and his
colleague Alex Smola wrote a comprehensive book on kernel methods,
illustrating much of what one could do with the kernel trick. “And that was
it,” Guyon said. “It was incredible. Neural networks dominated machine
learning in the eighties. And in the nineties, all of a sudden, everybody
switched to kernel methods.”

Now neural networks are dominating modern machine learning again.
Intriguingly, theoretical advances are beginning to show tantalizing links
between neural networks and kernel machines. To appreciate this



connection, we need to step back a decade or so, to the early 1980s, when
the ML community started paying serious attention to neural networks—
thanks to the work of John Hopfield, whose eponymous networks inspired
Guyon’s foray into machine learning. Hopfield, a physicist, was at a
crossroads in his career and was looking to work on something big. He
could not have imagined the changes he would inspire.
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With a Little Help from Physics

n the late 1970s, Princeton University physicist John Hopfield faced a
familiar career question: “Now what?” He was looking for a new

research direction. The dilemma wasn’t new for him. Hopfield had spent
the 1960s making seminal contributions to solid-state and condensed matter
physics. But by the end of that decade, he had run out of steam. He couldn’t
find interesting problems to which to apply his “particular talents.” So, he
turned to biology, focusing on cellular biochemical reactions, such as those
involved in the synthesis of proteins. Hopfield looked at transfer RNA, or
tRNA, molecules that “recognize” the correct amino acids and bring them
to the site of protein synthesis in cells. Every aspect of life depends upon
this process proceeding without errors. But given how error-prone
biological processes can be, how does biology get it right? Biochemists, at
the time, tended to think of a process as simply going from step A to B to C.
Hopfield realized that there were multiple pathways from A to C and that
the ability to take one of many pathways was necessary for reducing errors,
allowing the system to proofread, as it were. “You can’t make things error-
free enough to work if you don’t proofread, because the [biological]
hardware isn’t nearly perfect enough,” Hopfield told me.

Hopfield published his “biology” paper in 1974. “This was the first
paper I had ever written containing words like ‘nucleoside’ or ‘synthetase’
or ‘isoleucine’ or even ‘GTP,’ ” he would later write. In 1976, Hopfield gave
a talk at Harvard about his ideas on proofreading and predicted what
biochemists should see for certain reactions in terms of the quantities and
ratios of molecules. As far as he was concerned, these were theoretical
predictions and yet to be corroborated by experiments. After the talk, a



scientist in the audience told Hopfield that he had seen such
“stoichiometry” ratios in his studies of bacteria. Researchers had found that
the antibiotic streptomycin interferes with the bacteria’s ability to
proofread; as a result, the bacteria synthesize numerous erroneous and
functionally lethal proteins, causing them to die. Hopfield was elated at the
empirical validation of his theoretical work. “It was one of the biggest—and
most delightful—surprises of my scientific career,” he wrote.

That momentous occasion aside, this foray into biology set the stage for
another of Hopfield’s fundamental contributions, this time in computational
neuroscience—or, to take a broader view of it, in machine learning and AI.
The 1974 paper was a clear elucidation of the idea that networks of
reactions (in this case, consisting of multiple molecular pathways from the
same starting point to the same end point) had functions that went beyond
what could be understood by looking at individual molecules. “A network
could ‘solve a problem’ or have a function that was beyond the capability of
a single molecule and a linear pathway,” Hopfield wrote. “Six years later I
was generalizing this view in thinking about networks of neurons rather
than the properties of a single neuron.”

But before he could embark on this work, Hopfield had to identify a
“PROBLEM” to work on (the all caps being his way of emphasizing that
the problem had to be substantial). This took a while. A chance invitation to
attend semi-annual meetings of the Neuroscience Research Program at MIT,
about five hours northeast from Princeton, gave Hopfield the necessary
stimulus. “How mind emerges from brain is to me the deepest question
posed by our humanity. Definitely A PROBLEM,” he wrote. It became
clear to him, while he was attending those meetings, that the work the
neuroscientists were doing—“primate neuroanatomy, insect flight behavior,
electrophysiology in aplasia, learning in rat hippocampus, Alzheimer’s
disease, potassium channels, human language processing”—was exploring
their own special corners of the field. Hopfield was after something more
integrative, something that required the tools of his trade: theoretical
physics. Specifically, he was searching for a basic and potentially far-
reaching insight into how the brain computes.



A machine computes by changing configurations from one “state” to
another (according to some prescribed rules specified, say, by a
programmer), until eventually the machine reaches an end state. The end
state represents a solution that can be read off. A computer, then, is a
dynamical system, one whose behavior can be seen as evolving, or
transitioning from state to state, with each tick of the clock, with rules that
specify the state transitions and the set of allowable states, the so-called
state space. “I’d seen enough [at the NRP meetings] to understand that if
you could describe the equations of how neural activity propagated from
one neuron to another, you had a dynamical system,” Hopfield told me. “All
computers are dynamical systems. There had to be this link between
neurobiology and digital or analog computers.”

Also, Hopfield’s work on proofreading in biochemical processes was
evidence that dynamical systems that could take multiple pathways through
the state space to “converge” to the same final state could reduce the errors
that accumulate during computation. Hopfield kept looking for a
neurobiological problem that was amenable to such a solution. He finally
hit upon one: associative memory. The term may be cryptic to most of us,
but it’s something with which we are intuitively familiar. Think about how
the strains of a song or the hint of an aroma can bring to mind an entire
episode from our lives. Our brains are somehow able to use a fragment of
the original experience to bring into conscious awareness an entire stored
memory. Well, that’s associative memory. Hopfield was after a
computational model of the same. Could a network of artificial neurons that
had stored within them some memories be capable of retrieving a particular
memory given only some sliver of it? Could he solve the problem in terms
of the dynamics of the network converging to a solution? “It took me quite
a while to find any problem in neuroscience which looked like that
computation, and I finally realized associative memory did,” Hopfield said.

Understanding the essence of such a computation requires delving into
physics, this time the physics of ferromagnetism and a simplified
mathematical model of it. The parallels to computing with neurons are
striking.



FLIP-FLOP
Some simple math connects phenomena as seemingly diverse as the process
that gives us window glass, the magnetization of materials, and the
workings of some types of neural networks, at least the artificial kind.

Let’s start with window glass. One method for making such glass is to
start with the raw materials—usually silica (sand), soda ash, and limestone,
with silica being the primary component. The mixture is melted to form
molten glass and then poured into a “float bath.” The bath gives plate glass
its flatness and helps cool the molten material from temperatures of over
1,000°C down to about 600°C. This flat material is further “annealed,” a
process that releases any accumulated stresses in the glass. The key, for our
purposes, is that the resulting glass is neither a solid with an ordered
crystalline structure nor a liquid. Instead, it’s an amorphous solid where the
material’s atoms and molecules don’t conform to the regularity of a crystal
lattice.

There’s an interesting analog in magnetism. Certain materials, for
example, are ferromagnetic, a state in which the magnetic moments of the
material’s atoms (or ions) are all aligned, generating a net magnetism. A
ferromagnet is analogous to a solid with a definite crystalline structure.
However, if the magnetic moments of the atoms, or ions, are randomly
oriented, the material has no permanent magnetism—analogous to the
structure of glass. Each individual magnetic moment is the outcome of the
spin of an elementary particle in the material. Hence, materials with
disordered magnetic moments are called spin glasses.

In the early 1920s, the German physicist Wilhelm Lenz and his graduate
student Ernst Ising developed a simple model of such materials. It came to
be called the Ising model. For his doctoral thesis, Ising analyzed a one-
dimensional case of magnetic moments. The engendering spins can be
either up (+1) or down (-1). In the model, any given spin state is influenced
only by its immediate neighbors. For example, if one spin state is -1, but
both its neighbors are +1, then the spin will flip directions. It’s clear that
such a system will have some dynamics, because as each spin state reacts to



its nearest neighbors, the effects of spin flips will ripple back and forth
through the system. If all the spins taken together constitute the system’s
state, then the system traverses a state space, going from one state to
another, possibly settling into some stable state or continually oscillating.
Ising showed that a 1D system cannot be ferromagnetic (meaning, the spins
will never all align in one direction). He even argued—erroneously, it
turned out—that state transitions from disorderly to orderly would not
happen even in the three-dimensional case.

In 1936, Rudolf Ernst Peierls, a German physicist who left Germany
during the Nazi era and became a British citizen, rigorously studied the
model for the 2D case. (It was Peierls who attributed the model to Ising,
giving it its name.) “For sufficiently low temperatures the Ising model in
two dimensions shows ferromagnetism and the same holds a fortiori also
for the three-dimensional model,” Peierls wrote. (I had to look up “a
fortiori.” As per the Oxford English Dictionary, it means “used to express a
conclusion for which there is stronger evidence than for one previously
accepted.”)

Here’s how a 2D model of spins, or magnetic moments, might look:

The black “UP” arrows are assigned a value of +1, and the gray
“DOWN” arrows are assigned -1. What’s shown could be the state of a 2D



system at some instant in time. Except for the arrows along the edges of the
square, each arrow has four nearest neighbors (left and right and up and
down; the diagonals are ignored):

Given a certain state of the system, each spin is going to be influenced
by one of two things: some external magnetic field and the magnetic fields
induced by its nearest neighbors. The latter, in turn, depend on the strength
of the interaction between two spins—for example, the closer they are in
the material’s lattice, the stronger the interaction—and on whether the
material is ferromagnetic or anti-ferromagnetic. (In ferromagnetic material,
the spins align with their nearest neighbors; in anti-ferromagnetic material,
the spins prefer to be in opposition.)

Let’s stick to ferromagnetic materials. From the perspective of a
physicist, the question that comes to mind is this: Why should a
ferromagnetic material that has disordered spins in its lattice end up in a
state where all the spins are aligned in one direction, creating macroscopic
magnetism? To answer this question, we have to look to something called
the Hamiltonian, an equation that allows one to calculate the total energy of
a system. (Yes, the equation is named after the mathematical graffiti artist
we met in chapter 2, William Rowan Hamilton.)



Let’s say that σi gives us the value for the spin of the ith element in a 2D
system: It’s either +1 or -1. There are many ways to write down the
Hamiltonian of a system (depending on the assumptions one makes). Here’s
one:

The first term in the equation involves taking each pair of nearest
neighbors in the lattice, multiplying their spins, multiplying the result with
some constant J that denotes the strength of the interaction between two
adjacent spins, and then adding up the result for all such pairs. The double-

sigma notation  means sum over all adjacent pairs of spins, except

for when i=j. (As an aside, if the notation simply says , then we

sum over all adjacent pairs, even when i=j.)
The second term of the Hamiltonian takes each spin and multiplies it by

some external magnetic field, h, and sums the result for all spins. If there’s
no external field, then this term is zero.

Note that each term is preceded by a minus sign. This has the following
physical significance: If two adjacent spins have the same direction (+1, +1)
or (-1, -1), their product will be positive. So, prefixing a minus sign makes
the whole term negative. This causes the Hamiltonian, and hence the
system’s energy, to decrease in value. However, if two adjacent spins have
opposing values, their product will be negative, and taking the negative of
that term results in a positive value, raising the energy. So, if two spins are
aligned, they lower the energy of the system; if they are in opposition, they
raise it. Even this cursory analysis tells us that if all the spins were to be
aligned, the energy of the system would reach a minimum.

This should ring a bell. (Think back to gradient descent and reaching the
bottom of a bowl.) Physical systems prefer configurations of lower, rather
than higher, energy. In the Hamiltonian described above, if the constant J >



0, the material is a ferromagnet; if J < 0, it’s anti-ferromagnetic, and if Jij is
random, thus signifying a different J for each pair of spins, then the material
is a spin glass.

Given his work in condensed matter and solid-state physics, Hopfield
knew something about spin glasses. Also, he had identified the
neurobiological “PROBLEM” he wanted to address: How does a neural
network recover a stored memory based on partial information? The Ising
model was almost tailor-made to describe the simple neural network he had
in mind. By making one more important assumption about how the artificial
neurons were connected to each other (and we’ll come to the details),
Hopfield could design a network whose dynamics ensured that storing or
retrieving the memory was akin to putting the ensemble of neurons, and
hence the network, into some stable low-energy state. This state was
characterized by the strengths of the connections, or the weights, between
the neurons. If you were to read off the outputs of the neurons in this stable
state, they would be representative of some memory. Then, if you were to
perturb the system by changing some inputs to the neurons, and hence their
outputs, this would constitute a partial disruption of memory. If you read off
the outputs of neurons now, they would represent distorted memory. But
this perturbation would put the system into some high-energy state, and the
network would dynamically find its way to the stable state. Because that
low-energy, stable state represents the memory, then that memory could be
retrieved. The dynamical process restores the memory.

The math of how this happens is our first foray into modern neural
networks. To get there, we have to harken back to the first artificial neuron,
designed in the 1940s, which we encountered in chapter 1, the McCulloch-
Pitts (MCP) neuron.

NEURAL NETWORKS: THE REVIVAL BEGINS
John Hopfield was among the few researchers who did not give up on
neural networks, despite the blow dealt to the field by Marvin Minsky and
Seymour Papert in their 1969 book, Perceptrons. (We’ll meet other



researchers in subsequent chapters, in particular Geoff Hinton and Yann
LeCun, who also kept the faith.) Recall that Frank Rosenblatt and others
had shown, using the perceptron convergence theorem, that the perceptron
will always find a linearly separating hyperplane if the dataset can be
cleanly divided into two categories. Teaching the perceptron using training
data involves finding the correct set of weights for the perceptron’s inputs.
However, this algorithm works only for a single-layer perceptron (meaning,
you have to provide inputs to a perceptron and read off its output; you
cannot feed the output of one perceptron as input to another). Minsky and
Papert proved mathematically—and elegantly so—that single-layer
perceptrons are ineffective when the data are not linearly separable in some
given set of dimensions. They then conjectured that while multi-layer
perceptrons, where the output of one layer becomes an input to the next,
could solve such problems, there was likely no way to train such networks.

“Minsky didn’t see how to do learning in multi-layer networks and
surmised that perhaps multi-layer networks couldn’t actually do anything
that single-layer networks couldn’t. Once the convergence theorem on
single-layer networks was done and one understood what [such] networks
could or couldn’t do, that was sort of the end of the subject,” Hopfield told
me. “Minsky had missed the point.”

Many others hadn’t. In the 1970s, researchers were beginning to probe
how to train multi-layer perceptrons (or multi-layer neural networks). The
outline of an algorithm that would soon be called backpropagation, or
backprop, was taking shape. But the computing power in those days wasn’t
up to the task. “Nobody could do backprop on any interesting problem in
[the 1970s]. You couldn’t possibly develop backprop empirically,” Hopfield
said.

This was the state of affairs when Hopfield entered the field, as he tried
to answer his own question: “What next?” He started with an artificial
neuron that was part Rosenblatt’s perceptron and part the McCulloch-Pitts
neuron.

Consider a neuron that has two inputs, x1 and x2. In Hopfield’s version,
the inputs are restricted to bipolar values of 1 or -1 (an unfortunate



nomenclature, given the import of the word “bipolar” in psychiatry and
psychology). Each input is multiplied by its corresponding weight, x1 by
w1, and x2 by w2. The weighted inputs are then summed, to give us: w1x1
+ w2x2.

If the weighted sum is greater than 0, then the neuron outputs a 1 (so, y
= 1). Otherwise, it outputs a -1 (y = -1).

Normally, there’s an extra bias term; we saw this in chapter 1. So, the
output of the neuron will be +1 if w1x1 + w2x2 + b > 0; and -1 otherwise.
But for the analysis that follows in this chapter, we will ignore the bias term
without losing any generality.

Here’s the formal equation for the neuron’s output:

That’s it; that’s our neuron. Hopfield’s next intuition was to create
networks of neurons bi-directionally connected to each other. In other
words, if the output of neuron A goes as input to neuron B, then the output
of neuron B forms an input to neuron A. Let’s analyze a simple two-neuron
network (see figure, below).

The output of neuron 1, y1, becomes the input to neuron 2. And the
output of neuron 2, y2, becomes the input to neuron 1. And each input is
multiplied by its corresponding weight: w12y2 for the output of neuron 2
serving as input to neuron 1; and w21y1 for the output of neuron 1 serving
as input to neuron 2.



The weights have a numbering that tells us the direction of the input:
w21 means the signal is going from neuron 1 to neuron 2; w12 signifies the
signal is going from neuron 2 to neuron 1. Let’s take a moment to grasp
what’s happening here. The neurons have no other input except what’s
coming from other neurons in the network. Also, note that a neuron doesn’t
talk to itself, meaning the output of neuron 1 doesn’t become an input to
itself.

This means that the outputs of neurons 1 and 2 are:

Two neurons don’t really make much of a network, and also, they’re not
enough to get a sense of the succinct mathematical formalism that can be
used to describe such networks. Consider a network with three neurons (see
figure, below).

Now we can write these equations for each neuron:
w12y2 + w13y3: the weighted sum, or the output, of neuron 1
w21y1 + w23y3: the weighted sum, or the output, of neuron 2
w31y1 + w32y2: the weighted sum, or the output, of neuron 3
This weighted sum of the inputs to each neuron, i, can be compactly

described as follows. (Note the “.” between the terms wij and yj returns, for



clarity’s sake; it’s not the dot product; rather it’s just two scalars being
multiplied.)

This is a summation over all j, except for when i=j (to prevent each
neuron from influencing itself). For each neuron, if its weighted sum is
greater than 0, the output of the neuron is 1; or else it’s -1. Succinctly, the
output of the ith neuron is:

This compact formula describes a network with any number of neurons,
in which the neurons are connected to one another. Can you see the
similarities with the Ising model of magnetism? Let’s say that you have 100



neurons, and each neuron’s output is randomly set to either +1 or -1. What
happens next? Think about a spin glass, in which the magnetic moments in
a material are randomly ordered. Each magnetic moment is going to react to
its nearest neighbors and flip or not flip. In our network, something similar
happens. Each neuron is listening to every other neuron. Take neuron 1. It’s
getting inputs from 99 other neurons. Then, neuron 1 will calculate the
weighted sum of the inputs from 99 neurons and will set its output to +1 if
the weighted sum is greater than zero; otherwise to -1. If the new output is
the negative of the neuron’s previous output (-1 versus 1, or vice versa),
then that counts as a flip.

We haven’t yet talked about how the weights (w12, w13, w21, w23,
w31, w32, in the case of 3 neurons) are set or calculated. We’ll come to that.
For now, let’s assume that the weights are not symmetric, meaning w12 is
not necessarily equal to w21, and so on. This is the sort of network, with
asymmetric weights, that John Hopfield began studying at first.

He devised a method of calculating the energy of such networks. He
defined it as:

Of course, these networks are simulations inside a computer, so they
don’t really have a physical energy. But one can use this formula to
calculate a number that’s analogous to physical energy. In the next section,
“Take Me Home,” we’ll analyze why this behaves like energy, but for now,
let’s take Hopfield’s word for it.

In the 3D Ising model of materials, it can be shown that ferromagnetic
materials will dynamically settle into the lowest energy state, and this state
is one in which all the magnetic moments are aligned. Hopfield was after
similar dynamics in a network of bi-directionally connected neurons. But
given the energy function I’ve just described, a network with asymmetric
weights will not settle into the lowest energy configuration; the network is
said to be unstable.



Then Hopfield had an insight. What if the weights were symmetric? So,
w12 is equal to w21, and w13 is equal to w31, and so on.

“As soon as I got to symmetric connections, oh, I knew it’d work,”
Hopfield told me. “Stable points were guaranteed.”

What’s all this got to do with associative memory? Recall that that’s
how this story began—with Hopfield looking for a neurobiological problem
to solve with neural networks. Well, let’s give the game away a bit in
advance, before coming to how it actually works. Imagine a way of setting
the weights of the network such that a given pattern of outputs of the
neurons represents a stable state, an energy minimum. (The outputs are
equivalent to the spin states of the spin glass.) If the network is in this state,
it is not going to change any further. This pattern of outputs can be thought
of as the memory you want to store in the network. Now you are given a
pattern that’s a corrupted version of that memory. A few bits are +1 instead
of -1, and vice versa (where each bit is the output of one neuron). Let’s
leave the weights of the neurons untouched, but let’s force their outputs to
represent this corrupted pattern. What Hopfield found is that when you do
this, the network is no longer stable, and its dynamics take over: Each
neuron flips (or not) until the network reaches a stable state. And if the
corrupted state you forced the network into wasn’t very different from the
stored memory, the network will reach the stable state that represents the
memory. The outputs of the neurons, once the network reaches this stable
state, will not flip anymore. You can simply read off the outputs: You have
recalled the memory.

“Once I understood that I needed symmetric connections—and the Ising
model for magnetism had a lot to offer—I put things together, and then it
was just clear,” Hopfield said. “It was just sitting down and grinding things
out.”

TAKE ME HOME
There are many moving parts to understanding a Hopfield network, and
they involve coming to grips with different conceptual ideas. One, what



does it mean to store a memory? (We got a glimpse of the answer in the
previous section.) Two, what does it mean for a network to be stable?
Three, how does one select the weights of the network in order to store a
memory? Four, what do storing memories and stable states have to do with
each other? Five, what does energy have to do with all this?

Let’s start with a simple 3-neuron network. The weights of the network
can be written in matrix form:

Generically, wij represents the weight of the connection going from
neuron j to neuron i. There are some obvious aspects to this matrix. First,
because a neuron doesn’t talk to itself, the diagonal elements of the matrix
will be zero. Also, the matrix, as per Hopfield’s requirement, is symmetric
about its diagonal: wij =wji

The network has 3 neurons and, hence, 3 outputs, so we can store any
pattern that’s 3 bits long. Let’s say we want to store the pattern “-1, 1, -1.”
This means that when the output of neuron 1 is “-1,” neuron 2 is “1,” and
neuron 3 is “-1,” the network should be in a stable state. We have to select
the weights appropriately. Choosing or finding the appropriate weights
(whatever the procedure for doing so) is akin to teaching the network; the
process is called learning. For this, Hopfield turned to a decades-old idea,
one we encountered in chapter 1: “Neurons that fire together wire together.”
Here, “wiring together” means changing the weights between two neurons
such that the activity of the neurons is reinforced. Choosing the weights to
accomplish this is called Hebbian learning.



So, if neuron 1 has an output of y1, and neuron 2 has an output of y2,
then Hebbian learning says that the weights between those two neurons are
given by:

w12 = w21 = y1.y2

Given that we are sticking to symmetric connections, that’s all there is
to it, really. Multiply the two outputs, and you get the value for the weights
of the symmetric connections between two neurons. If two neurons are each
outputting the same value, either +1 and +1 or -1 and -1, then the mutual
weights are set to 1. If the two neurons are producing different values (-1
and +1 or +1 and -1), then the mutual weights are set to -1.

Because we want the network, in its stable state, to output “-1, 1, -1” (y1
= -1, y2 = 1, y3 = -1), this gives us the following weights:

More generally:

wij = yi.yj

Consequently, our weight matrix looks like this:

Notice that it’s symmetrical about the diagonal, whose elements are all
zero.



Here’s a very simple method that uses matrices and vectors to generate
the weight matrix:

The vector representing the memory we want to store is given by:

y = [y1 y2 y3]

We can get a matrix from our memory vector by multiplying the
transpose of the memory vector with itself. This is also called the outer
product of vectors. (Note that this is not the dot product, which yields a
scalar value.)



The final matrix is almost what we want, except for the diagonal
elements, which turn out to be 1, because 1×1 or -1×-1 is each equal to 1.
To get to our desired weight matrix, we simply subtract a 3×3 identity
matrix from our result.

So, finding the Hebbian weights for any stored pattern, or vector, y
simply becomes:

W = yTy - I

Where, I is the identity matrix of the appropriate size. For example, if
the stored pattern has 10 bits, then we require 10 neurons, and both the
weight matrix and the identity matrix will be 10×10.

Once the network’s weights are initialized using this method, the
question to answer is this: Why is the pattern stable, or why does the
network not change states? By “stable,” we mean a state in which no
neuron’s output should ever flip.

Consider the ith neuron, with the output yi.
We know that:



But we have also set, as per the Hebbian rule:

wij = yi.yj

Therefore:

yj2 is always 1 (regardless of whether yj is +1 or -1)

This means the neuron will never flip. None of the neurons in the
network will flip. We have proven that if the weights are set according to
the Hebbian learning rule (for a given pattern of desired outputs), then that
pattern is a stable state for the network.

We have addressed the first three questions asked at the beginning of
this section. Now it’s time to tackle the concept of energy in a Hopfield
network. We want the stable, stored pattern to represent an energy
minimum. This means that any perturbation to the pattern (say, if the output
of neuron 1 is forcibly flipped from -1 to 1) should increase the energy of
the network, thus causing it to slide back, metaphorically speaking, to its
minimum-energy state. The descent back to an energy minimum, if it
happens as desired, is the equivalent of recalling a stored memory.

For a more detailed account of why this works, see the mathematical
coda on this page. What follows here is an intuitive take. Recall that
Hopfield defined the energy of his network as:



It turns out that when the weights of the network have been set using the
Hebbian learning rule, then the following are true:

In the stable state, which represents a stored memory, the network’s
energy (as defined by the equation above) is at a local minimum. The
network can have multiple local minima (each potentially
representing a different stored memory). In a stable state, neurons
don’t flip their outputs any further, and the network remains at that
energy minimum.

However, if you were to perturb the network, say, by making it store a
pattern that’s a slightly corrupted form of a stored memory, this would
cause the energy of the network to increase. This perturbed state is
unstable, and the neurons will start flipping. It can be shown that
when a neuron flips, the overall energy of the network decreases.
These dynamics continue until the network reaches a stable state, or a
local energy minimum—at which point, the dynamics cease.

Once the network reaches an energy minimum, the neurons stop
flipping. At this stage, the outputs of the neurons potentially represent
some stored memory. Whether or not the stored memory is the one
you intended to retrieve depends on the initial perturbation—if the
perturbation is too large, it’s possible that the network’s dynamics take
it to a different energy minimum than the one corresponding to the
stored memory you wanted to retrieve.

Here’s a demonstration of what’s possible with Hopfield networks. Say
you want to store a black-and-white 28×28 image of a handwritten digit.
That’s 784 pixels to depict a digit. Each pixel can be 0 or 1. For our



purposes, because we are using bipolar neurons, we can think of “0” as
being equivalent to “-1.” Basically, any image is a vector with 784 elements
in it, with each element being either -1 or +1. To store such a vector, we
need 784 neurons. Using the Hebbian rule, we can calculate the weights of
the 784-neuron network for any image we want to store.

Let’s say y1 represents image 1 (the numeral 5), and y2 represents
image 2 (the numeral 8). These digits are modified versions of images from
the MNIST database of handwritten digits.

To store the first digit, the weight matrix is calculated as follows:

W1 = y1Ty1 - I

Where, W1 is a 784×784 matrix, and I is a 784×784 identity matrix.
This single operation updates the weights of the network such that image 1
becomes a stored memory. If you were to read out the outputs of the
neurons at this stage, you could reconstruct the image, as each neuron
outputs the corresponding pixel value.

But what if we wanted to store another image in the same network? If
we wanted to store only the second image, we’d set the weights to W2,
where:



W2 = y2Ty2 - I

But if you wanted to store both images in the same network, then the
composite weight matrix would be:

This is the same as:

More generally, if you wanted to store n memories, then:

(An aside: Hopfield showed that if you have n neurons, the network can
store at most 0.14×n memories. So, a network with 784 neurons can store

about 109 memories. If you think of each memory as a vector in n-
dimensional space, then these 109 vectors will need to be almost mutually
orthogonal, otherwise they’ll interfere with one another. There have been

considerable advances in the past few years to increase the storage capacity,
leading to networks called modern Hopfield networks.)

Let’s say we stored the two images as memories in our 784-neuron
Hopfield network. Now we want to retrieve a memory given some fragment
of it. Let’s take the digit 8 and randomly change some pixels.



We feed this image to our network. “Feeding the image” means setting
each neuron’s output to either +1 or -1, depending on the values of the
corresponding pixels in the perturbed image. Our algorithm for retrieving
an image goes like this:

Step 1. Calculate the energy of the perturbed network.

Step 2. Pick a neuron at random from 1 to 784.

Step 3. Calculate its output based on the outputs of all other neurons
and the weight matrix.

Step 4. Figure out whether the neuron should flip or not. Flip it if
necessary.

Step 5. Calculate the new energy.



Step 5a. If (old energy – new energy) <= e, where e is some
really small value, then terminate the process. This basically
means that the change in energy after the neuron has flipped is
extremely small, so we are likely near some local minimum.
Step 5b. If (old energy – new energy) > e, then go to step 1
(essentially, iterate over all the neurons at random, over and over,
until you reach an energy minimum).

Using this algorithm, the network, when fed a noisy input image,
retrieves the stored image:

We can also create perturbed images by randomly initializing a 28×28
image with +1 and -1 for its pixel values (below, left), feeding it to the
network, and seeing what it retrieves (below, right). In this case, the
network retrieves the digit 8, but it could also have come back with the digit
5.



Note that if you are given a Hopfield network with some stored
memories, all you have access to are the weights of the network. You really
don’t know what stored memories are represented by the weight matrix. So,
it’s pretty amazing that when given the perturbed image shown above, our
Hopfield network dynamically descends to some energy minimum. If you
were to read off the outputs at this stage and convert that into an image, you
would retrieve some stored memory.

Occasionally, something strange happens. In the figures below, for
example, given a different perturbed image (left), the network retrieves a
slightly different image (right).



What happened? It’s clear that the retrieved number is the digit 8, but
the image has been inverted: Black pixels have turned white, and vice
versa. The values of the pixels are the outputs of the neurons. As it turns
out, the energy landscape (or energy as a function of the weights and
outputs of the neurons) has two minima for each stored memory. If one set
of outputs (hence, pixel values) gives you one minimum, outputs that are
flipped (1 becomes -1, or white becomes black and vice versa) give you the
other minimum in the energy landscape, but an identical one in terms of the
energy. So, depending on your initial starting point, as dictated by the
perturbed image, you can land in one or the other minimum. So, in some
cases, we end up with a bit-flipped image.

We, however, stored two images in the network, representing the
numerals 5 and 8. Sometimes, the randomly perturbed image descends to an
energy minimum that represents the digit 5 or its bit-flipped sibling (see
panels, above).



It’s also possible that if you took the image of the digit 8, perturbed it,
and set the network to represent the perturbed image, it might descend to an
energy minimum that resulted in the retrieval of an image of the digit 5.
That’s because the perturbation landed the network on a part of the energy
landscape that was somehow closer to the minimum representing 5 than to
the minimum representing 8.

If you ever do build your own Hopfield network, it’s not at all vain to
store your own photograph and see if it can be retrieved (perfectly normal
behavior). Here’s one such outcome.

The image on the top left is what was stored, the image on the top right
is the same image with a lot of noise added, and the bottom image is what
the network retrieved, given the noisy image.

When interviewing John Hopfield, I found it awkward to refer to his
eponymous network by name. “It feels weird to be calling them Hopfield
networks while I’m talking to you, but you must have experienced this all
along,” I said.



“I’ve given up on that,” said Hopfield, smiling.
It might be passé now, but in 1981, when Hopfield finished his work, no

one was particularly interested in publishing it. No neurobiologist would
have looked at what Hopfield had written and claimed it had anything to do
with neurobiology. “There would have been no hope of getting it [into] a
refereed publication,” Hopfield told me. As it happened, Hopfield was a
member of the National Academy of Sciences, for his earlier work in
physics. “If you were an academy member, you could essentially, on your
own say-so, publish a few papers a year,” he said. “Nobody would criticize
them at all, unless they were immoral.”

But back in 1981–82, the Proceedings of the National Academy of
Sciences (PNAS) published almost nothing in mathematics or computer
science. And those disciplines were at the heart of Hopfield’s paper. Plus, he
had one more problem: PNAS had a five-page limit. Hopfield had to distill
his work down to five pages while simultaneously hoping to attract the
attention of mathematically minded computer scientists and
neurobiologists. The paper was published. Reminiscing about the process in
his essay “Now What?,” Hopfield quotes Hemingway:

Concerning the writing of non-fiction, Ernest Hemingway remarked,
“If a writer of prose knows enough about what he is writing about he
may omit things that he knows and the reader, if the writer is writing
truly enough, will have a feeling of those things as strongly as
though the writer had stated them.” The PNAS length limitation
forced me to be highly selective in what was said—and what was
omitted. Had Hemingway been a physicist, he would have
recognized the style. In hindsight, the omission of the almost obvious
probably increased the impact of the paper. The unstated became an
invitation for others to add to the subject, and thus encouraged a
community of contributors to work on such network models.
Successful science is always a community enterprise.



Hopfield’s 1982 PNAS paper has become a classic in the field. It
fostered the understanding that neurobiological systems—our brains
included, of course—are dynamical and can be mathematically modeled as
such. This was a huge advance. Then there was the question of learning.
(After all, this is a book on machine learning.) Hopfield networks are what
are called one-shot learners. Given one instance of data, the network can
memorize it. But an awful lot of the learning our brains do is incremental:
Given enough data, we slowly learn about patterns in them.

Incremental training was a key goal for neural network researchers. We
saw in chapter 1 how to incrementally train a single-layer perceptron, or
neural network. But such networks had enormous limitations. The goal was
to move to multi-layer neural networks, but no one knew yet how to
efficiently train them. By 1986, that, too, had changed, irrevocably, with the
publication of the first detailed exposition of the backpropagation
algorithm. And within a few years of that, another paper, by a
mathematician named George Cybenko, further inflamed passions about
neural networks: Cybenko showed that a certain kind of multi-layer
network, given enough neurons, could approximate any function in terms of
transforming an input into a desired output. Before we tackle
backpropagation, we’ll jump ahead to one of the classic findings about
neural networks, the universal approximation theorem.

MATHEMATICAL CODA
CONVERGENCE PROOF / HOPFIELD NETWORK
Theorem: If a Hopfield network in a stable state is perturbed, then it will
dynamically transition through a series of states until it reaches and settles
into a stable state that represents an energy minimum.

The proof that follows is inspired by a brilliant exposition of it in Raúl
Rojas’s book Neural Networks: A Systematic Introduction. Let’s begin with
a network of what are called bipolar neurons, which produce an output of
+1 or -1. The neurons are connected to each other with symmetric weights.



A neuron’s output does not feed back to itself. The network’s weight matrix
is given by an n×n matrix for a network of n neurons:

For a pattern to be stored in the network, we use the Hebbian learning
rule.

wij = yi.yj

More generally, if there are n neurons, the stored memory is n bits long
and is given by the vector y = [y1 y2 … yn]. The weight matrix can be
calculated as follows:

Whether or not a neuron flips depends on the weights and the outputs of
all the other neurons to which it’s connected. For neuron i, it depends on:

yiold: the current state of neuron i before it responds to other neurons
yinew: the new state of neuron i after it responds to other neurons

The quantity is often called the “field” of neuron i

(analogous to the magnetic field experienced by a single magnetic moment



inside some material). If the field of a neuron has the opposite sign to its
current state, the neuron flips; otherwise, it doesn’t.

Hopfield defined the energy of the network in these terms:

Let’s take a network with 3 neurons. So, the weights are w11, w12, w13,
w21, w22, w23, w31, w32, and w33. We know that w11, w22, and w33 are
zero. Here’s the energy, with all the terms expanded:

This can be reorganized, with a focus on neuron 1:

We know that w12=w21, w13=w31, and so on…So, rewriting again:

This can be generalized:

The equation has two terms, one that is specific to y1 and another that is
about all the other neurons except y1. Let’s say that it’s neuron 1 that flips.
So, we are concerned with two outputs of the first neuron:

y1old: the current state of neuron 1, before it responds to other neurons
y1new: the new state of neuron 1, after it responds to other neurons
Using the equation specific to neuron 1, we have two energies, one

before the neuron flips and one after:



The difference in energy after neuron 1 flips is:

∇E = Enew - Eold

If you were wondering about ½ before the energy function, this is where
it comes in handy. The ½ cancels out the 2 before the summation. (Such are
the tricks of mathematicians.)

So, this is the change in energy, when some ith neuron (in our case,
neuron 1) flips states from +1 to -1 or vice versa. For the sake of generality,
we’ll abandon being specific about neuron 1 and just refer to the ith neuron



as the one that flips. Recall that  is the field of the ith neuron.

It’ll always have the opposite sign to that of yiold: That’s why the neuron
flips.

So, if yiold is +1, then yinew is -1, because  has a negative

sign.

= + 2 × NegNumber

= NegNumber

If yiold is -1, then yinew is +1, because  has a positive sign.

= - 2 × PosNumber

= NegNumber
Regardless of whether the ith neuron flips from +1 to -1 or from -1 to

+1, the change in energy is a negative number, meaning the total energy of
the system goes down. “Since there is only a finite set of possible states, the
network must eventually reach a state for which the energy cannot be
reduced further,” Rojas writes.

So, if a series of neuron flips keeps reducing the energy of the network
until it reaches a state where no neuron flips, then that state represents a



local energy minimum. It’s a stable state. Once the network settles into that
state, it cannot change states any further.

QED
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The Man Who Set Back Deep

Learning (Not Really)

eorge Cybenko was surprised by the reception he got. He was only
one among the many luminaries teaching summer school on deep

learning in 2017, in Bilbao, Spain. By then, deep learning—or the process
of training neural networks that have three or more layers (one input layer,
one output layer, and one or more so-called hidden layers tucked in between
the input and output)—had taken over the world of machine learning.
Nearly thirteen hundred people attended the school, and Cybenko taught an
hours-long mini-course to about four hundred of them. During breaks,
students came up and requested selfies with him. “I felt like a rock star,”
Cybenko, a professor of engineering at Dartmouth College, Hanover, New
Hampshire, told me.

That feeling was somewhat spoiled by a blog post Cybenko later read
about the summer program. The blogger mentioned that another highly
regarded AI researcher, Li Deng, one of the pioneers of the deep learning
revolution, had reportedly quipped that the very theorem that made
Cybenko feel like a rock star at the summer school may have substantially
set back the field of deep learning. “So, in some circles, I’m the guy that
delayed deep learning by twenty years,” a somewhat amused Cybenko told
me. To be held up, even in jest, as the person whose work hampered an
entire field for two decades is quite an allegation. “It misunderstood what I
did,” Cybenko said.

So, what did Cybenko do that brought him celebrity status among deep
learning aficionados on the one hand and, yet, caused some to joke about its



deleterious effect on the other? To answer these questions, we must jump
ahead somewhat in the time line of research into neural networks.

To recap what we know so far, in the late 1950s and early ’60s, Frank
Rosenblatt and Bernard Widrow devised single-layer neural networks and
the algorithms to train them, making these networks the focus of machine
learning for almost a decade. Then, in 1969, Minsky and Papert published
their book, Perceptrons, in which they elegantly proved that single-layer
neural networks had limitations, while insinuating (without proof) that
multi-layer neural networks would likely be similarly useless, effectively
killing that field of research and bringing about the first AI winter.

Yet, not everyone gave up. In 1981–82, John Hopfield figured out
Hopfield networks. These networks, however, were one-shot learners. They
didn’t need the kind of training that multi-layer neural networks required to
learn incrementally from data. By the mid-1970s and early ’80s, a handful
of researchers had begun elucidating the fundamental elements of an
algorithm that could be used to train multi-layer networks. Then, in 1986,
David Rumelhart, Geoffrey Hinton, and Ronald Williams published a
seminal paper in the journal Nature, showing off the strengths of a training
algorithm called backpropagation, thus greasing the wheels of deep learning
and setting it in motion. (Though, as we’ll see in the next chapter, they
weren’t the first to think of backpropagation; its history goes back to
Rosenblatt.)

It’s these wheels on which Cybenko’s work allegedly put the brakes. His
landmark paper was published in 1989. Given the chronology of the
developments, it’d make sense to understand backpropagation first and then
deal with Cybenko’s theorem. But we’ll reverse the order. Coming to grips
with Cybenko’s work first will set us up for a better understanding of deep
neural networks and backpropagation and will give us a great excuse to
delve into some delicious details about functions and why they can be
regarded as vectors and how all that gets pulled together in Cybenko’s
“proof by contradiction.” His proof showed that a neural network with just
one hidden layer, given enough neurons, can approximate any function,
meaning it can turn an input into any desired output. Think about it: One



hidden layer, with an arbitrarily large number of neurons, can represent any
function, no matter how complicated. For example, the function could be
one that takes an input and produces a simple tone or a complex speech
waveform; or recognizes images; or even generates new images. The
theorem is called the universal approximation theorem.

The implication of the backpropagation algorithm, detailed in the 1986
Rumelhart, Hinton, and Williams paper, was that multilayer neural
networks could now be trained, while one kept in mind practical concerns
such as lack of both computing power and training data. At the time,
Cybenko, who had done his Ph.D. in the mathematics of signal processing,
was intrigued by the promise of these networks. “We had these negative
results by Minsky and Papert, and yet people were doing stuff and getting
things done. That motivated me to get to the bottom of it,” he told me.
“What can a single-hidden-layer network do?”

Before we get to multi-layer networks, here’s a depiction of a single-
layer perceptron, or a single-layer neural network, with no hidden layer:



The input layer simply refers to the inputs to the neural network. They
are not artificial neurons in themselves. For example, in the figure above,
the input to the neural network is a three-dimensional vector [x1, x2, x3].
This vector, stacked vertically, represents the input layer. There is only one
layer of actual artificial neurons in the network, hence the name “single-
layer neural network.” And that’s the output layer. The figure shows only
one neuron as part of the output layer, but there can be any number of them,
stacked vertically. Each neuron in the output layer receives the entire vector
as input. Each element of the vector is multiplied by its own weight. Each
output neuron computes the weighted sum of its inputs, adds a bias, and
then uses a thresholding function to generate its output.

So, for a bipolar neuron, which produces either +1 or -1:



Recall from chapter 1 that we can write the equations for a single
neuron as follows:

The perceptron training algorithm we encountered in chapter 1 can be
used to train this network. To further recap, training via supervised learning
means taking several instances of labeled training data (where each labeled
instance is some value for x on the input side and a value for the
corresponding output, y) and iterating over these instances to arrive at some
near-optimal set of weights and bias, so that the network finds some linearly
separating hyperplane. Once we have the weights and bias, then given some
new x, it’s easy to estimate the output y.

For the example network above, the algorithm must learn the values for
this weight matrix and the bias term:

However, the perceptron training algorithm works only for a single-
layer network. If you have something like the network shown below, it will



fail. (Note that the weights now have subscripts to indicate the pertinent
layer.)

The network shown has one hidden layer of neurons—hidden because
the layer is not directly exposed on the output side. The outputs of the
hidden neurons feed into the neurons of the output layer. In this example,
again, we have only one neuron in the output layer, but there can be as
many as we want, and if you have more than one output neuron, each
output becomes an element of the output vector, y. The important thing to
notice here is that there are now two weight matrices, one for the
connections between the inputs and the hidden layer and another for the
connections between the hidden and output layers. (If there were more
hidden layers, the number of matrices would correspondingly increase.)
Leaving aside the bias terms—they are always present and must be learned,
too—the two weight matrices for the network shown above are:



(A note on notation: The weights have subscripts, where each subscript
refers to the layer, and two numbers: The number on the left refers to the
neuron in the previous layer, whose output serves as input to the neuron in
the current layer; and the number on the right denotes the neuron receiving
the input in the current layer (later in this book, the two numbers will
appear as superscripts). Also note that this indexing is reversed compared to
the notation used for Hopfield networks. We could have chosen the same
notation, but you’ll often encounter these differing ways of indexing the
weights, biases, and outputs, so this just serves to keep us on our toes.
Henceforth, we’ll stick to this notation.)

If a network requires more than one weight matrix (one for the output
layer and one for each hidden layer), then it’s called a deep neural network:
the greater the number of hidden layers, the deeper the network.

The perceptron training algorithm doesn’t work when the network is
characterized by more than one weight matrix. By the mid- to late 1980s,
researchers were successfully training some deep neural networks thanks to
the backpropagation algorithm (which we’ll come to in the next chapter);
the algorithm could deal with hidden layers. “But, at the time, there was no
understanding. You could train it to do what? What, if any, were the
limitations? There was an effective algorithm, but sometimes it worked,
sometimes it didn’t,” Cybenko said.

Essentially, a deep neural network, with its multiple weight matrices,
transforms an input x into an output y, where both the input and output are
vectors. This can be written as:

y = f(x)



A neural network—we’ll drop the word “deep” where it’s clear from the
context—then approximates some desired function. So, while training a
network means finding the optimal values for the weight matrices, it’s also
akin to finding the function that best approximates the correlation between
the inputs and the outputs. But what does approximating a function
achieve? Well, for one, a function can represent a decision boundary. If a
new data point falls to one side or the other of the boundary, it can be
classified accordingly. Or take another example: The function can also be
used for regression, meaning the function is the curve that best fits the
training data; then, given a new data point, the function can be used to
predict the output. Or, in the context of ChatGPT and other instances of
generative AI, the function could represent an AI’s ability, first, to learn an
extremely complicated probability distribution that models the training data
and, then, to sample from it, thus enabling the AI to generate new data that
are in accordance with the statistics of the training data.

Cybenko wanted to understand the strengths and limitations of neural
networks. Can they approximate any function? What if the network doesn’t
have the capacity, in terms of number of neurons, to approximate the
desired function? What can an idealized neural network, with as many
neurons as needed, do or not do?

STACK ’EM UP
There’s an intuitive way to understand how a sufficiently large number of
neurons in one hidden layer can approximate any given function. Let’s take
a complicated enough function (so that the ghosts of Minsky and Papert
can’t accuse us of going easy on neural networks):

As complicated as this looks, it’s still just a one-dimensional function, in
that the scalar output y depends only on the scalar input x. A plot of this
function looks like this:



There’s an intuition from calculus that can help us understand how a
neural network might transform inputs to outputs in a manner that closely
matches this function. Let’s say we want to find the area under the portion
of the curve that’s shown above. We can do so approximately. It involves
drawing a bunch of rectangles of equal width, which we try to fit under the
curve. The area under the curve can be estimated by summing up the area of
all the rectangles we managed to fit under the curve. The thinner the
rectangles, the more of them we can fit and the closer we get to the correct
answer. Integral calculus takes this to the limit, letting us calculate the area
by allowing the width of the rectangles to tend to zero. The figures below
show some examples.

We are not interested in integral calculus or the area under the curve.
But the method tells us something about how a single-hidden-layer neural
network might get at the problem of approximating any function.



What if we designed individual neural units, where each neural unit is
made of two or more neurons that each produced an output that equaled the
height of a rectangle of a required size and had the necessary width?
Examine the first of the four figures above, which approximates the area
under the curve for fifteen rectangles. What if each of those rectangles were
the output of a neural unit? Each unit would represent a function that had a
certain value, equal to the height of the rectangle (the value along the y-
axis), for a small range of input values equaling the width of the rectangle
(the values along the x-axis). For all other values along the x-axis, the unit
outputs a zero. We could just stack these rectangles next to each other and
sum them up, and we’d have an approximation of some function.

Let’s build a network that can help us approximate a function in this
manner. For a detailed visual analysis of this approach, including some nifty
interactive graphics, see the notes for a link to Michael Nielsen’s highly



original explanation: “A visual proof that neural nets can compute any
function.” Nielsen develops the necessary intuition using neurons that have
a step activation function (defined further down). We’ll directly use a type
of “nonlinear” neuron, based on the one Cybenko used in his proof.

In the example above, the neuron takes in two inputs, x1 and x2, and
produces an output y, which depends on two processing stages (the bias b
will always be multiplied by the input 1):

z = w1x1 + w2x2 + b

y = a(z)

If a(z) = z, we have a simple linear neuron

a(z) = z

⇒ y = w1x1 + w2x2 + b

In formal lingo, the function a(z) is called an activation function. In the
neurons we encountered in chapters 1 and 2, a(z) was a threshold function,
or a step activation function. An example of such a function would be:

If z > 0: a(z) = 1



Else: a(z) = 0
Cybenko’s neurons used the sigmoid activation function, a(z) = σ (z),

where:

Here’s what the function looks like, for a 1D input x, such that z = wx +
b:

Note that the function σ(z), plotted on the y-axis, goes smoothly from
almost 0 to almost 1. (This smoothness, rather than the abrupt transition we
see in the functions that have a step, is important for training networks with
hidden layers; it’s something we’ll look at in detail in the next chapter.) In
this depiction, the midpoint of the rise occurs exactly at x=0. But that
midpoint, as well as the steepness of the rise from near 0 to near 1, can be
controlled by changing the values of w and b.

In the context of our neuron, z is the weighted sum of the inputs plus the
bias term. So, the neuron’s output, y, can be written this way:



z = wTx + b

y = s(z)

By varying w and b, one can vary the value of z, and thus the shape and
position of the sigmoid. Here are two different outputs for a one-
dimensional input and output, for example:

The first shows a sigmoid shifted to the right of the origin (because of a
change in the bias), and the second shows a sigmoid that rises almost
vertically (because of an increase in the weight) and is also shifted to the
right (because of an accompanying change in the bias). In the second plot,
you could just as well have changed the bias such that the steeply rising
curve moves to the left.

Using a sigmoidal neuron as the element of the hidden layer, the figure
below shows a one-dimensional version of the network Cybenko analyzed
(with 1D here meaning that both the input and output vectors have only one
element each; there is an arbitrary number of neurons in the hidden layer).

The basic idea is that each hidden neuron is generating some sigmoidal
curve, where the steepness of the curve is controlled by the neuron’s weight
and where the location at which the curve rises along the x-axis is
controlled by the neuron’s bias. The output neuron is simply doing a linear
combination of the outputs of the hidden neurons: It multiplies each hidden



neuron’s output by some weight (which can be negative, causing the curve
to fall rather than rise) and then sums up the weighted outputs of the hidden
neurons to produce the final output.

Before we analyze simple examples of such summations, let’s examine
the mathematical formalism of the one-hidden-layer network that Cybenko
studied. The network has the following characteristics:

An input vector of d dimensions: x
Number of neurons in the hidden layer: n
Weight matrix for the hidden layer: W; this is a d×n matrix
Output: y
Given these parameters, the equation Cybenko was examining was this:



The expression inside the parentheses evaluates to the output of the ith
hidden neuron before it encounters the activation function. The output is
then passed through the sigmoid activation function and then multiplied by
the weight αi. All the alphas, i = 1 to n, taken together form the weights of
the output layer. So, the final output is a linear summation of the outputs of
the n hidden layer neurons. Cybenko wanted to prove that this summation,
given enough hidden neurons, could approximate any desired function f(x).

To understand what happens in such a network, we can switch back to
the simplest case of 1D input and output. Let’s look at what happens if we
take any two hidden neurons. Here are two possible outputs:

You can see that the second hidden neuron’s output is shifted to the right
along the x-axis. Let’s say that the output neuron does a linear combination
of the outputs of the two hidden neurons, multiplying the first output by 1
and the second output by -1 (equivalent to flipping it about the x-axis) and
then adding them up. The bold line shows the final output:



We have produced an approximately rectangular output. A similar thing
can be done with two other hidden neurons to produce a rectangle that’s
shifted farther to the right and is taller and skinnier. The dashed and dotted
lines are the outputs of two hidden neurons multiplied by 1.5 and -1.5,
respectively; these are the coefficients of the linear summation. The solid
gray line is the sum of those outputs.

Here are the two rectangles next to each other:



The output neuron can of course do a linear summation of the outputs of
all four neurons at once. We’d get the bold line shown in the top figure on
the page opposite, as the final output.

Essentially, we have generated two rectangles of different heights and
widths (using bespoke weights and biases for the hidden neurons) and
added them using similarly bespoke linear coefficients to produce the final
output, which looks like some nonlinear function. (What we just did hews



closely to Nielsen’s exposition of how to use neurons with a step activation
function to generate and sum such rectangles; we used the sigmoid
activation function.)

Here’s an attempt at approximating the function y = x2, using 10
sigmoidal neurons:

The black dashed line shows the function to be approximated. The light
gray lines, solid and dashed, show the outputs of individual hidden neurons.
The output of each hidden neuron is multiplied by an appropriate value (the
linear coefficient), either positive or negative. These outputs rise from zero
to some positive value (and stay there) for some neurons, shown as gray
solid lines, and drop from zero to some negative value (and stay there) for
others, shown as gray dashed lines. Also, the rise or fall happens at different
points along the x-axis, thanks to the biases of the individual hidden
neurons. The result of summing up all those biased and weighted outputs is
a linear combination. Here’s what it looks like for our example:



This linear combination of the outputs of 10 sigmoidal neurons, shown
as the black solid line, almost approximates the function, but it’s clearly not
good enough. Increase the number of neurons from 10 to 20 or 100 (the
next two figures, respectively), and the power of this approach becomes
obvious. With 100 neurons, it’s visually impossible to tell apart the actual
function from its approximation.



The function approximated above is simple. Below is a more complex
function and its approximation with 300 neurons.



The dashed black line is the function we want to approximate. The
individual outputs of the sigmoidal neurons, appropriately weighted and
biased, are shown in gray. The final output, the linear combination of those
outputs, is shown in solid black. It’s astonishing to see how a few hundred
neurons are sufficient to get very close to the original function.

A note of caution here: I hand-designed the weights and biases used in
these examples to show how these networks work. In practice, a network
would have to learn the correct values for these parameters. A training
algorithm, such as backpropagation, will find the weights and biases using



training data. If there is some unknown complicated function that maps the
inputs to the outputs or represents the probability distribution over the data,
then training the network is akin to finding the best possible set of weights
and biases to approximate that function.

Also, we have dealt with the simple case of a scalar input and a scalar
output. Real-world problems require input vectors that can have dimensions
of tens of thousands or even millions. But the same ideas hold, regardless of
the dimensionality of the input and output vectors.

Despite all this analysis, we have only developed an intuition for why a
single-hidden-layer neural network, with enough neurons, can approximate
any function. It’s not proof. That requires some nifty mathematics.

Cybenko had the necessary mathematical chops. In particular, he was an
expert in functional analysis, or the analysis of operations of vectors and
operations of functions. (Functions, as we’ll see in some detail, are vectors
in an infinite-dimensional space.) In 1988, Cybenko worked on the problem
for the better part of the year and wrote a small technical report showing
that a network with two hidden layers can approximate any function. The
proof was mathematically rigorous. Cybenko wanted to go further. “I had
this feeling it should be able to do it with one hidden layer,” he said. He was
right.

Cybenko’s proof itself is too complex for us, and it relies on other
complex theorems. We’ll have to settle for a bird’s-eye view of his work.
But first, a small segue to talk about functions as vectors.

FUNCTIONS AS VECTORS
Of all the concepts in this book, the idea of a function as a vector may cause
the most head-scratching, but it’s also among the most beautiful and
powerful ideas we’ll encounter. Take the function y = sin(x), for example.
What follows is a plot of the function, for x ranging from 0 to 10 radians.
How does one think of this function as a vector?



Well, let’s just consider the x values [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. At
each of these locations on the x-axis, the function has a corresponding value
on the y-axis. These values can be written down as: [0.0, 0.84, 0.91, 0.14,
-0.76, -0.96, -0.28, 0.66, 0.99, 0.41, -0.54].

We’ve just approximated the function using a sequence of 11 numbers.
This sequence is a vector in 11-dimensional space.

Let’s do the same for y = cos(x); the figure is shown below.



This function, for the same set of coordinates on the x-axis, can be
written down as: [1.0, 0.54, -0.42, -0.99, -0.65, 0.28, 0.96, 0.75, -0.15,
-0.91, -0.84]. This is a different vector in the same 11-dimensional space.
Just imagine 11 axes that are orthogonal to each other in 11D space. (Well,
we cannot actually visualize it, but these mathematical spaces exist.) The
functions sin(x) and cos(x), evaluated for 11 values of x between 0 and 10
(inclusive), turn into vectors in this 11D space.

We can do this for any function. First map the function on the xy plane,
for a certain range of values on the x-axis, and then determine the value of
the function for a preselected array of x-axis values. This output array can
be thought of as a vector whose dimensionality is determined by the
number of points at which you chose to evaluate the function. In our
example, it’s 11 locations along the x-axis, ranging from 0 to 10, inclusive.

Now comes another conceptual leap, toward infinity. We’ve considered
only 11 points on the x-axis, between the end points 0 and 10, inclusive.
But the line segment between 0 and 10 is infinitely divisible: There is an
infinite number of points in that interval. So, technically, we can have an
infinite sequence of real numbers that represent each function between 0
and 10. We mere mortals have problems visualizing anything beyond three
dimensions, let alone 11D space. Mathematicians, however, revel in going
beyond. There are spaces with infinite dimensions, or with an infinite
number of axes. Any function, then, can be thought of as a point in this
infinite-dimensional space.

The march toward infinity doesn’t stop here. What if, instead of
evaluating the function between 0 and 10, as we did in our example, we let
the x-axis extend to minus infinity on one side and plus infinity on the
other? The function, evaluated at an infinite number of points, along an axis
that is itself infinite in length, results in a point in yet another infinite-
dimensional space.

Let’s add one more complication. The functions we have looked at so
far have been one-dimensional: They take in a scalar input and spit out a
scalar output. But functions can take in vectors as inputs and produce
vectors as outputs. We don’t have to fret about this, but know that that’s the



most general way to think about what a neural network is doing:
transforming one vector to another vector. Take a neural network with one
hidden layer. The input column vector, x, is multiplied by a matrix of
weights of the hidden layer, producing another column vector, each element
of which is passed through the sigmoid function, which results in another
column vector. This column vector—the output of the hidden layer—is then
multiplied by the weights of the output layer, producing yet another vector:
the output vector, y.

Cybenko thought more generally about his one-hidden-layer network.
Each hidden neuron implements some sigmoidal function. We’ve just
learned that each such function is itself a vector in some infinite-
dimensional space. An output neuron implements a linear combination of
the vectors of functions implemented by neurons of the hidden layer. The
question Cybenko asked was this: If you performed every possible linear
combination of this arbitrarily large number of sigmoid functions (or, rather,
their associated vectors), could you get to every possible function (or
vector) in the vector space of functions?

“Vector space” is a technical term, referring to objects such as vectors,
matrices, and functions that live in that space. For example, 2D vectors live
in the xy plane; 3D vectors live in the xyz coordinate space. These objects
must satisfy certain properties in order for the space to be called a vector
space. But we don’t need to know those details to get a sense of Cybenko’s
approach.

Cybenko’s proof by contradiction starts with the assumption that a
neural network with one arbitrarily large hidden layer cannot reach all
points in the vector space of functions, meaning it cannot approximate all
functions. He then shows that the assumption leads to a contradiction and,
hence, is wrong. It wasn’t a proof by construction, in that Cybenko did not
prove some assertion. Rather, it was classic reductio ad absurdum. He
started by assuming that some proposition was true and ended up showing
that the proposition was false. “I ended up with a contradiction,” Cybenko
said. “The proof was not constructive. It was an existence [proof].”



Because his proof that neural networks could indeed approximate any
function given enough hidden neurons focused on networks with just one
hidden layer, it apparently caused some researchers to spend their time
building networks with just one hidden layer, rather than go deep by
increasing the number of hidden layers. “I didn’t say you should use one
layer,” Cybenko said. “People concluded [that you] only need one layer.”

The revolution in deep learning that began around 2010 happened
because researchers began to take seriously the “deep” in “deep learning”—
and started to increase the number of hidden layers to well beyond one. But
it took almost two decades after Cybenko’s proof for this revolution to take
off—and to be fair to Cybenko, the revolution needed other ingredients that
weren’t available in the 1990s: massive amounts of training data and
computing power.

Still, the proof was a big deal. In the concluding paragraph of his 1989
paper, Cybenko speculated that while the approximating properties of
neural networks were extremely powerful, it was unclear just how many
neurons would be required to approximate any function with enough
accuracy. “We suspect quite strongly that the overwhelming majority of
approximation problems will require astronomical numbers of terms,”
Cybenko wrote. “This feeling is based on the curse of dimensionality that
plagues multidimensional approximation theory and statistics.”

But the deep neural networks that are dominating today’s efforts in AI—
with billions, even hundreds of billions of neurons and tens, even hundreds
of hidden layers—are challenging the theoretical foundations of machine
learning. For one, these networks aren’t as susceptible to the curse of
dimensionality as was expected, for reasons that aren’t entirely clear. Also,
the massive numbers of neurons and, hence, parameters should overfit the
data, but these networks flout such rules, too. However, before we can
appreciate such mysteries, we need to examine the algorithm that allowed
researchers to start training deep neural networks in the first place:
backpropagation.



I

C H A P T E R  1 0

The Algorithm that Put Paid to a

Persistent Myth

t’s AI folklore that Minsky and Papert killed research on neural networks,
starting in the late 1960s, by proving that single-layer perceptrons could

not solve something as simple as the XOR problem. I brought up the
Minsky-Papert proof early on in my conversation with Geoffrey Hinton,
one of the key figures behind the modern deep learning revolution. Hinton
got interested in neural networks in the mid-1960s, when he was still in
high school in the United Kingdom.

“This was before the Minsky and Papert proof about [neural networks]
not working for XOR,” I said.

“Yes,” Hinton said, but then immediately lodged a protest. “I can’t let it
go [about] it not working for XOR. I reserve the right to complain about
that.” And he did. (More of that later.)

In high school, Hinton was influenced by a mathematician friend who
was wondering how memories are stored in the brain. It was about then that
scientists figured out how to make 3D holograms. “He got interested in the
idea that the brain might be like a hologram in that memory is not
localized,” Hinton said. While his friend was exploring how memories are
stored, Hinton became interested in how brains learn; he wanted to
understand the mind. This pursuit led him to study physics and physiology
at university, but all they taught about the brain was how action potentials,
or electrical signals, travel along axons of neurons. Not exactly an
elucidation of how the brain works. A disappointed Hinton turned to
philosophy. “I thought philosophers had something to say about it. And then
I realized they didn’t,” he told me. “They didn’t have the Feynman concept



of understanding the mind—that you need to figure out how to build one to
understand it.”

A frustrated Hinton even tried studying experimental psychology—
again, to no avail. “What they did was design experiments to distinguish
between two hypotheses, both of which were obviously hopeless,” he said.
“That didn’t satisfy me.”

Disenchanted, he dabbled in some carpentry and took some time off to
read. He was deeply influenced by Donald Hebb’s book The Organization
of Behavior. In 1972, Hinton joined the school of artificial intelligence at
the University of Edinburgh, to work for his doctorate with Christopher
Longuet-Higgins, a theoretical chemist who had moved from Cambridge to
Edinburgh and would later co-found the Department of Machine
Intelligence and Perception (an outcome of the United Kingdom Science
Research Council’s decision to fund a center to further the emerging field of
AI).

Hinton recalled Longuet-Higgins as having been interested in holograms
and memories and making holographic memories using neural networks.
But by the time Hinton got to Edinburgh, Longuet-Higgins had switched
sides, going from believing in neural networks and connectionism to
thinking that symbolic AI was the answer. He had also taken on one other
student and had gotten him to work on symbolic AI. “He spent the whole
time trying to get me to switch,” Hinton said of Longuet-Higgins.

But Hinton wasn’t convinced about using symbolic AI and logic to
achieve artificial intelligence. “I never really liked logic,” he told me. “I
never believed people were logical.” But people are intelligent, so
intelligence must not be simply the outcome of applying rules of logic,
which is what symbolic AI does—use rules of logic to manipulate symbols
to arrive at answers. Hinton wanted to work on neural networks. He
negotiated an arrangement with Longuet-Higgins to let him do so for six
months, determining that if he hadn’t produced anything good by then, he
would switch. “And after six months, I said, ‘Yeah, well, I haven’t produced
anything good. But I think I’m going to be able to, so I need another six
months,’ ” Hinton said. “It kept going like that.”



Hinton did finish his Ph.D. His work involved solving constrained
optimization problems using neural networks. “But they weren’t learning,”
he said of his neural networks. He was convinced, however, that multi-layer
neural networks could one day be made to learn. This was the mid-1970s.
By then, Minsky and Papert had proven that single-layer perceptrons could
not solve the XOR problem. Hinton acknowledges that their proof was
substantial, in that it was general, and that the XOR problem was a specific
instance of a class of problems that single-layer perceptrons couldn’t solve.
Still, Hinton wasn’t impressed. “It basically was a con job in that they
proved that a simple kind of net couldn’t do things. And they had no proof
that a more complicated net couldn’t do them. It was just kind of by
analogy: ‘Since we proved the simple nets can’t do it, forget it,’ ” he told
me. “And people fell for it.”

Hinton didn’t. Neither had Rosenblatt. Recall our encounter with
Rosenblatt’s student George Nagy in chapter 1: Nagy told us that
Rosenblatt was well aware of the problem of training multi-layer
perceptrons; Rosenblatt addressed it in his 1961 tome, Principles of
Neurodynamics, which Hinton had devoured.

In chapter 13 of that book, a section heading reads, “Back-Propagating
Error Correction Procedures.” In that section, Rosenblatt clearly lays out
the problem for a three-layer perceptron, which has a sensory layer (S),
which receives inputs; a response layer (R), which produces outputs; and a
layer (A) in between the two, creating a network that goes from S to A to R
(S → A → R). Rosenblatt writes, “The procedure to be described here is
called the ‘back-propagating error correction procedure’ since it takes its
cue from the error of the R-units, propagating corrections back towards the
sensory end of the network if it fails to make a satisfactory correction
quickly at the response end.”

The basic idea is rather straightforward (in hindsight, of course):
Determine the error made by the network by comparing the produced
output with the expected output and then figure out how to change the
weights of the network based on the error such that the network produces
the correct output. The perceptron training algorithm we encountered in



chapters 1 and 2 can adjust the weights only of the final A → R layer.
Rosenblatt’s three-layer network had a predetermined set of weights for the
S → A layer. But he understood that those weights, too, should be amenable
to training. “It would seem that considerable improvement in performance
might be obtained if the values of the S to A connections could somehow be
optimized by a learning process, rather than accepting the arbitrary or pre-
designed network with which the perceptron starts out,” he writes.

His book lays out one such procedure, to backpropagate errors, if
modifying the weights of the A → R layer isn’t enough. But it didn’t work
well. Even so, Rosenblatt had introduced the idea of backpropagation as a
means for training multi-layer networks, but hadn’t figured out exactly how
to do it. (He built the Mark I Perceptron we saw in chapter 1 using such
layers, sans backpropagation.)

He had also identified another problem with training neural networks.
Consider this three-layer neural network:

For now, let’s set aside the problem of training such a network. Let’s
assume that before training begins, all the weights are initialized to zero.
(We are ignoring the bias term associated with each neuron here, for
simplicity.) That means that for any given input x = [x1, x2, x3], each



hidden neuron is going to produce the same output. The neuron in the final
layer produces some output. We calculate the error and update each weight
such that the error is reduced a little. Because the initial weights were all the
same, the change to each weight will be identical, making them equal to
each other even after the update. This continues until the network converges
on a set of weights that work well for the training dataset. Unfortunately,
the weights for each hidden neuron will have the same set of values, so each
hidden neuron will process the input data in exactly the same manner as
every other hidden neuron; in essence, all neurons have learned the same
thing. To put it differently, they have all picked up on the same feature in
the data. We could just as well have used only one hidden neuron because
of the symmetry in the weights of the neurons in the hidden layer.

Rosenblatt recognized this problem of symmetry in neural networks. He
proved, using an illustrative example, that a three-layer neural network
could not solve a simple problem if it started off with symmetric weights
and used a deterministic procedure to update the weights. “While this
theorem shows that a deterministic procedure cannot be guaranteed to work,
it remains to be shown that a non-deterministic procedure will work. In the
most extreme case, we could employ a procedure which randomly varies
the value of every connection, independently of the others, as long as errors
continue to occur,” he writes.

Rosenblatt was suggesting a stochastic process for updating the weights.
Hinton read this to mean that the output of the neurons should be stochastic,
which meant introducing an element of randomness to a neuron’s output.
This would ensure that the weights were updated differently during each
pass of the training data and that the final trained network would have the
requisite asymmetry, enabling the neurons to detect different features in the
data.

“I was convinced by his argument. The neurons had to be stochastic,”
Hinton said. So, he continued thinking about training multi-layer neural
networks with stochastic neurons in mind. But this method of breaking
symmetry didn’t work. “This slowed me down for a while.”



There’s another, far more elegant way to break symmetry that’s also
hinted at in Rosenblatt’s assertion about nondeterministic procedures, but it
wouldn’t become clear to Hinton until he began working with psychologist
David Rumelhart at the University of San Diego. Rumelhart would point
out the simpler solution. Their combined effort, with help from computer
scientist Ronald Williams, would lead to the modern version of the
backpropagation algorithm. But we are jumping ahead. Hinton’s path from
Edinburgh to San Diego, to work with Rumelhart, wasn’t straightforward.

Hinton handed in his Ph.D. thesis in 1977. Despite his unwavering
belief in neural networks, he found no support in the United Kingdom. “I
was so fed up with the fact that nobody else seemed to believe in neural
nets that I abandoned academia and went and taught in a free school.” It
was the White Lion Street Free School in Islington, London. Hinton taught
inner-city kids the basics of mathematics. The school didn’t even have
paper, so he used the backsides of the pages from early drafts of his thesis
to teach the kids. After about six months at the school, while waiting for the
final exam for his thesis, he began thinking of getting back into academia.
He could barely get an interview in Britain; only the University of Sussex
interviewed him for a position, in the Department of Developmental
Psychology, and rejected him. An academic at Sussex suggested that Hinton
make reduction photocopies of his thesis and mail them to everyone he had
heard of in the United States. “Because that’s where AI was,” Hinton said.

Rumelhart read Hinton’s thesis and offered him a postdoctoral position
at UC San Diego. For Hinton, the United States was a revelation after the
academic “monoculture” of Britain, where there was the right way to do
things and where everything else was considered heresy. Neural networks
constituted heresy. “And the U.S. is bigger than that. In particular, it’s got
two coasts. They can each be heresy to the other,” Hinton said.

Rumelhart was keenly interested in neural networks. For Hinton, the
atmosphere was wonderful. “I’d never been anywhere where neural nets
weren’t considered to be nonsense.” This was now the early 1980s. Those
interested in neural networks were preoccupied with training multi-layer



networks with at least one hidden layer. By now, the contours of what came
to be called the backpropagation algorithm were clear.

We’ll come to the exact mathematical details, but conceptually, here’s
the algorithm’s end game. Think of a three-layer neural network with one
hidden layer. You feed it an input, and it produces an output. You calculate
the error made by the network, which is the discrepancy between its output
and the expected correct value. This error is a function of all the weights of
the network. How do you minimize the error? Well, you can do gradient
descent—the technique we encountered in chapter 3, with Bernard
Widrow’s simple ADALINE network. Find the gradient of the error (as a
function of the weights) and take a small step in the opposite direction by
updating each weight by a tiny amount.

Sounds easy. Where’s the problem with doing just that? you might ask.
For starters, the shape of the function you’re descending is not necessarily
convex. In the Widrow-Hoff algorithm, the function is bowl-shaped, and
gradient descent is guaranteed to get you to the bottom of the bowl, the
global minimum, which represents the lowest possible error that the
network can make and, hence, the optimal value for its weights. But it turns
out that the error function in the case of a neural network with hidden layers
is not convex; it has many hills and valleys. And it’s possible that the
network can get stuck in one of the valleys, a local minimum, even though
other valleys, or minima, exist where the error is lower.

In fact, Minsky himself, before he turned on neural networks, had
studied the properties of this process. He and another AI pioneer, Oliver
Selfridge, in a paper called “Learning in Random Nets,” which they co-
authored in 1961, wrote about an algorithm called hill climbing, which is
analogous to gradient descent, in that you are looking to find the peak of a
function, where the function represents performance: The greater the value
of the function, the better the machine is at its task. “Let the machine make
some small changes in one or a few of its parameters or controls or
variables. If the performance improves, repeat the process: if not, return to
the previous state and make a different small change. In the long run[,]
performance must improve to a local optimum where no small change in



controls yields improvement. This technique is commonly referred to as
‘hill-climbing,’ ” the authors wrote. Just as doing gradient descent on a non-
convex function with multiple local minima creates problems, hill climbing
can encounter what Minsky and Selfridge called the mesa phenomenon:
“The space apparently is composed of large numbers of flat regions. The
flat elevated regions might be thought of as ‘table-lands’ or ‘mesas.’ ” Small
tweaks to the values of parameters do not result in any improvement in the
machine’s performance, which implies that the machine is stuck on the
mesa; or they lead to large changes in performance, which is akin to the
machine’s falling off the mesa onto a downslope. Minsky effectively ruled
out hill climbing as a viable method.

This may explain Minsky and Papert’s dismal view of multi-layer neural
networks. That’s the more charitable interpretation. The less charitable, and
maybe more accurate, one is that the duo was deliberately sabotaging
research into neural networks so that funding could flow to their favored
form of artificial intelligence, symbolic AI. “Minsky and Papert were so
intent on eliminating all competition…that their book suggests much more
than it actually demonstrates. They set out to analyze the capacity of a one-
layer perceptron, while completely ignoring in the mathematical portion of
their book Rosenblatt’s chapters on multi-layer machines and his proof of
convergence of a probabilistic learning algorithm based on back
propagation of errors,” write professor of philosophy Hubert L. Dreyfus and
his brother, Stuart E. Dreyfus, professor of industrial engineering and
operations research, both at the University of California, Berkeley.

But good ideas never really go away. In 1960–61, control and
aeronautics engineers Henry J. Kelley and Arthur E. Bryson independently
arrived at a method for calculating, for example, the optimal trajectory for a
rocket, a method that had, in its essence, the ideas necessary for the
backpropagation algorithm. In 1962, Stuart Dreyfus derived formulas based
on the chain rule in calculus (we’ll come to that in a moment) to augment
the usefulness of the Kelley-Bryson method. And in an exhaustive blog post
detailing the history of the algorithm, Jürgen Schmidhuber, an AI pioneer at
the Swiss AI Lab IDSIA in Lugano-Viganello, mentions many others who



had similar ideas. For example, in 1967, Shun’ichi Amari demonstrated
techniques for using stochastic gradient descent to train multi-layer
perceptrons with hidden units; and Seppo Linnainmaa, in his 1970 master’s
thesis, developed the code for efficient backpropagation. In 1974, Paul
Werbos submitted his Ph.D. thesis at Harvard. Titled Beyond Regression:
New Tools for Prediction and Analysis in the Behavioral Sciences, it came
closest to articulating the modern version of the backpropagation algorithm.
The thesis wasn’t publicized much; nor was it aimed at researchers in neural
networks. Despite such developments, none of them made their mark as far
as ML was concerned. That happened in the early 1980s, when Rumelhart,
Hinton, and Williams developed their algorithm, and it’s this version that
gave deep neural networks the boost they needed. To appreciate these
developments, we need to put on our wading boots and step into a gentle
stream of calculus, derivatives, and the chain rule.

WHAT’S THE DELTA?
Let’s revisit the mean square algorithm (a version of which we encountered
in chapter 3, in the guise of the Widrow-Hoff algorithm) for learning the
weights of a single neuron for some task.

The neuron shown below has a weight w and a bias b, takes a scalar
input x, and generates a scalar output y.

The output y is given by:



y = w.x + b

Using this neuron, here’s the problem we want to solve. We are given a
set of points on the xy plane such that for every value of x, there’s a
corresponding value of y. Let’s say we are given ten representative points
for the relationship between x and y. Here are the training data:

It’s clear from just a visual inspection that the best relationship between
x and y is linear. Such a straight line has a slope and an offset (the distance
of the line from the origin), which is exactly what the weight w and the bias
b represent. Once we find the slope and offset, then given a new x, we can
predict y. We are performing a linear regression—that is, finding a straight
line to best fit the training data in order to predict the output, given some
new input.

Here’s the so-called delta rule for finding the weight and bias. (One can
generalize this to multiple sets of weights and biases as long as the neurons
are all in a single layer.)



Initialize w and b:

w = 0, b = 0

Calculate the output of the neuron.

yhat = wx + b

Calculate the error:

e = y - yhat, where y is the expected value

Calculate the square loss:

loss = (y - yhat)2

⇒ loss = (y - wx - b)2

If we plot the loss as a function of the weight w and bias b, it’d look like
the figure shown below.



The weight and bias vary along the x-axis and y-axis, respectively. The
height along the z-axis is the loss for a given weight and bias and for some
set of training data. In this case, we have ten pairs of (x, y) points that
comprise our training data. For each pair, we can calculate the loss. Then
we sum over all the pairs and divide by ten to get the mean squared error
(MSE). It’s this value that we plot on the z-axis. It’s important to note here
that the loss you get for a given weight and bias would be different for a
different set of training data points. In other words, while the shape of the
loss function depends on the relationship of the loss to the weight and bias,
the exact value of the loss also depends on the training data. It’s clear from
the loss function’s shape, as plotted, that if we initialize the weight and bias
randomly to some values, we’ll most likely land somewhere along the
slopes, rather than at the bottom.

The delta rule tells us that to reach the bottom, we need to calculate the
gradient of the loss function at any given point and take a small step along
the negative of the gradient, because the gradient is a vector that points
upslope. A small step means tweaking the weight and the bias by a tiny
amount that’s proportional to the respective components of the gradient. We
keep doing this until the loss becomes acceptably small.

Here’s the calculus:



Recall from our brief discussion of calculus in chapter 3 that the
gradient of a multi-variate function (in this case, the loss function L, which
depends on w and b) is a vector: Each element of the vector is a partial
derivative of the function with respect to one variable, with all other
variables treated as constants.

We start with our loss function:

L = (y - yhat)2 = (y - wx - b)2

To do this differentiation, we need two simple rules from calculus. The
first is called the power rule:

Say, y = xn

So, if y = x3

The next is the chain rule, which will play an outsize role in the
backpropagation algorithm we are building up to. Let’s take our time with
it.



If:

y = f(z) and z = g(x)

⇒ y = f(g(x))

then, according to the chain rule:

In words, what this is saying is that if a function f(z) depends on a
variable, z, which itself depends on another variable, x, then the derivative
of the function f(z) w.r.t. the second variable x can be calculated by chaining
together the derivative of f(z) w.r.t. the first variable, z, and the derivative of
z w.r.t. the second variable, x. The chain, in principle, can be arbitrarily
long, and it’s this feature that gives the backpropagation algorithm its
chops.

But first, here’s a simple example:

If

Let z = x2 ⇒ y = sin(z)



Let’s now consider our loss function and the derivative of the loss
function with respect to the weight, w, and the bias, b. Note the change in

notation from using the regular  to the curved : The curvy notation

denotes that we are taking a partial derivative of a function with respect to
one specific variable; the function itself depends on multiple variables.

L = (y - wx - b)2

⇒ L = e2, where e = (y - wx - b)

Similarly:



, since y, w, and x are constants w.r.t. b

So, the gradient at a point along the loss function is:

For any value of w and b, and for any (input, output), or (x, y) pair, we
can calculate the gradient. We do this for all pairs of data, sum up the
gradients, and divide by the total number of data points, to get the overall
gradient at any location along the loss function, given the training data.

Here’s the update rule (it’s called the delta rule because it increments w
and b by a small amount, delta):

w = w + Δw

Similarly,

b = b + Δb

In practice, the deltas are themselves multiplied by a small number
called the learning rate, alpha, so that the weights and biases are adjusted by
only a small fraction of the gradient.



where, α = the learning rate, some small value, say 0.01

Update w:

w = w + Δw

Similarly,

Update b:

b = b + Δb

Update the weight and bias, reevaluate the loss, and keep doing this
until the loss falls below an acceptable limit; then stop. We’ll have found a
reasonable value for w and b that nicely fits the training data. Here’s what
such a line might look like, for our initial data:



What we just did was gradient descent, going down to the minimum of
the loss function or to a location near the minimum. It was for a single
neuron, with one weight and a bias term. This simple configuration allowed
us to plot the loss as a function of the two parameters, w and b. But we can
easily extend this to a neuron with 2 or 10 or even 100 inputs. The other
important aspect of our solution is that it’s linear. We fit a straight line
through the data points; we did linear regression.

We could just as easily have found a straight line to separate the xy
plane into two regions, one with one class of data (circles) and the other
with the second class of data (triangles). For example, here’s such a dataset:



We have seen this problem before, in multiple previous chapters. The
problem is to find the linearly separating hyperplane—in this case, a
straight line in this 2D space. Here, each data point is given by x1, x2
(where x1 is the value along the x-axis and x2 is the value along the y-axis).

We’ll require a neuron that takes in two inputs (x1, x2) and computes an
output:

yhat = w1x1 + w2x2 + b



The loss:

L = (y - yhat)2 = (y - (w1x1 + w2x2 + b))2

⇒ L = y2 - 2y (w1x1 + w2x2 + b) + (w1x1 + w2x2 + b)2

We have already encountered the chain rule. Now it’s time to make use
of it:

L = (y - yhat)2 = e2

So:

Similarly:

and

So, the gradient at some point along the loss function is:



Again, here’s how we’d update the weights and the bias:

Our algorithm iterates over all the test data until the loss ends up near
the bottom of the bowl-shaped loss function (which we cannot,
unfortunately, visualize, as the loss now depends on three variables, w1, w2,
and b; the plot would be in four dimensions). Once the loss is optimal,
meaning it’s acceptably close to zero, we end up with weights and a bias
that give us a dividing line (see figure, below).



We went from a neuron with one weight and a bias term to a neuron
with two weights and a bias term. What if we had to separate out images of
cats from images of dogs, where each image had 100 pixels, with the points
representing the cat images clustered in one region of 100-dimensional
space and the points representing dogs in another region? We could simply
have a neuron that took in 100 inputs, one for each pixel value! As long as
the data are linearly separable (for a classification problem), or we want to
draw a line (or hyperplane) through the data points for regression, the
method we have seen so far is sufficient.

But—and this is what Minsky and Papert created an unholy fuss about
—what if the data are not linearly separable? Does the method we have
used thus far still work? We know the answer: No, it doesn’t. It’s time to
really understand why and to go beyond Minsky and Papert’s tenuous
objections.

A TOUCH OF NONLINEARITY
Consider the dataset shown in the first panel below; it’s a version of Minsky
and Papert’s XOR problem.



No single line can cleanly separate the circles from the triangles. What
we need is a neural network that can separate the xy plane into two regions,
light and dark, such that a data point that falls in the dark region can be
classified as a triangle; otherwise, as a circle. This is not a trivial problem.

We know that a single line can be found by one neuron with weights and
a bias term. Clearly, we first need two such neurons to find the two lines.
Shown above are what those two lines might look like. (I say “might”
because each time you train the neurons, you might get lines with slightly
different slopes and offsets.)

We are getting warmer as to why we need multiple layers to solve the
XOR problem—in this case, at least two layers. Adding more neurons to the
same layer will simply find more lines. That’s not what we want. We want



neurons that can take these lines and combine them into something more
complex—in our case, a 2D space separated into two regions, one that lies
between the two lines and another that’s the rest of the xy plane.

So, the first layer involves two neurons, each of which finds one line.
The second layer will consist of at least one neuron that learns to create a
weighted sum of the outputs of the neurons of the first layer, such that it
delineates the xy plane into two regions, one for circles and the other for
triangles (shown above). Let’s build a network of such neurons, starting
with a familiar-looking neuron:



The neuron takes in two inputs, x1 and x2, and produces an output y,
which depends on two processing stages.

z = w1x1 + w2x2 + b

y = a(z)

If a(z) = z, we have a simple linear neuron

a(z) = z

⇒ y = w1x1 + w2x2 + b

As we learned in chapter 9, function a(z) is called an activation function.
In the neurons we encountered in chapters 1 and 2, a(z) was a threshold
function. An example of such a function would be:

If z > 0: a(z) = 1

Else: a(z) = 0

One of the problems with the thresholding function is that it’s not
differentiable everywhere, meaning it doesn’t have a derivative, or slope,
everywhere. Not being differentiable everywhere doesn’t necessarily doom
a function—there are ways to approximate the derivative at problematic
locations—but in the case of our thresholding function, the slope is zero
always, except at the point of transition, where it’s infinite. This is
unhelpful. But a small tweak can make the threshold function continuous,
so that it can be differentiated:



This is the sigmoid function. We encountered it in the previous chapter,
on the universal approximation theorem. The plot of the function is shown
below.

Note that the function is smooth and has a value close to 0 (but not 0)
when x is less than -1, and then it starts rising to a value of 1. Just like the
thresholding function, which produces an output that divides some
coordinate space into two regions, the sigmoid does the same,
approximately. Basically, as z tends to infinity, the function tends to 1, and
as z tends to minus infinity, the function tends to zero. There’s a small
portion of the curve (in the figure, between z of about -0.5 and 0.5), where
the sigmoid function is nearly a straight line.

Most important, the function has a derivative (see the coda on this page
for the derivation), and this derivative is expressed in terms of the function
itself:



We can now put all the elements together to design a simple neural
network with one hidden layer, to solve the XOR problem. It’s a three-layer
network (see figure, below): The first is simply the input layer (x1, x2), the
second is the hidden layer, with two hidden neurons, and the output layer
has one neuron. (Again, the bias is not shown explicitly for each neuron;
take it as a given.)

The output of the first hidden neuron is:

We are now following the notation introduced in the previous chapter.
Besides the superscripts and subscripts for the weights, which we already
know about, for the values z and a, and the bias b, the subscript refers to the
layer, the superscript to the location of the neuron in the layer. So, 

refers to a weight for layer 2, and for an input coming from neuron 2 of the
previous layer and going to neuron 1 in the current layer. And  refers to

the output of a neuron 1 in layer 2.



With this in mind, we see that the output of the second neuron in the
first layer, which is a hidden layer, is:

More generically, for any neuron:

z = w.x + b

a = σ(z)

Finally, the output neuron takes a weighted sum of the output of the two
hidden neurons and passes that through a sigmoid activation function:

If you want to train such a network, you must calculate the following
partial derivatives, for some loss L.

For the weights and bias of the output neuron:

And for the weights and biases of the hidden neurons:



Once we calculate these partial derivatives, or the gradient of the loss
function w.r.t. all the weights and biases, we can then update each weight
and bias incrementally and do gradient descent. Such a network, given
training data, will learn the weights and biases that enable it to solve the
XOR problem: It’ll delineate the xy coordinate space in the manner shown
earlier.

While the way in which we solved the problem may seem tractable for
the XOR issue, just let your imagination wander a little, to a network with
tens or hundreds of hidden layers, with each hidden layer composed of 100
or 1,000 or even 10,000 neurons. And what if the loss function—we have
been using a simple one so far—itself becomes hideously complicated (as
can happen when the problem being solved becomes more difficult)? If we
have to explicitly and analytically calculate the partial derivative of the loss
function w.r.t. each weight and bias in the network, the process can quickly
become insanely unrealistic.

How, then, do you train the network, or how do you find each of the
partial derivatives, in some sustainable manner, where the algorithm doesn’t
have to be tweaked just because you changed the number of neurons per
layer or the number of layers? This was the question consuming researchers
in the late 1970s and early ’80s. First Werbos and then Rumelhart, Hinton,
and Williams, independently, developed an elegant technique for calculating
the partial derivatives using the chain rule.

THE BACKPROPAGATION ALGORITHM
To understand “backpropagation” (the term introduced by Rosenblatt),
we’ll turn to the simplest possible one-hidden-layer network, with one
hidden neuron.



During training, for some input x, the network produces an output yhat.
Here is the sequence of computations that lead to yhat. (To avoid unwieldy
subscripts and superscripts, we’ll just use the weight w1 and bias b1 for the
hidden neuron in the first layer and w2 and b2 for the output neuron in the
second layer.)

z1 = w1x + b1

a1 = σ(z1)

z2 = w2a1 + b2

yhat = σ(z2)

If the expected output is y, then the error e is:

e = (y - yhat)

We’ll define the square of the error as the loss—but remember, we are
choosing to define the loss as such; for any given problem, one has to select
an appropriate loss function. For our purposes, we can use this popular loss
function without any loss of generality:

L = e2

To update the two sets of weights and bias, we’ll need the following
partial derivatives:



Here’s an elegant use of the chain rule to get at these partial derivatives.
(There’s a trick to making sure you have the chain correct: Just cancel the
denominator of the first partial derivative with the corresponding numerator
to its right, and continue doing so, moving rightward. In the end, you should
be left with just the partial derivative on the left-hand side of the equation.
But keep in mind that this is not an actual mathematical operation, just a
device to ensure that the chain is correct.)

Each of these individual partial derivatives on the right-hand side of the
equation is easily calculated:

So:

This looks like a lot of work to calculate a partial derivative of the loss
function with respect to just one weight (w2, in this case) of even the
simplest possible network, but here’s the cool thing: Every element of that



right-hand side was already computed during the forward pass through the
network, when the network was converting the input x into the output yhat.
All we must do is simply keep track of those numbers and perform some
simple arithmetic.

Similarly:

We now have the gradient of the loss function w.r.t. the weight and bias
of the output neuron, which is enough to update these two parameters.

But what about the weight and bias of the hidden neuron? Well, we
continue “backpropagating” the error using the chain rule.

Similarly:



Again, the network has computed everything that’s needed for these
calculations during the forward pass through the network. However, notice
that the computation now needs to know the old value of the weight of the
second layer, w2. This means that after the forward pass, not only do we
need to keep in memory the results of all the computations, but we also
need to remember the old weights. (An aside: There’s a very important and
interesting question about whether biological brains do backpropagation.
The algorithm is considered biologically implausible, precisely because it
needs to store the entire weight matrix used during the forward pass; no one
knows how an immensely large biological neural network would keep such
weight matrices in memory. It’s very likely that our brains are
implementing a different learning algorithm.)

Now we can update the weight and bias of the first layer:

You can see how, if our network had more than one hidden layer and
more than one neuron per hidden layer, you can basically calculate the
gradient with respect to each weight and bias and update them, too. This is
the backpropagation algorithm. (See the coda on this page for how to
generalize this result.)



This is the awesome power of the backpropagation algorithm. If the
sequence of computations that lead from the input to the loss is
differentiable at every step, we can compute the gradient of the loss
function. Given the gradient, we can update each weight and bias a tiny bit,
thus performing gradient descent until the loss is acceptably minimized.

It’s hard to overstate the flexibility and power of the algorithm. You can,
in principle, construct a network with any number of layers, any number of
neurons per layer; build a network with either sparse or dense connections;
design the appropriate loss function. All these choices together dictate the
task you are asking your network to perform. Training eventually comes
down to this: Provide the network with some set of inputs, figure out what
the expected output should be (either because we humans have annotated
the data and know what the output should be or because, in types of
learning called self-supervised, the expected output is some known
variation of the input itself), calculate the loss, calculate the gradient of the
loss, update the weights/biases, rinse and repeat. below is an example of a
multi-layer perceptron, or a fully connected deep neural network.



The first layer is the input layer. For this example, which involves
recognizing images of handwritten digits and classifying them accordingly,
the input layer is made of 784 neurons, one for each pixel of the 28×28
image. The 2D image is flattened into a 784-dimensional vector. Next is the
first hidden layer. This can have 10 or 100 or 1,000 or more neurons. (The
more complex the task, the more neurons you’ll need.) What’s important to
note here is that in a fully connected neural network, or multi-layer
perceptron, each neuron of each layer receives all the inputs from the
previous layer. So, in the case of the first hidden layer, the first neuron of
the layer receives all 784 inputs, as does every other neuron in that layer.
Let’s say there are 1,000 neurons in the first layer. That means there are
1,000 outputs coming out of that layer. So, each neuron in the next layer
receives each one of those 1,000 outputs as inputs.

It’s impossible to show this dense connectivity, so only some
connections are shown in the above figure. But you get the idea.

The figure shows four hidden layers. Again, the more complex the task,
the more hidden layers you might need. Even the number of neurons in the
hidden layers can vary from layer to layer.

Of particular interest is the final, output layer. In this case, we have 10
output neurons. The idea is that a trained network, when presented with the
image of one of 10 digits, will respond by firing neuron 0 for digit 0, neuron
1 for digit 1, and so on. (In each case, the other neurons may fire, too, but in
a well-trained network, for an input image of digit 0, for example, the
outputs of neurons 1–9 will be significantly less than the output of neuron
0, thus signifying that it has detected a “0.”)

To appreciate the power of backpropagation, think of the silly network
we analyzed: one hidden layer with one hidden neuron. Well, the exact
same process can be used to train this undeniably more complex network to
recognize handwritten digits.



WHAT EXACTLY DOES THE NETWORK

LEARN?
In his Ph.D. thesis, Paul Werbos had shown how this algorithm would work
by creating a table of the intermediate operations leading to the final result.
He wrote about this procedure of backpropagation, “In general, the
procedure…allows us to calculate the derivatives backwards down any
ordered table of operations, so long as the operations correspond to
differentiable functions.” The final caveat is key: Every link in that chain
has to be differentiable, or at least one should be able to satisfactorily
approximate the function’s derivative everywhere. Werbos, however, wasn’t
thinking about neural networks at the time.

Those who were thinking about neural networks in the 1970s had been
working with binary threshold neurons. The threshold activation function of
such neurons is not differentiable at the point where the function abruptly
transitions from, say, 0 to 1.

Using the sigmoid as an activation function was one of the nuances of
the work done by Rumelhart, Hinton, and Williams. The other advance had
to do with concerns about symmetry breaking that we encountered earlier.
When Hinton told Rumelhart about his interpretation of Rosenblatt’s work
—that breaking symmetry necessitated stochastic neurons—Rumelhart
instantly saw a different way out. “His immediate reaction was ‘Well, why
can’t we just break symmetry by having random initial weights?’ Rosenblatt
didn’t think of that,” Hinton told me. Neither had Hinton. Basically, by
setting the initial value of each weight and bias in the network to some
small random value (sampled from, say, a simple Gaussian distribution),
one could ensure that symmetry was broken.

Hinton credits Rumelhart with designing the algorithm—or, rather,
reinventing it, as others had already thought of it for other purposes. Hinton
helped refine, implement, and test it; Williams helped with the math; and
Rumelhart and Hinton focused their attention on what the algorithm
empowered a multi-layer neural network to learn. They weren’t interested
only in the fact that a neural network with hidden layers could approximate



any function—which it could, given enough neurons. “We were the group
that used backpropagation to develop interesting representations,” said
Hinton, who is now at the University of Toronto.

And therein lies the import of neural networks. The algorithms we saw
in earlier chapters, including support vector machines, all required us to
specify beforehand the features in the data. Let’s say we are dealing with a
two-dimensional dataset. The obvious features would be the values x1 and
x2. But this won’t always work. For example, to separate the circles from
the triangles in the dataset shown below, a linear classifier that works in two
dimensions won’t do.

We know from previous attempts at solving this problem that it’s not
enough to just use [x1, x2] as the features. Rather, we need some nonlinear
features. Specifically, we need to know these features in advance. For
instance, to solve this particular problem, we could use a triplet of features
[x1, x2, x1x2]. Even if we used a kernel to project this data into high
dimensions, and then did a linear classification in the higher-dimensional
space, we’d still need to design the kernel. But, with a neural network with



sufficient neurons, all we would need to do is provide the inputs x1 and x2
and let the network figure out the features needed to classify the data
correctly. It’ll learn to represent these features internally. A neural network
with just three neurons in the hidden layer might find the following decision
boundary for our example dataset. (More hidden layer neurons would
enable a smoother decision boundary.):

Rumelhart, Hinton, and Williams emphasized this aspect in their paper
on backpropagation, the title of which read, “Learning Representations by
Back-propagating Errors.” The abstract of their paper states, “As a result of
the weight adjustments, internal ‘hidden’ units which are not part of the
input or output come to represent [italics mine] important features of the
task domain, and the regularities in the task are captured by the interactions
of these units. The ability to create useful new features distinguishes back-
propagation from earlier, simpler methods such as the perceptron-
convergence procedure.”

Of course, publishing the paper—it’s barely three pages long—involved
laying some groundwork. The trio sent it to the journal Nature. “I did some
political work in Britain of going and talking to all the people who might be
referees,” Hinton told me. One of them was Stuart Sutherland, an
experimental psychologist at the University of Sussex. Hinton described to



Sutherland how backpropagation allowed a neural network to learn
representations. “It took a while to explain to him, but then he really got it,”
Hinton said. The canvassing paid off. Whomever Nature sent the paper to
for peer review thought well enough of it; the journal accepted it for
publication. Sutherland even wrote an accompanying essay in the same
issue of the journal.

The importance of learning features, rather than having to hand-design
them, will become increasingly clear in the next chapter, when we tackle
image recognition, the application that brought neural networks fame. Even
as Rumelhart, Hinton, and Williams were working on their backpropagation
paper, a young student in Paris had independently developed an algorithm
that achieved similar results. A colleague told Hinton that “there is a kid in
France who is working on the same stuff.” The kid was Yann LeCun. When
Hinton met LeCun during a conference in Europe—this was before the
backpropagation paper had been published—their intellectual chemistry
was instant. “We were completing each other’s sentences,” LeCun told me.
“He explained to me what he was working on. He was working on
backprop.” LeCun immediately understood the import of the work. He told
Hinton, “You don’t have to explain that to me.” Hinton and LeCun would
collaborate briefly soon after and then establish major labs of their own,
setting the stage for the revolution in deep learning, the subject of our next
chapter.

Meanwhile, in 1987, soon after the publication of the Nature paper,
Rumelhart moved to Stanford University. He retired in 1998, as he fell ill
with Pick’s disease, a progressive neurodegenerative disorder; he died in
2011. “If he had lived, he would have been the person who got most of the
credit for backprop,” Hinton said. As it happens, it’s Hinton who most often
gets associated with and fêted for the algorithm, though even he admits he
was simply one of a long chain of people who had grappled with the
problem.



MATHEMATICAL CODA
The derivative of the sigmoid function
The sigmoid function is:

Let u = 1 + e-z

So:

Using the chain rule:

The first part of the expression is:

The second part of the expression is:

So:



QED

GENERALIZATION OF THE

BACKPROPAGATION ALGORITHM
Let’s start with an input vector, x. Say x = [x1, x2]. Take the first hidden
layer of a neural network. Let’s say it has three neurons. Each neuron in the
layer will create a weighted sum plus bias.

The first neuron’s weighted sum will be:

The second neuron’s weighted sum will be:

The third neuron’s weighted sum will be:

We can write this as:

, where



This intermediate output of the layer has to pass through the activation
function. We can continue using the sigmoid function, though other
functions can be used. The particulars don’t matter as long as the activation
function is differentiable.

The output of layer 1, after activation, is: a1 = σ(z1)
What this is saying is that each neuron’s output—the weighted sum plus

bias—is passed through a sigmoid. Let’s extend this to a network of three
hidden layers and a final, output layer. Here’s the sequence of operations
performed by the network:

Layer 1:

Layer 2:

Layer 3:

We now come to the final, output layer. There can be any number of
neurons in the output layer, but for our purposes, consider a layer with just
one neuron.

Output:

yhat = σ(z4)



Calculating the error and loss gives us:

e = (y - yhat)

L = e2

We now have all the ingredients for calculating the gradient of the loss
function with respect to all the weights and biases. For example, let’s say
we want the partial derivative of the loss function L w.r.t. the weights of the
third layer. That’s given by (note that these equations use the matrix form of
the weights, and vector forms for the outputs of all the neurons in a layer,
for compactness):

We know how to calculate each right-hand side term:



Each partial derivative equates to something that we either computed
during the forward pass through the network (such as the value z4 or a2) or

to the current value of the weights (such as ). We now have the

gradient of the loss function with respect to the weights of one layer, and we
can use the delta rule to update the weights.

That’s it!



A

C H A P T E R  1 1

The Eyes of a Machine

lmost all accounts of the history of deep neural networks for
computer vision acknowledge the seminal work done by

neurophysiologists David Hubel and Torsten Wiesel, co-founders of the
Department of Neurobiology at Harvard in the early 1960s and joint
winners of the 1981 Nobel Prize in Physiology or Medicine. The Nobel was
for their work on the cat’s visual system; it was awarded about fifteen years
after their most pioneering work, and even in that intervening decade and a
half, the two remained astonishingly productive. In 1982, the British vision
scientist Horace Barlow wrote about Hubel and Wiesel’s Nobel: “By now
the award must be considered, not only one of the most richly-deserved, but
also one of the hardest-earned.”

Hubel and Wiesel’s early work involved creating a map of the visual
cortex by recording electrical activity from individual neurons in the brains
of cats, while they showed the cats visual patterns using, of all things, a
slide projector. This matter-of-fact description obscures the painstaking
nature of the experiments. The detailed description of these experiments is
not for the queasy. The work has its roots in Hubel’s invention, in 1957, of a
tungsten electrode to record the electrical activity of single neurons, or
units, in the brain. This was a pioneering effort in itself. Until then, the most
popular device for this purpose was an electrolyte-filled glass micropipette
with a sharp tip that could be inserted into the brain. Hubel wanted
something that wouldn’t break if the animal moved. Others had developed
steel electrodes, but they weren’t stiff enough. Tungsten proved perfect.
“The electrode has been used for recording single units for periods of the



order of 1 hour from [the] cerebral cortex in chronic waking cats restrained
only by a chest harness,” Hubel wrote.

It’s these electrodes that Hubel and Wiesel used to record the activity of
single neurons in anesthetized cats. The cats were given the anesthetic
intraperitoneal thiopental sodium and were kept under its influence
throughout the experiment. (If electrocorticogram recordings showed that
the effect was wearing off, the cat was dosed again.) With the electrodes in
place, Hubel and Wiesel had to present visual stimuli to the anesthetized
cat. They kept the cat’s eyelids open with wire clips, its pupils dilated using
1 percent atropine (a nerve agent), and injected succinylcholine to
immobilize the muscles in the eyes. Succinylcholine is a muscle relaxant, so
now the cat couldn’t breathe on its own, which “made it necessary to use
artificial respiration.” The scientists even used contact lenses with
lubricants to keep the cat’s eyes from “drying and becoming cloudy.” With
this complicated setup in place, Hubel and Wiesel used electrodes to study,
for hours on end, the activity of hundreds of individual neurons in the cat’s
primary visual cortex as the cat’s eyes were exposed to patterns projected
onto a screen using a tungsten filament projector.

Would such experiments be allowed today? It’s hard to say. Even by the
1980s, debates over the questionable ethics of such experiments were
playing out in the op-ed pages of newspapers. A 1983 essay in The New
York Times referred to a follow-up experiment Hubel and Wiesel did, which
involved studying the development of vision in kittens. “At Harvard
University, kittens were blinded by having their eyes sewn shut,” wrote
essayist Steven Zak, at the time a law student “specializing in animals and
the law.” This assertion drew a sharp response from a reader sympathetic to
Hubel and Wiesel: “Among other things, their work has led to new
ophthalmological procedures that will prevent blindness in thousands of
children. There is ample evidence that the animals in those experiments
received humane, decent care and did not suffer severe pain.”

Hubel and Wiesel’s findings certainly revolutionized our understanding
of vision and, as the long arc of science shows, eventually impacted the



design of deep neural network–based computer vision systems. It’s the
latter that concern us.

But first, a note about the stroke of luck that made their findings
possible. Initially, Hubel and Wiesel could not get the cat’s cortical neurons
to fire in response to visual stimuli, no matter what they showed the cat.
Nothing worked. Then, in a classic case of scientific serendipity, it
happened. A neuron fired, producing the kind of staccato sounds associated
with a Geiger counter. After some sleuthing, Hubel and Wiesel figured out
why. They realized that the cell was firing when they were changing slides
on their projector: The neuron fired only when the edge of the slide was
oriented at a particular angle as it was being moved and the edge was being
projected onto the screen. The information on the slide (in this case, a black
dot) wasn’t important. It was a particular orientation of the faint edge of the
slide moving across the cat’s visual field that was triggering the neuron.
Hubel and Wiesel had discovered an edge-detecting cell.

Hubel and Wiesel argued that there’s a hierarchy in the way information
is processed in the visual cortex (a claim that has turned out to be not as
clear-cut as in their initial account, but we’ll stick to it because it’s a view
that has influenced AI enormously).

We need some definitions to appreciate their argument:

The “visual field” is the region in front of us that our eyes are
sensitive to at any instant, when the eyes are focused on something in
front—the “focused” part is important. Otherwise, simply moving
one’s eyes would change the visual field. A stimulus in the visual field
triggers a neural response.

The “receptive field” refers to the portion of the visual field that
triggers a single neuron. The size of the receptive field of a neuron can
vary from the very small to large, as we’ll soon see. If there’s an
appropriate stimulus in the receptive field of a neuron, that neuron
will fire. The neurons with the smallest receptive field, meaning those



directly monitoring the image on the retina, are called retinal ganglion
cells, the first layer of neurons that receive inputs from the retina.

Now let’s say there’s some stimulus in the form of a vertical line that
appears in the visual field and overlaps the receptive fields of four retinal
ganglion cells. Each cell will fire in response to the signal in its respective
receptive field. These four cells—four is only an example—connect to a
“simple cell,” a neuron that fires only when all four retinal ganglion cells
(RGCs) fire together. Imagine a scenario where only one of the four RGCs
fires. It has detected a stimulus. It signals the simple cell, but because the
other three RGCs are quiet, the simple cell does not fire. If all four RGCs
fire, then the simple cell fires, indicating the detection of a vertical edge.
(This is reminiscent of the threshold activation function we encountered in
earlier chapters: A single RGC input remains below some threshold needed
to drive the simple cell, but inputs from multiple RGCs, arranged in the
correct manner, exceed the threshold, causing the simple cell to fire.)

What if the edge were at an angle? Well, there are simple cells that fire
for an edge that’s at some angle to the vertical. For example, here’s one that
detects an edge at a 45-degree angle:



This leads us to a discussion about something incredibly interesting
about vision: invariance. Think about a vertical edge. There might be many
vertical edges in the visual field and a simple cell to detect each of those
edges. But what if we want a neuron to signal the presence of a vertical
edge regardless of its position in a large receptive field? Here’s a solution:
Many simple cells, each responding to a vertical edge in a different part of
the overall visual field, feed their outputs to a complex cell that fires if any
one of the simple cells fires. Now the complex cell is said to be invariant to
translation: A vertical edge can be anywhere in the receptive field of the
complex cell, and as long as it triggers some simple cell, it’ll trigger a
response from the complex cell.



Similarly, you can have a complex cell that responds to an edge that’s at
30 degrees to the vertical anywhere in its receptive field. These are
examples of spatial, or translational, invariance.

Something interesting happens to the receptive fields of neurons as we
move up the hierarchy. The retinal ganglion cells have small receptive
fields, and the RGCs fire only when there’s some stimulus in their tiny
patch of the visual field (the small circles in our illustration). But now
consider an edge-detecting simple cell. Its receptive field is much larger
(composed of the receptive fields of, say, four RGCs aligned along a line).



Only when there’s an edgelike stimulus that spans the entirety of that larger
receptive field does the simple cell fire. Let’s move up one level in the
hierarchy. Take the complex cell that fires in response to the presence of a
vertical edge in a spatially invariant manner: It has a much larger receptive
field that spans the receptive fields of the constituent edge-detecting simple
cells; the complex cell fires when there’s a vertical edge anywhere in that
larger receptive field.

Another important type of invariance, and one that’s easy to illustrate, is
rotation invariance. Here’s an example in which complex cells fire when
there’s an edge of a given orientation in the receptive field. These complex
cells feed their outputs to a hypercomplex cell, which fires when any one of
the complex cells fires. What we have now is a cell that’s invariant to
rotation; as long as there’s an edge in the receptive field of the
hypercomplex cell, the cell will fire, regardless of the orientation of the
edge.



Hypercomplex cells are also known to fire maximally for an edge of
some particular length; shorter or longer edges don’t have the same effect.
You can combine such hypercomplex cells to detect, say, a chevron, or V-
shaped, pattern. The following figure shows only the hierarchical
hypercomplex cells; there would be simple and complex cells preceding the
first layer of hypercomplex cells.

You can imagine combining these to get to cells higher up in the
hierarchy that detect, say, a triangle or a square; and cells that are
translation or rotation invariant to the presence of triangles or squares. And
we can go on, imagining cells that are sensitive to different shapes; that are
rotation and translation invariant; that are invariant to stretching, to lighting
conditions, and so on. We can let the shapes get more and more complex
until we end up with some “grandmother” cell that fires when you see…
well, your grandmother (the latter bit about grandmother detecting cells is
some far-fetched neuroscience lore).

That’s a neat story, anyway, but actual brain circuitry is messier and way
more complicated. Still, this neat story is what led to the first artificial
neural network based on Hubel and Wiesel’s work.



THE NEOCOGNITRON
Before the advent of deep neural networks, computer scientists took a
particularly tedious approach to endowing machines with vision. First,
they’d define the kinds of features you’d expect to see in an image (lines,
curves, corners, color, etc.). The software would analyze an image to detect
these features. It’d have to be invariant to various situations, such as those
we’ve just encountered. The next layer of the software would then create a
dictionary of objects: each object would consist of some set of features.
Recognizing an object in another image involved detecting a significant
number of a given set of features that defined that object. Such approaches
proved computationally complex, given that the dictionary could keep
getting bigger and bigger.

And yet our brains do it incredibly successfully. How?
In 1975, Kunihiko Fukushima of the NHK Science and Technology

Research Laboratories in Tokyo announced the first real neural network–
based image recognition system of considerable complexity in a paper titled
“Cognitron: A Self-Organizing Multilayered Neural Network.” The learning
algorithm—which adjusts the weights between neurons—took a Hebbian
approach. Let’s say neuron x is connected to neuron y, where x is the pre-
synaptic neuron and y is the post-synaptic neuron. (In biology, a synapse
refers to a connection through which electrochemical signals flow between
neurons.) Let’s say that the neural network is given some input that
cascades through the network, and the network produces an output, right or
wrong. For our pair of neurons, x and y, the algorithm looks to see if x fired.
If the answer is “yes,” then it checks to see if y fired. If the answer is also
“yes,” it checks to see if y fired more strongly than other proximal post-
synaptic neurons. If all these conditions are met, the algorithm strengthens
the synaptic connection between x and y; this is akin to correcting the
weights of connections. Keep doing this over and over for a range of inputs,
such as the letters “X,” “Y,” “T,” and “Z,” and the network’s connections
stabilize and the output layer develops a distinct pattern of activation for
each input.



But as Fukushima wrote in a subsequent paper, published in 1980, the
cognitron’s “response was dependent upon the position of the stimulus
patterns.” If the same pattern appeared in different positions in the visual
field, the cognitron recognized them as different patterns. In other words,
the cognitron wasn’t translation invariant, let alone invariant in other, more
complex ways.

In the 1980 paper, “Neocognitron: A Self-Organizing Neural Network
Model for a Mechanism of Pattern Recognition Unaffected by Shift in
Position,” Fukushima introduced the neocognitron and paid homage to
Hubel and Wiesel by adopting an architecture that was clearly inspired by
their work. (For example, the neocognitron has S-cells and C-cells, meant
to model simple and complex cells.) Each layer of the neocognitron has S-
cells, which respond to some feature (say, a vertical edge). A number of
such S-cells in a layer (which, taken together, are looking at some patch of
the visual field) feed into a C-cell. If the C-cell fires, then it is indicating
that there’s a vertical edge in that patch of the visual field. There are
numerous such C-cells in that layer, each responding to a vertical edge in a
different patch. The outputs from all the C-cells in one layer would then
serve as inputs to an S-cell in the next layer. So, if the C-cells in one layer
are each responding to the presence of a vertical edge in some part of the
visual field, then the S-cell in the next layer, which is collating all this
information, will respond to the presence of an edge anywhere in the overall
visual field. With this arrangement, we get vertical edge detection with
translation invariance.

Using this architecture, Fukushima’s neocognitron could learn to detect
patterns, even if those patterns were shifted in position or were distorted or
squished. A number of such layers gave the neocognitron the ability to
recognize digits, even if the digits were shifting positions on the visual field
or were distorted to some acceptable extent. This was a big deal at the time.
“One of the largest and long-standing difficulties in designing a pattern-
recognizing machine has been the problem [of] how to cope with the shift
in position and the distortion in shape of the input patterns. The
neocognitron…gives a drastic solution to this difficulty,” Fukushima wrote.



Despite the advance, the neocognitron’s training algorithm, which
adjusted only the weights of the S-cells, was cumbersome, finely tuned,
somewhat bespoke. Then, about a decade later, the “kid in France,” Yann
LeCun, now a young postdoc with Hinton in Toronto, solved the same
problem, using a neural network architecture that became one of his
signature contributions to AI: the convolutional neural network. The CNN
was trained using the backpropagation algorithm, unlike the neocognitron.
A few years after LeCun’s paper was published, he met Fukushima. “He
told me that when he saw our paper, in Neural Computation, he and his
students were shocked, because they were actually working on the same
thing,” LeCun told me. Fukushima had been scooped.

THE LeNET
By now, Marvin Minsky and Seymour Papert must come across as the
villains who derailed research into neural networks for a good part of a
decade. So, it’s somewhat surprising that Papert is one of LeCun’s
intellectual heroes. When LeCun was still a student studying electrical
engineering in Paris, he chanced upon the book Language and Learning:
The Debate Between Jean Piaget and Noam Chomsky. In October 1975,
Piaget and Chomsky, two intellectual giants with divergent views on the
nature of cognition, among other things, met at Royaumont Abbey, about
thirty kilometers north of Paris. Alongside Piaget and Chomsky were other
prominent thinkers, including Papert. One of the questions they were
debating was whether our cognitive capabilities are mainly innate
(Chomsky’s position) or whether they are the outcome of learning that
happens during development, given some small nucleus of innate biological
mechanisms (Piaget’s position). For example, one of Chomsky’s basic
arguments about language is that most syntactic structures in language are
innate, not learned. Piaget thought otherwise. Papert, during the debate, was
in Piaget’s camp. He felt Chomsky wasn’t giving learning its due. “I believe
that Chomsky is biased toward perceiving certain syntactic structures as
‘unlearnable’ because his underlying paradigm of the process of learning is



too simple, too restricted. If the only learning processes were those he
seems to recognize, these syntactic structures might indeed have to be
innate!”

Papert called for greater clarity about what it means to say something is
innate. “I will do this by describing an automaton, a machine that we
understand quite thoroughly, and asking questions about what is and what is
not innate in the machine. If the question is unclear even in this ‘toy’
situation, how much more clarification does it need in the complex situation
of human development?” he argued. “The machine in question is called a
perceptron.”

And then Papert went on to describe Rosenblatt’s perceptron.
While still an undergrad, and before he had read the book about the

Piaget-Chomsky debate and Papert’s arguments, LeCun had been bitten by
the intelligence bug. “I was always fascinated by the mystery of
intelligence,” he told me. “Maybe because I’m too stupid or too lazy, I
always thought that human engineers would not be smart enough to
conceive and design an intelligent machine. It will have to basically design
itself through learning. I thought learning was an essential part of
intelligence.”

Papert’s analysis, using perceptrons, was right along those lines. LeCun,
however, had never heard of learning machines. He was fascinated. He
began digging through academic literature and poring over library books.
He read about perceptrons, and he read Minsky and Papert’s book. “I
realized pretty early, because I read all those old papers, that everybody in
the sixties was looking for a way to train multi-layer nets,” LeCun told me.
“They knew that the limitation was due to the fact that [they] were stuck
with linear classifiers.”

LeCun discovered and memorized part of the ML bible we have already
encountered in previous chapters, Duda and Hart’s Pattern Recognition. His
key takeaway from all his reading, he told me, was that a “learning
algorithm should minimize an objective function. You can derive a whole
bunch of stuff from that.”



An objective function is a slight but significant change to the loss
function. We have already encountered the latter: It’s a function that takes in
the ML model’s parameters and then calculates the loss, say, as the mean
squared error (MSE) over the entire training dataset. We saw how the loss
function can be minimized or optimized. Working only with the loss
function comes with an inherent problem: Do too well on the optimization,
and your ML model can overfit the data; it can literally memorize
everything. In which case, it might perform badly when making predictions
on test data it hasn’t seen before. To avoid this, one can add an extra term to
the loss function, something called a regularizer. This term is designed to
make the ML model avoid overfitting. The loss function and the regularizer
taken together constitute the objective function. Minimizing the objective
function, instead of just a pure loss function, leads to a model that can
generalize better to unseen data.

With minimizing objective functions for multi-layer neural networks on
his mind, LeCun started his Ph.D. and learned about Fukushima’s
neocognitron. As part of his doctoral work, LeCun developed a learning
algorithm that, he would realize, was related to the backpropagation
algorithm (which we saw in the previous chapter). Instead of
backpropagating gradients, or calculating all the partial derivatives using
the chain rule, LeCun’s algorithm backpropagated “virtual target values” for
each hidden unit. The algorithm could then calculate an error for each unit
and the requisite gradient to perform an update. Under special conditions,
the algorithm behaves like backpropagation. While getting his Ph.D.,
LeCun began thinking about neural networks for invariant image
recognition (of the kind we just saw).

He presented a paper on his learning algorithm at a conference in France
in 1985. “It was [a] badly written paper in French,” he told me. Hinton, who
was the keynote speaker at the conference, sought out LeCun, and the two
hit it off, even completing each other’s sentences, LeCun recalled. Hinton
invited LeCun to come to a summer school he was organizing in 1986 at
Carnegie Mellon University, in Pittsburgh. There, Hinton told LeCun that



he was moving to the University of Toronto; he asked if LeCun would join
him there as his postdoc. “I said, ‘Of course.’ ”

LeCun finished his Ph.D. in 1987 and moved to Toronto, where he
enjoyed an intellectually stimulating time with Hinton, the two having
conversations “that I pretty much only had with him.” It was in Toronto that
LeCun began working on convolutional neural networks for image
recognition, or conv nets. (We’ll come to what “convolution” means in a
minute.) These days, if a software engineer wants to implement a conv net,
they can do so with fewer than a hundred lines of code, thanks to software
packages such as PyTorch and TensorFlow. No such software existed in the
mid-1980s. LeCun and a fellow doctoral student, named Léon Bottou, had
to write special software to simulate neural networks. Called SN, it would
eventually become Lush, one of the ancestors of the modern-day PyTorch.
But in 1987, SN was a huge deal. “That [gave] us superpowers. Nobody
else had anything like this,” LeCun told me. “It really was very
instrumental in building the first conv net.”

Within a year of being at Toronto, LeCun was recruited by Bell Labs in
Holmdel, New Jersey, where he joined an illustrious group led by Larry
Jackel. At Bell Labs, LeCun got access to a large, intriguing dataset: images
of handwritten digits from the U.S. Postal Service. The USPS was
interested in automating the process for recognizing zip codes. LeCun
coded a neural net to recognize these handwritten digits. PCs were still not
fast enough to run such computer-intensive software, so he wrote a
compiler using the Lisp programming language, which would take in the
definition (or architecture) of the neural network to be implemented and spit
out code in the C programming language. A C compiler would then turn this
code to low-level instructions that could run on a hardware digital signal
processor.

Meanwhile, a colleague, Donnie Henderson, put together a demo that
used a video camera to turn handwritten digits scribbled on a piece of paper
into digital images for the neural network to recognize. All this work
happened in the space of a few months after LeCun got to Bell Labs. He
recalled the experience of watching his neural network recognize hand-



drawn digits: “It’s not that I had any doubt it would work. I was young and
fearless,” he told me. Nonetheless, he was “absolutely elated.” The work
resulted in a couple of papers, including the one in Neural Computation that
shocked, and scooped, Fukushima’s neocognitron team. The outcome was a
convolution neural network that today is called LeNet; all modern-day
CNNs are its descendants.

DOING THE CONVOLUTION
At the heart of even the most sophisticated convolution neural network
today is a very basic operation: the convolution. The term comes from a
special operation that can be performed using two functions, say, f(x) and
g(x):

f(x) * g(x), where “*” is the convolution operator.
We aren’t concerned with the general case of convolutions of functions

but, rather, with a very specific 2D case that’s applicable to images. Let’s
say you have a 5×5 image. Convolution in the context of an image is the
operation performed on the image using another, smaller—say, 2×2—
image, which is called a kernel or kernel filter. Here’s an example of such
an image and kernel:

The process of convolution starts by our placing the 2×2 kernel on the
top-left corner of the 5×5 image; this gives us four overlapping pixels.



Multiply each pixel of the kernel with the value of the pixel lying beneath
it. You get four numbers. Sum them up. The sum gives you the pixel value
for a new image, at location [1, 1]. (There’s a formula for the size of the
new image, but let’s leave that aside for now and take it that it’s a 4×4
image.) Here’s the first operation:

Now slide the kernel one pixel to the right. (The exact amount by which
the kernel slides to the right can be changed, but we can use one pixel
without any loss of generality.) Again, we have four overlapping pixels.
Multiply each pair of overlapping pixels and sum them up. Now the sum
gives you the pixel value for the new image at location [1, 2].

Keep sliding the kernel one pixel to the right, generating a new pixel
value for the new image, until you cannot slide the kernel to the right any
farther. For our example 5×5 image and 2×2 kernel, we can generate only
four pixels as we go from left to right.



Once the kernel hits the end of the image on the right, we go back to the
left and slide down one row and repeat the entire process. This generates the
pixel values for the second row of the new image.

You get the picture. We do this until the kernel cannot move right any
farther and then we go back to the left, slide the kernel down one pixel, and
continue until we reach the bottom right of the main image and there’s no
place left for the kernel to go. In this example, we generate a new 4×4
image. Have a go at filling up the rest of the blank spaces in the new image.



We’ve just convolved the 5×5 image with the 2×2 kernel. Before we go
into more details about the convolution, the figures on the following page
show an example of convolving 28×28 images of handwritten digits, with
two different 3×3 kernels. (The first image is the original, and the following
two are convolved images.)



Leaving aside the specifics of the kernels, do you notice anything in
particular about the new images? First, what’s not obvious is that the new
images are 26×26 (the convolution operation reduced the size). But more
important, what’s visually obvious, especially if you squint at the images, is
that in the first convolved image, the horizontal line of the digit 4 is
highlighted; whereas in the second convolved image, the vertical lines are
highlighted. You can see the same effect, in a more pronounced manner,
when the convolution operation is performed on the digit 1. (Again, the
leftmost image is the original, followed by the two convolved images.)

The kernels were chosen specifically to achieve these highlights. The
two kernels are:



These are called Prewitt kernels, after their developer. These kernels
succeed in generating new images, after the convolution, that detect
horizontal and vertical edges. Keep in mind, for now, that these are hand-
designed kernels. LeCun wanted his neural network to learn such kernels.

While doing the convolution, we made some assumptions. The first is
that the kernel moved right or down by one pixel. The number of pixels by
which the kernel moves is called its stride. We had a stride of 1. We could
have chosen 2, and we’d have generated a new image of a different size.
The choice of stride dictates the size of the new image; so, for an input
image size i, kernel filter size k, and stride s, the output image size is given
by:

⌊((i - k)/s) + 1⌋

(The floor brackets around some number, denoted by ⌊some number⌋,
evaluate to the largest integer that’s less than or equal to the number inside
the brackets. So, the floor of 4.3, given by ⌊4.3⌋, is 4.)

We are making some other assumptions here: The input image is square
(i.e., image width equals height), and we are not adding dummy pixels,
called padding, around the input image, which is often done in
convolutional networks. For 28×28 images, a 3×3 kernel, and a stride of 1,
we get 26×26 images as output.

It’s time to connect these ideas to neurons, their weights, the idea of
receptive fields, and so on. Consider a single operation, when the kernel is
atop some portion of the image (see figure below):



The pixels in the main image have values [x11, x12, x21, x22]. The
kernel’s pixels have values [w11, w12, w21, w22]. Here’s the result of
multiplying the kernel with the underlying pixels:

w11x11 + w12x12 + w21x21 + w22x22

This must remind you of the operation done by an artificial neuron. The
weights of the neuron are the values of the individual elements of the
kernel. The inputs to the neuron are the pixel values of that part of the main
image over which the kernel is hovering. The output of the neuron is simply
the weighted sum of those pixels.

So, for every position the kernel takes atop the image, we assign one
neuron. In our example, for a 5×5 image and a 2×2 kernel with a stride of 1,
we need 16 such neurons. The outputs of these neurons give us a 4×4
image.

Here’s how this connects to the idea of receptive fields. Each neuron is
paying attention only to a particular part of the image: either the four pixels
in the top-left or top-right corner or in the bottom-left or bottom-right
corner or the four pixels anywhere in the middle. Each neuron has its own
region of interest in the image, and that is its receptive field. It’ll respond
only to those pixels.

The output of a neuron will depend, of course, not just on the values of
the pixels in its receptive field, but also on its weights, or the elements of



the kernel matrix. We saw two examples of kernels, one that causes an
output when there’s a horizontal edge and the other when there’s a vertical
edge, in the receptive fields of the neurons.

For our example of a 5×5 image and a 2×2 kernel, we have a layer of 16
neurons, the outputs of which form a 4×4 image. The 16 neurons form the
first hidden convolution layer of a neural network. These neurons, which
share the same set of values for their weights, are like simple cells: Each
responds to some pattern in its receptive field.

Now imagine taking the 4×4 image obtained after the first convolution
and applying another convolution using a different 2×2 kernel. The output
will be a 3×3 image. This will require 9 neurons. This is the second hidden
convolution layer. Each neuron in this layer is the equivalent of a complex
cell in Hubel and Wiesel’s hierarchy. Each neuron in this layer is sensitive
to the value of 4 pixels in the 4×4 image generated by the previous layer.
But each pixel in the 4×4 image was the outcome of a neuron that was
sensitive to 4 pixels in the previous, input image. So, the neuron in the
second layer is effectively sensitive to 9 pixels in the input image. Why is
the receptive field not equal to 4×4 = 16 pixels? A moment’s thought will
give you the answer.

In the illustration above, the numbers in the individual cells refer to the
row and column numbers of the image, not to the value of the pixels. So, 11



means row 1, column 1; and 43 means row 4, column 3; and so on. So,
pixel 11 in the final 3×3 image is the outcome of a kernel operating on four
pixels in the previous image (pixels 11, 12, 21, and 22). But those four
pixels are the outcome of sliding the 2×2 kernel across four patches in the
previous layer, covering pixels 11, 12, 13, 21, 22, 23, 31, 32, and 33.

If we take just the 3×3 patch of the original image, highlighted in bold
lines, here are the connections in a neural network that can transform that
patch into a single pixel. First, we lay out the pixels in a straight line for
easy visualization and, then, connect these pixels to their respective
individual neurons. It’s clear how each neuron in the first hidden layer is
only responding to four pixels. Of course, the full layer will have 16
neurons; the illustration shows only 4 of them. The 4 neurons generate 4
pixels of the next 4×4 image. These pixels/outputs become the input to the
neuron in the next layer, which then produces one pixel for the subsequent
image.

Can you see why the kernel operation gives us, in this case, translation
invariance? Let’s say the kernel detects a horizontal edge. The edge can be
anywhere in the image. As long as it falls within the receptive field of one
or more neurons, we’ll get a signal from at least one of the neurons in the



first layer. The same goes for vertical edges. Layers that follow can act on
these signals.

The architecture is reminiscent of the hierarchy that Hubel and Wiesel
had posited exists in our brains. The simple cells, or neurons, of the first
hidden layer respond to simple features. Complex cells in the next hidden
layer respond to the outputs of a group of simple cells, so they are
responding to some composition of the simpler features. This hierarchy can
keep going until you have a neuron that fires because the continued
composition of features indicates, say, the presence of the digit 1 or the digit
4 in the input.

The kernels we used were specially designed by someone who put a lot
of thought into them. And it’s relatively straightforward to design kernels to
detect simple features, such as vertical or horizontal edges. But what about
complex images? What features should one be looking for that would
distinguish one image from another? And how do we design such kernels?

This is where LeCun’s insight came to the fore. There’s no way a human
can figure out all the myriad features that define an image and then design
kernels to highlight those features. LeCun realized he could train a neural
network to learn these kernels; after all, the elements of each kernel matrix
are the weights of individual neurons. Training a network using
backpropagation to do some task would, in essence, help the network find
the appropriate kernels.

We need to understand one more commonly used operation in
convolution neural networks before we put all the pieces together. It’s an
operation called pooling, of which there are a few types, but we’ll focus on
one in order to understand the process conceptually. It’s called max pooling.

The basic idea behind max pooling is to place a filter (another name for
a kernel) over some part of the original image and then simply spit out the
largest pixel value in the region below the filter. Max pooling is applied to
an image that has been produced by one stage of a convolution. This brings
down the size of the image further and has two huge benefits. First, the
number of neurons you require for the next stage of convolution is reduced;



and second, the receptive field of a neuron that comes after the max pooling
stage is increased even more, helping with translation invariance.

Given a 4×4 image (obtained, say, after a convolution), here’s what max
pooling would look like with a 2×2 filter. Unlike the convolution kernel, the
max pooling filter moves such that there are no overlapping pixels, so the
stride is the same as the kernel size. In our example, the stride is 2 pixels.

Again, the size of the new image is given by a simple formula
(assuming square images and no padding):

⌊((i - k)/s) + 1⌋

The formula, for an input image size i = 4, pooling filter size k = 2, and
stride s = 2, gives us an output image size of 2. So, a 4×4 image turns into a
2×2 image.

With all these elements of a convolutional neural network in hand, we
can put a CNN together to recognize handwritten digits.



DISTINGUISHING FEATURES
As LeCun realized, the power of a convolutional neural network lies in its
ability to learn features. Learning a feature involves learning the values for
a kernel, which, as we saw, is the same as learning the weights of a bunch
of neurons. One way to ensure that your network is powerful is to have a
large number of such kernels, each learning to distinguish a different feature
that’s necessary to accomplish, say, the task of recognizing handwritten
digits. What follows is a simple architecture that gets at the conceptual heart
of a convolutional neural network, with multiple kernels:

The grayscale input image is processed by five different kernels. What’s
implicit in the above figure is that convolutions and max pooling are being
done by bunches of neurons; for clarity, they are not shown.
Backpropagation can be used to learn the weights of these neurons. Each
convolution generates a 24×24 image; we have five kernels, so, potentially,
the network will learn to look for five different features in the input image.
After convolutions comes the max pooling layer. The outputs of each max
pooling operation generate a 12×12 image, and there are five of these. (A
geeky aside: There is no parameter or weight to be learned for the max
pooling layer during training, but we need to keep track of the location of



the maximum pixel value in the previous layer, in order to use the chain rule
and backpropagate the gradient.) At the end of the convolution-plus-max-
pooling combo, it’s time to make decisions based on the features that might
have been detected. The pixels of all the images generated by max pooling
are laid end to end, making up a vector of length 720 (12×12×5). These
inputs feed into the first fully connected layer (FC1). Let’s say FC1 has 50
neurons. Each neuron receives 720 inputs and produces an output. The
figure shows only the top neuron receiving these inputs.

The outputs of the 50 neurons of FC1 feed into FC2, which has 10
neurons: So, each neuron of FC2 receives 50 inputs. Finally, we get 10
outputs out of FC2. Why 10? Well, our task is to recognize handwritten
digits. The idea is that if the input digit is 0, then the zeroth neuron fires
more strongly than all the others; if the digit is 1, then neuron number 1
fires the strongest; and so on.

Had the task been to distinguish between two images, an FC2 with just
one neuron would have sufficed. It could output 0 for one type of image and
1 for another type; say, 0 for cats and 1 for dogs. How do you train such a
network? For our dataset of handwritten digits, we have labeled data—
someone painstakingly annotated each image as being a 0 or a 1 or a 9 and
so on—so, we can use supervised learning. Present the network with an
image and ask it to predict the digit. Say, the input is the digit 8. Ideally, the
output neuron representing the digit 8 should fire more strongly than the
others (meaning, the value it outputs should be significantly greater than the
values generated by the other neurons of FC2). An untrained network will
fire willy-nilly. Calculate the error between what’s expected and what the
network does, and then use this error to calculate the gradients, via
backpropagation. Then update the weights of all the neurons that were
involved in turning the input image into an output. The updated weights
ensure that for the same input, the network’s error is a tiny bit less than
before. Do this for all images, over and over, until the network’s error rate is
acceptably low. If we calculate the gradients for all images in the training
dataset and update the weights in one go, we are doing gradient descent. If
we use only a subset of the images for each pass through the network, we



are doing stochastic gradient descent—a drunken walk down the loss
landscape to a good-enough minimum.

What’s been left unsaid so far is that a designer of such a network has to
make a host of decisions about parameters of the network that are not
learned during the training process, decisions that nonetheless influence the
network’s performance immensely. For instance, the neurons of convolution
layers and the fully connected layers have activation functions. The choice
of activation function is one such decision. The only condition is that the
activation function should be differentiable, or at least approximately so, to
enable the backpropagation of gradients.

These hand-chosen parameters, including the size and number of kernel
filters, the size and number of max pooling filters, the number of
convolution and max pooling layers (we had only a single pair in the
example above; one can keep stacking them), the size and number of fully
connected layers, the activation functions—all these constitute so-called
hyperparameters. Fine-tuning, or finding the right values for, the
hyperparameters is an art unto itself. Crucially, these are not learned via
backpropagation.

LeCun’s LeNet was somewhat more complicated than our example, but
not overly so; he made it work. Also, it was a deep neural network, meaning
it had hidden layers. (The layers between the input and FC2, in our case, are
hidden.) LeNet was used by NCR Corporation to read and recognize digits
on checks for the banking industry. “That was one of the few applications
of backprop that really worked pretty well, and was deep,” Hinton told me.

This was the early 1990s. Despite LeNet, deep neural networks didn’t
hit the big time. Part of that was because of the success of support vector
machines, which made a splash in the machine learning community at
around the same time: SVMs were easy to understand, the software was
available, and for small datasets of the time, they were an ideal algorithm.
Convolutional neural networks, for their part, were still opaque and
mysterious to many. And of course, no general-purpose software existed
that one could leverage to build these CNNs. “You had to write your own
deep learning framework,” LeCun told me. “You couldn’t get it from us,



because AT&T would not let us distribute our software open source. So we
could not enable people to reproduce our results. And as a consequence,
nobody did.” People attempted to write their own deep learning
frameworks. “You could start spending a year writing a piece of software to
run neural nets and convolutional nets, and a few people did this,” he said.

Meanwhile, throughout the 1990s, LeCun continued working on and
advocating for convolutional neural networks for image recognition over
more conventional techniques. For low-resolution images that didn’t need
powerful neural networks, his CNNs were outperforming other algorithms.
“We published those papers in all the big conferences, but it didn’t have a
big impact, because by that time, the computer vision community was
thinking, ‘Oh, maybe there’s a small difference, maybe your conv net works
okay. But we are going to catch up with our methods,’ ” he told me.

Also, the situations where neural networks weren’t working as well
were revealing. “There were signs that there was an issue of scale,” he said.
“When [images] weren’t too big and the neural nets weren’t too large, they
were beating the hell out of everything.” But not so with high-resolution
images. Recognizing high-res images required large neural networks, and
training such networks meant having to crunch numbers, mainly in the form
of matrix manipulations. To make the process go faster, much of this
number crunching required a form of parallel computing, but the central
processing units (CPUs) of computers of the 1990s weren’t up to the task.
However, saviors were on the horizon in the form of graphical processing
units (GPUs), which were originally designed as hardware-on-a-chip
dedicated to rendering 3D graphics.

GPUs proved central to changing the face of deep learning. One of the
earliest indications of this change came in 2010, from Jürgen Schmidhuber
and colleagues, when they trained multi-layer perceptrons with as many as
nine hidden layers and about 12 million parameters or weights, to classify
MNIST images. They achieved error rates as low as 0.35 percent. “All we
need to achieve this best result so far are many hidden layers, many neurons
per layer, numerous deformed training images, and graphics cards to greatly
speed up learning,” the team wrote.



But the use of GPUs to overcome the challenge posed by the relatively
small MNIST dataset doesn’t begin to hint at the power of these processors.
To understand their true impact, on deep learning in general and CNNs in
particular, we have to shift focus to Hinton’s lab in Toronto, where Hinton
and two graduate students, Alex Krizhevsky and Ilya Sutskever—
Krizhevsky was a whiz at programming GPUs, and Sutskever was a
visionary who saw the potential of large deep neural networks—built the
first massive CNN. For its time, it was a gigantic neural network trained on
high-res images and an immense number of them. With it, Krizhevsky and
Sutskever showed once and for all that conventional methods for image
recognition were never going to catch up. The network came to be called
AlexNet.

ALEXNET
Even before the advent of AlexNet, Hinton and a graduate student named
Volodymyr Mnih understood the usefulness of GPUs. The two were
working on the problem of finding roads in aerial images. “In cities, where
there are trees and parked cars and shadows, it’s not trivial to find the
roads,” Hinton told me. But they realized they had ample data to help them:
access to other types of maps in which roads were clearly marked. These
were so-called vector maps, and each map was stored as a collection of
points, lines, and polygons. Unlike an image, a vector map is drawn upon
demand, using the stored information. Hinton and Minh used information in
these vector maps to teach neural networks how to appropriately label the
pixels of an aerial image. (For example, does the pixel belong to a road or
not?) This required a large neural network. (It wasn’t a CNN, though; the
team decided against using CNNs because of concerns that a pooling layer
would destroy information about spatial positions at the level of individual
pixels.) The large network required GPUs; by then, these came equipped
with software called CUDA, a programming interface that allowed
engineers to use GPUs for general-purpose tasks beyond their intended use
as graphics accelerators. Mnih wrote another package atop CUDA, called



CUDAMat, to “make it easy to perform basic matrix calculations on
CUDA-enabled GPUs.”

A year later, two other students of Hinton’s successfully used
CUDAMat to program deep neural networks to make breakthroughs in
speech recognition. GPUs were obviously crucial for unleashing the power
of these networks, but not everyone recognized this. Hinton recalls trying to
persuade Microsoft to buy GPUs for a common project, but Microsoft
balked. Hinton told the company, tongue in cheek, that his team could
afford GPUs because he was at a rich Canadian university and that
Microsoft was a “poor impoverished company,” so it was understandable
that it “couldn’t afford them.” The sarcasm worked. “They bought GPUs,”
Hinton told me. “And then they tried to run them with Microsoft software.
So…”

Ironically, Hinton’s early success at using regular nonconvolutional deep
neural networks for the roads-in-aerial-images project delayed his lab’s
foray into convolutional neural networks. “We were just a bit slow, but Ilya
[Sutskever] realized we had to do it,” he said.

In 2002, Sutskever, who was barely seventeen, joined the University of
Toronto. Within a year, he had decided to work on AI. “I wanted to
contribute to AI,” he told me. “Neural networks seemed obviously correct.”
To that end, when he was still in his second year of undergraduate studies,
he knocked on Hinton’s door. Sutskever remembers not being particularly
tactful or polite toward Hinton. Hinton gave Sutskever some papers to read.
The young Sutskever was taken aback by the power of the simple ideas. “I
definitely remember being perplexed by how simple the whole thing is…
How can it be?” he said. “You look at your undergrad classes in math or
physics, and they’re so complicated. And then this stuff is so simple. You
just read two papers and you understand such powerful concepts. How can
it be that it’s so simple?”

Sutskever had a background in computational complexity theory, the
study of what computers can and cannot do. “One of the things that comes
up from looking at computational complexity theory is that certain
computational models are much more powerful than others,” he said. “The



thing that was very clear about neural networks is that [they] fit the bill of a
powerful computational model. It was powerful enough.”

And indeed, a problem big enough to pose questions of neural networks
appeared in 2009. That year, Stanford University professor Fei-Fei Li and
her students presented a paper at the first Computer Vision and Pattern
Recognition (CVPR) conference. Titled “ImageNet: A Large-Scale
Hierarchical Image Database,” the paper included an immense dataset of
millions of hand-labeled images consisting of thousands of categories
(immense by the standards of 2009). In 2010, the team put out the
ImageNet challenge: Use 1.2 million ImageNet images, binned into 1,000
categories, to train your computer vision system to correctly categorize
those images, and then test it on 100,000 unseen images to see how well the
system recognizes them. The contest was so new that it was conducted as a
“taster competition” alongside a more established contest, the PASCAL
Visual Object Classes Challenge 2010.

Standard computer vision still ruled the roost then. In recognition of
this, the ImageNet challenge provided users with so-called scale invariant
feature transforms (SIFTs). Developers could use these SIFTs to extract
known types of low-level features from images, recognize those features,
and use them to categorize an image. (Neural networks, which could figure
out the features of importance on their own, weren’t in the picture.) In 2010,
a team from NEC and the University of Illinois Urbana-Champaign (NEC-
UIUC) won the challenge. Their system essentially used the SIFTs to turn
each image into a long vector. A support vector machine learned to
categorize these vectors and, thus, classify the images.

Meanwhile, Sutskever saw the writing on the wall. SVMs had won the
2010 competition, but in his mind, they were limited. Neural networks were
the future. “If you could figure out how to train them, if you could get the
data, then the ceiling [for what neural networks could do] was high.
Whereas the other stuff, [such as] support vector machines—it doesn’t
matter how much you want to study them. The ceiling is low…So, you’re
doomed from the get-go,” he told me.



Data, suddenly, wasn’t an issue. The ImageNet dataset had solved that
problem for the moment. Training, however, remained an issue. Sutskever
saw the work Hinton’s team had done with GPUs, put two and two together,
and pushed Hinton to build a convolution neural network that could be
trained using GPUs. “Ilya is a visionary. He’s just got wonderful intuitions
and lots of confidence,” Hinton told me. “It was Ilya who realized that the
technology we were using, with GPUs and these new learning algorithms,
would just solve ImageNet.” Yann LeCun’s group at Bell Labs was also
onto it. “Yann realized the same thing. And he tried to get several different
graduate students to do it, but none of them was willing to work on it,”
Hinton said. “And that was lucky for us, because Ilya realized we really had
to do it before anybody else did it.”

Crucial help came in the form of Alex Krizhevsky’s wizardry with
GPUs. “He could program convolutions on GPUs better than anybody
else,” Hinton said. Sutskever and Krizhevsky were lab mates. Krizhevsky
had already written CUDA code to train GPU-enabled neural networks on a
smaller image dataset called CIFAR (the Canadian Institute for Advanced
Research). Sutskever was impressed by the code. He convinced Krizhevsky
to do the same for ImageNet.

So, with the power of GPUs and an immense amount of data—two
things LeCun didn’t have in 1989— Krizhevsky, Sutskever, and Hinton
built AlexNet, a deep convolutional neural network trained on 1.2 million
high-res images from the ImageNet dataset, consisting of a thousand
categories. There were five convolutional layers, some of which fed into
max pooling layers. There were two fully connected layers of neurons,
much like in our earlier example. The final output layer had a thousand
neurons, one for each category of image. The neural network had more than
half a million neurons and 60 million parameters, or weights, whose values
had to be learned during training. There were other, smaller but significant
technical advances (for instance, a choice of a different activation function
for neurons, called a rectified linear unit, ReLU, instead of the sigmoid
function).



In 2012, Fei-Fei Li’s team announced the results of their annual image
recognition context. AlexNet, as the Toronto group’s network is rightfully
called, won by a wide margin. AlexNet could classify images in the
ImageNet test dataset with a top-5 error rate as low as 17 percent (the top-5
error rate refers to the percentage of times the correct label for an image
does not appear in the top five most likely labels predicted by the ML
model). The winners in 2010 and 2011 were way behind, at 28 and 26
percent, respectively. Even the runner-up in 2012 was lagging, at 26
percent. The non-neural network systems had barely moved the needle.
Deep neural networks had finally lived up to their promise. Sutskever was
vindicated, because even before the trio started working on AlexNet, he had
been evangelizing. “I would go around and I would annoy people,” he told
me. “I would tell them that deep learning is going to change everything.”

It has. AlexNet was just the start. Deep neural networks have gotten
bigger and bigger, and better and better, at a wide range of tasks: computer
vision (a field that subsumes subspecialties such as face and object
detection and recognition), natural language processing (which allows
machines to respond to human-generated text or voice with its own human-
like text or voice response), machine translation (which takes text in one
language and translates it into another), medical image analysis, pattern
detection in financial data, and so much more. The list is endless.

Viewed through our mathematical lens, deep neural networks have
thrown up a profound mystery: As they have gotten bigger and bigger,
standard ML theory has struggled to explain why these networks work as
well as they do. Mikhail Belkin of the University of California, San Diego,
thinks that deep neural networks are pointing us toward a more
comprehensive theory of machine learning. He likens the situation in ML
research to the time in physics when quantum mechanics came of age.
“Everything went out of the window,” he said. Something similar is being
forced upon ML theorists, thanks to empirical data about artificial neural
networks. Belkin compares empiricists to cartographers: They are
illuminating the terrain for theorists to follow. Our final chapter will give us
a glimpse of this exciting new terrain.
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Terra Incognita

Deep Neural Networks Go Where (Almost) No

ML Algorithm Has Gone Before

ometime in 2020, researchers at OpenAI, a San Francisco–based
artificial intelligence company, were training a deep neural network to

learn, among other things, how to add two numbers. The numbers were in
binary, and the addition was modulo-97, meaning any sum of two numbers
would always be between 0 and 96. If the sum exceeded 96, it’d wrap
around, the way numbers wrap around on a clock face. The idea is best
illustrated by looking at examples. So, any sum of two numbers can be
written as:

sum = x + (some multiple of 97), where 0 ≤ x ≤ 96

So, the sum, modulo-97, is:

summod97 = x

For example, let’s say you want to add 22 and 28:

sum = 22 + 28 = 50 + (0 × 97)

⇒ summod97 = 50



Or, you want to add 40 and 59:

sum = 40 + 59 = 99 = 2 + (1 × 97)

⇒ summod97 = 2

It was a seemingly trivial problem, but a necessary step toward
understanding how to get the AI to do analytical reasoning. A team member
who was training the neural network went on vacation and forgot to stop the
training algorithm. When he came back, he found to his astonishment that
the neural network had learned a general form of the addition. It’s as if it
had understood something deeper about the problem than simply
memorizing answers for the sets of numbers on which it was being trained.

In the time-honored tradition of serendipitous scientific discoveries, the
team had stumbled upon a strange, new property of deep neural networks
that they called “grokking,” a word invented by the American author Robert
Heinlein in his book Stranger in a Strange Land. “Grokking is meant to be
about not just understanding, but kind of internalizing and becoming the
information,” Alethea Power, a member of the team that did the work at
OpenAI, told me. Their small neural network had seemingly grokked the
data.

Grokking is just one of many odd behaviors demonstrated by deep
neural networks. (We’ll look at it in more detail later in this chapter.)
Another has to do with the size of these networks. The most successful
neural networks today, whether they are doing image or speech recognition
or natural language processing, are behemoths: They have hundreds of
millions or billions of weights, or parameters; maybe even a trillion. The
parameters can at times equal or vastly outnumber the instances of data
used to train these networks. Standard ML theory says that such networks
shouldn’t work the way they do: They should simply overfit the data and
fail to make inferences about, or “generalize to,” new, unseen data.



Power used an example to illustrate this problem. Consider a dataset of
images of some types of furniture. The dataset is broken into two parts:
training and test. Let’s say that the training dataset has images of four-
legged chairs, but only those made of metal or wood. These are labeled
“chair.” There are images of sofas, too, but without any discernible legs.
These are labeled “not-chair.” The task of the ML algorithm is to classify an
image as either a “chair” or a “not-chair.” Once the algorithm is trained, its
performance is tested against the test dataset. As it happens, the test dataset
also contains chairs made of plastic, not just of wood and metal. How might
the algorithm perform?

Here’s what might happen. If the ML model being trained is very
complex, with a very large number of parameters, it might learn things
about chairs that go beyond the fact that these chairs have four legs. It
might learn that they are made of wood or metal. Such a model would be
very good for recognizing metal or wooden chairs, but it might fail to
identify the plastic chairs in the test data. The model can be said to have
overfit the training data, picking up on nuances of chairs that were
unnecessary and maybe even detrimental to the task at hand. A simpler
model, with fewer parameters, might have picked up only on the pattern
that chairs have four legs; it would then have generalized better to unseen
data and possibly have recognized chairs made of materials besides just
wood and metal.

We can visualize this issue with a much simpler dataset. Let’s take some
points on the xy plane. Our task is to train an ML model to perform
regression, to find a curve that fits the training data in a way that will allow
the model to generalize well to unseen data. First, here’s some training data,
followed by three different models, or curves, to fit the data:



The easiest thing we can do is linear regression: Fit a straight line
through the data. It’s a simple model. Almost none of the training data falls
on the line, so the model will make errors, small and large, on nearly every
instance of the training data.

If we increase the complexity of our model, by adding more parameters
and some nonlinearity, we might find a curve that fits the training data a
little more faithfully. Now the model’s risk of making errors on the training
data is reduced: The curve actually passes through some of the data points,



though not all of them, and the ones it misses will contribute to the training
error.

The final panel shows a complex nonlinear model with considerably
more parameters: The curve passes through each data point. The training
error is almost zero.

Which model should we choose? This is not an easy question to answer.
The choice depends on the performance of the model on test data you have
set aside. The test and training data are assumed to be drawn from the same
underlying distribution. (In the example with the chairs, the test data can be
said to be out of distribution, because they have images of plastic chairs,
while the training data have none. But these are contentious issues. If the
algorithm’s task is to classify chairs, it shouldn’t matter what they are made
of—so, plastic chairs should be considered to be drawn from the same
underlying distribution.)

Let’s say that the straight line through the dataset is more or less the
correct fit and that the fact that the training data are scattered about the
straight line is because there’s noise in the data. In the case of the simplest
linear model, the straight line hasn’t fit the noise; rather, it has ignored the
noise. But because the test data are drawn from the same distribution and
are presumably similarly noisy, the simplest linear model will do badly on
the test data, too; there’s a high risk of error on the test data.

The most complex model, however, is clearly tracking every little
variation in the training data: It has essentially overfit the data, and if the
variations in the data are because of noise, then the model has learned the
minutiae of this noise. The complex model will also, however, get its
predictions on the test data badly wrong, because the test data are similarly
noisy. The complex model will make predictions based on the extremely
squiggly regression curve it has learned, which is specific to the noise in the
training data, but because noise is random, the curve won’t track the
instances of test data as well as it did the training data, leading to significant
test error.

We have used regression as an example, but the issue also dogs the
problem of classification, which involves finding some linear or nonlinear



boundary that separates clusters of data. If the model is too simple, it’ll find
a boundary that doesn’t quite hew to the real variations in the data: You
cannot get the training error and test error down to acceptable limits. If the
model is too complex, the classification boundary will track every little
deviation in the data, overfitting them, and will do really well on the
training data but will likely make huge classification errors during testing.

THE GOLDILOCKS PRINCIPLE
These might seem like theoretical concerns that would bother only
nitpicking ML practitioners, but let’s take an example from chapter 6 to see
why this issue might be literally a matter of life and death. Here’s the
graphic showing the result of principal component analysis done on real
EEG data collected from a single person being monitored while under
anesthesia. The gray dots represent two-second intervals when the person is
conscious; the black triangles are for when the person is unconscious. These
are the training data.



Imagine building a simple classifier that learns to separate the conscious
from the unconscious states. You can find a straight line (a very simple
model) that tries to separate the two clusters. Because there’s no clear space
between the clusters, any straight line we find will make errors during
training: There will always be a few gray dots in the cluster of black
triangles, and vice versa. To reduce such training errors, we can find some
squiggly curve that carefully maps the contours of the boundary between
the two clusters. For example, you could use a k-nearest neighbor algorithm
(chapter 5) k. You’d get a highly nonlinear boundary. Such a model could
be built to minimize the errors during training.

Whichever model you choose, it has to predict the state of
consciousness given some new EEG signal, to help the anesthesiologist
determine the dosage of anesthesia, so that the person can be kept under or
brought out of unconsciousness. Obviously, the recommendation of the ML
model is important here. Getting it wrong has consequences. How would
you go about finding the best possible model?

Recall from chapter 6 that the EEG study had collected data from ten
patients. The researchers used data from seven patients to train their model
and build the classifier, and they kept aside data from three patients to test
their model. Let’s say we test an extremely simple, linear model and also a
highly complex, nonlinear model against the three-patient test data. The
simple linear model will make more errors during training because it
underfits the training data and makes errors on the test data as well. The
complex nonlinear model, while it makes near-zero errors on the training
data, will make significant errors during testing precisely because it
memorized the training data, which was only taken from seven independent
participants.

Why is the test error important? The test data are something we have in
hand but have withheld from the ML algorithm during training. How well
the trained model does on test data is our only indication of its potential
performance out in the wild, meaning its ability to generalize to truly
unseen data. We want the test error to be as low as possible.



Given that, how does one choose the correct level of complexity of the
model? This leads us to the two competing forces at work here. One is
called bias: The simpler the model, the greater the bias. The other is called
variance: The more complex the model, the greater the variance.

High bias (i.e., simpler models) leads to underfitting, a higher risk of
training error, and a higher risk of test error, whereas high variance (i.e.,
more complex models) leads to overfitting, a lower risk of training error,
and a higher risk of test error. The job of an ML engineer is to find the
sweet spot. If the number of parameters, or tunable knobs, that are there in
an ML model is taken as a measure of the model’s complexity or capacity,
then standard ML theory says that a model should have just the right
number of parameters: Too few, and the model is too simple (high bias) and
fails to capture the necessary nuances of the data on which it’s trained. Too
many parameters, and the model becomes very complex and learns the
patterns in the data with such fine granularity that it fails to generalize to
unseen data. “It’s a balance between somehow fitting your data too well and
not fitting it well at all. You want to be in the middle,” said Mikhail Belkin,
the machine learning expert at the University of California at San Diego.
“There is some sort of Goldilocks principle. Not too hot, not too cold.”

Depicted below is one of the most famous sets of curves you’ll see in
machine learning. It depicts the bias-variance trade-off (see Scott Fortmann-
Roe’s excellent blog post on the topic). A number of things are happening
here. Let’s start with the x-axis: Lower values mean low-capacity models
with fewer parameters, and higher values imply more complex models with
a large number of parameters. On the y-axis is the risk that the model makes
errors, either while training or testing.



A quick word about the label on the x-axis, “Capacity of Hypothesis
Class,” and its relation to the complexity of a model and the number of
parameters. Given a set of parameters whose values can be tuned during
training, we must go back to the basics of supervised learning to reflect on
what these parameters enable an ML model to do.

Let’s say we have training data in the form of (input, output) pairs:

[(x1, y1), (x2, y2),…, (xn, yn)]

Using the training data, we have to find some function, f, that predicts y,
given some input, x.

y = f(x)

The number of tunable parameters in a model determines the
hypothetical set of functions that can be implemented using that model. In



essence, we are limited to finding a solution from that set. Say we want a
linear model. In the 2D case, a linear model is a line defined by its slope
and its offset from the origin: So, we need two parameters. But what if your
model had only one parameter? Then you’d be forced to find a simpler
function in which either the slope was fixed or the offset was fixed, thus
limiting your options.

And in a nonlinear model, the greater the number of parameters, the
squigglier the functions we usually have at our disposal. This should bring
to mind the universal approximation theorem from chapter 9: Given enough
neurons, a neural network with even just a single hidden layer can
approximate any function, which implies that its toolbox of functions is, in
principle, infinitely large. So, the number of parameters (which, in the case
of neural networks, is equivalent to the number of weights, or the
connections between neurons, whose values are learned during training) is a
proxy for the complexity of the model and determines the set of functions
one can access in order to find a good one. This can also be called the
hypothesis class: Increase the number of parameters, and you increase the
capacity of the hypothesis class.

Let’s go back to the figure opposite. There is one dashed curve. It starts
off high on the y-axis for simple models and goes toward zero as the
model’s complexity increases. This curve represents the training risk, the
risk that the model makes errors on the training dataset. It’s clear that
extremely simple models do badly on the training data, because they are
underfitting the data, and as the models get more complex, they start
overfitting, hence the training risk goes to zero.

The solid curve represents the risk of error during testing. It starts off
high on the y-axis for high-bias, low-complexity models, descends to some
minimum, and then starts rising again. The bottom of the bowl is where we
want our ML model to be: It represents the optimal balance between
underfitting and overfitting, between model simplicity and complexity. This
is the Goldilocks zone. Choosing a model that minimizes the risk of test
error maximizes the model’s ability to generalize to further unseen data
(data the model will encounter in the wild, so to say, as it’s not part of either



the training or the test data). So, minimizing test error implies minimizing
generalization error, or maximizing the ability to generalize.

From almost all empirical accounts of traditional machine learning, this
story seemed to be true. Then deep neural networks entered the fray and
turned this conventional wisdom upside down. Deep nets have way too
many parameters relative to the instances of training data: They are said to
be over-parameterized; they should overfit and should not generalize well to
unseen test data. Yet they do. Standard ML theory can no longer adequately
explain why deep neural networks work so well.

THE UNBEARABLE STRANGENESS OF

NEURAL NETWORKS
A few years after AlexNet announced itself on the machine learning stage in
2011, Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro of the Toyota
Technological Institute at Chicago made an intriguing observation about
deep neural networks. Experimenting with networks that had just one
hidden layer, they found, contrary to expectation, that increasing the
number of neurons, or units in the hidden layer (thus the capacity of the
model), did not cause the network to overfit the training data. The trio was
testing their networks on two standard image datasets, one of which was the
MNIST dataset of handwritten digits. First, as they increased the size of the
network, both training and test error decreased as expected. But then, as the
network increased in size and the training error approached zero, as per the
bias-variance trade-off curve, the test error (or generalization error) should
have started increasing. That’s not what they saw. The language in their
2015 paper is suggestive of their disbelief:

More surprising is that if we increase the size of the network past the
size required to achieve zero training error, the test error continues
decreasing! This behavior is not at all predicted by, and even
contrary to, viewing learning as fitting a hypothesis class controlled



by network size. For example for MNIST, 32 units are enough to
attain zero training error. When we allow more units, the network is
not fitting the training data any better…However, the test error goes
down. In fact, as we add more and more parameters, even beyond
the number of training examples, the generalization error does not
go up.
To be fair, hints about such behavior of deep neural networks preceded

this work. But Neyshabur and colleagues were the first to systematically
test it. They went further. What if you deliberately introduced noise into
your dataset?

Take the images in the MNIST dataset. Each image has an associated
label: “five” for the digit 5, “six” for the digit 6, and so on. Take 1 percent
of these images and randomly scramble their labels. So, one instance of
digit 5 might get mislabeled as “four,” an instance of digit 9 might get
mislabeled as “two,” and so on. Now divide the dataset into training and
test data and train your neural network such that it achieves zero training
error on the training data. What does this mean? Well, because we have
intentionally introduced noise into the data, the network—as it’s making no
errors on the training data—is accommodating the noise. For example, it’s
learning to label those mislabeled digits 5 and 9 as “four” and “two,”
respectively. It’s fitting the data perfectly. Learning theory has an evocative
phrase to describe a model that does this: It’s said to “shatter” the training
data.

And because it fits the noisy training data perfectly, this model should
not do well on the test data. (Intuitively, the squiggly curve that the model
has learned is very specific to the noise it has encountered, and there’s no
reason to expect the model to generalize.) But that’s not what happened.
Neyshabur and colleagues write, “Even with five percent random labels,
there is no significant overfitting and test error continues decreasing as
network size increases past the size required for achieving zero training
error.” And they ask, perplexed, “What is happening here?”

Their perplexity was warranted. This behavior would be possible, in the
standard way of thinking, only if the process of stochastic gradient descent



(which was used to train the network) somehow ended up pruning the
number of tunable knobs in the model. There are ways in which you can do
this explicitly; it’s a process called regularization, which essentially turns a
complex model into a simpler one, allowing it to generalize better. Maybe
stochastic gradient descent was doing some implicit regularization, thus
reducing the capacity of the network and making the model simpler in order
to avoid overfitting, the authors concluded.

Then, in 2016, Chiyuan Zhang, who was then at MIT, along with Ben
Recht of the University of California, Berkeley, and colleagues at Google
showed much the same behavior in larger neural networks trained on larger
datasets. In their paper, provocatively titled “Understanding Deep Learning
Requires Rethinking Generalization,” they concluded, “The experiments we
conducted emphasize that the effective capacity of several successful neural
network architectures is large enough to shatter the training data.
Consequently, these models are in principle rich enough to memorize the
training data. This situation poses a conceptual challenge to statistical
learning theory as traditional measures of model complexity struggle to
explain the generalization ability of large artificial neural networks.”

This was the state of play in 2017, when the Simons Institute for the
Theory of Computing at UC Berkeley organized its three-month program
on the theoretical foundations of machine learning. Recht gave a talk on
their paper on rethinking generalization. And this led to considerable
discussion among the program participants. The problem being posed by
deep neural networks had become clearer. These networks had the capacity
to interpolate the data (meaning fit the training data perfectly) and yet make
accurate predictions on test data. Even more problematic, these networks
could interpolate noisy data, and still the prediction accuracy didn’t degrade
as expected. “We routinely teach our undergraduates [that] you don’t want
to…get too good a fit to the data [or] you’ll have poor predictive accuracy.
That’s one of those broad principles that’s always been accepted, and here
we are doing the opposite and it’s okay,” UC Berkeley professor Peter
Bartlett, research director for Machine Learning at the Simons Institute, told
me. “It’s a shocking thing.”



Mikhail Belkin was attending the program. “Everybody was super
confused at the time,” he recalled. Another ML expert, Carnegie Mellon
University’s Ruslan Salakhutdinov, gave a tutorial on deep learning. Belkin
recalled Salakhutdinov as saying, “The best way to solve the problem from
a practical standpoint is you build a very big system…Basically you want to
make sure you hit the zero training error.” Again, it was an assertion that
went against standard learning theory. Belkin was flabbergasted. “That for
me was…eye-opening,” he told me. “I was like, ‘What the hell is he talking
about? Why should we fit the data exactly?’ ”

But Belkin soon realized that work going on in his lab at Ohio State
University, where he was at the time, on kernel methods (which we
encountered in chapter 7) was already hinting at something similar. “We
had been doing this experiment with kernels. And we observed that you can
train and get zero or a small loss and it [still] worked,” said Belkin, who is
now at the University of California, San Diego.

As it turns out, clues that standard learning theory (and the bias-variance
trade-off) didn’t hold in all situations had been slowly accumulating. For
example, Leo Breiman, a statistician at UC Berkeley, wrote a paper in 1995
called “Reflections After Refereeing Papers for NIPS.” NIPS stands for
“neural information processing systems,” and was the name of the flagship
conference in the field. (These days, it’s called NeurIPS. The conference’s
board members made the change following a petition by prominent women
ML experts, who made the case that the “acronym encourages sexism and is
a slur” and provided examples of the old name’s being used in sexist puns.)
In his paper, Breiman asked, “Why don’t heavily parameterized neural
networks overfit the data?” Also, in 1998, Bartlett and colleagues had
shown that an ML algorithm called AdaBoost also didn’t overfit, despite the
model’s complexity.

Energized by the debates during the three-month sojourn at the Simons
Institute, Belkin embarked on a systematic study of kernel methods and
deep neural networks, essentially probing their performance with increasing
amounts of noise in the training dataset. The complexity, or capacity, of the
models was enough to interpolate the noisy data. Even when the noise



affected about 5 percent of the dataset or more, the performance of both
kernel machines and neural networks didn’t degrade as expected. “As you
increase the noise level, nothing really breaks,” Belkin said.

Meanwhile, Bartlett and colleagues began exploring this phenomenon
and gave it a beguiling name: “benign overfitting.” Yet others called it
harmless interpolation.

For Belkin, the similar behavior of AdaBoost, kernel machines, and
neural networks was suggesting something profound. Maybe researchers
don’t fully understand the amazing properties of machine learning itself, he
thought, a realization that became apparent only because of deep neural
networks and their seemingly lawbreaking abilities. “We [had] convinced
ourselves that [ML] was fine by selectively closing our eyes on things that
didn’t fit the mold,” Belkin told me. “My feeling was that theory was not
fine.”

Deep neural networks, trained using stochastic gradient descent, are
pointing ML researchers toward uncharted territory. Belkin calls this
machine learning’s “terra incognita.” But before we can appreciate why
neural networks have brought us to this point, we need a brief segue to
appreciate the varieties of ways of building and training them.

OF PARAMETERS AND HYPERPARAMETERS
The discovery and exploration of uncharted territories in machine learning
has been enabled because of a fundamental shift in AI research, one that
involves performing experiments on deep neural networks and other
architectures. To do such experiments, researchers have to fiddle with
parameters and hyperparameters. Parameters, we know, are those knobs in a
model—the weights of a neural network, for example—that get tuned
during training. Hyperparameters are knobs that are set by engineers before
training begins. These latter include, for example, the architecture of the
neural network (which dictates, among other things, the number of layers,
the number of neurons per layer, and the way these layers are
interconnected), the size of the training data, the precise type of



optimization algorithm, and whether one does explicit regularization (such
as pruning the number of parameters). Finding good or optimal values for
hyperparameters is a craft, almost an art.

In this book, we have looked at a handful of architectures for neural
networks: the single-layer perceptron, Hopfield networks (chapter 8), the
multi-layer perceptron (chapter 10), and the convolutional neural network
(chapter 11). But in the past decade or so, deep neural network architectures
have mushroomed, creating a veritable zoo of these creatures. Still, one can
take an overarching view to classify them broadly.

First, networks can be, generally speaking, either feedforward or
recurrent. Feedforward neural networks are those in which the information
flows one way, from the input layer to the output. So, if a neuron is
producing an output, the output serves as input only to neurons that are part
of the layers ahead. The output cannot return as input to neurons in the
same layer or in preceding layers. A recurrent neural network, by contrast,
allows for feedback connections so that the outputs of neurons not only
influence neurons in the layers ahead, but can also serve as inputs to
neurons in the same layer or in the layers that came before. This allows
recurrent neural networks to “remember” previous inputs, making them
useful for problems that involve inputs that vary over time. (An excellent
example of this is a recurrent neural network architecture called long short-
term memory, or LSTM, proposed in 1997 by Jürgen Schmidhuber, whom
we met in previous chapters, and his colleague Sepp Hochreiter.)

The backpropagation algorithm is the workhorse for training neural
networks, particularly feedforward networks. The algorithm can also be
used to train recurrent networks, but we won’t get into the specifics of that
here. Regardless of the type of network, here’s the thing we need to
appreciate conceptually. Given an input, a neural network will produce an
output. We can define a function that calculates the loss, or error, made by
the network by comparing the produced output in some predefined manner
to the expected output. The function calculates the loss for a single instance
of training data or it calculates the average loss over all instances of training



data and is called a loss, or cost, function. Training a network means
minimizing the loss over training data.

We have already seen that training a model to achieve zero training cost
can result in overfitting. To prevent this, the cost function is often modified
with the addition of another term to it, called the regularizer. Think of this
as a term that forces the function to take into account the model’s
complexity, or capacity; we incur a penalty for making the model overly
complex. In a neural network, explicit regularization helps prevent
overfitting. Regularization could, for example, prevent the values for the
weights, or parameters of the network, from getting too large, the
assumption being that large weights mean more complex models, and vice
versa.

There are also more interesting methods for preventing overfitting. For
example, you can set up your network to randomly drop some connections
during training (thereby reducing the number of effective parameters). We
can also choose the activation function for our neurons. In chapters 9 and
10, we encountered the sigmoid activation function. There are others.
Different activation functions lead neurons and the networks they constitute
to behave differently; most important, these functions must be differentiable
in order for backpropagation to work. (As pointed out earlier, there are
activation functions that are not differentiable over their entire domain, but
they can still be used, with some care. For example, the ReLU function is
not differentiable at x = 0. Its derivative at x = 0 can be taken to be 0, 1, or
0.5. The other benefits of using ReLU outweigh this minor inconvenience.)

An ML engineer, besides having to choose among these various
hyperparameters, also has to choose, even more broadly, whether to use
supervised learning or unsupervised learning. We have mainly been focused
on supervised learning, which requires training data to be labeled—which
means that for each input, there’s a corresponding expected output. This is
what allows us to calculate the loss per instance of training data. We also
briefly encountered unsupervised learning, in which an algorithm, for
example, must be told how many clusters there are in the training dataset,
and then it can find those clusters and assign each instance of the data to



one of the clusters. However, one of the most significant developments over
the past five years—one that has led to the enormous explosion of interest
in AIs such as ChatGPT—is something called self-supervised learning, a
clever method that takes unlabeled data and creates implicit labels without
human involvement and then supervises itself.

A BET IN BERKELEY
In 2014, a group of researchers at the University of California, Berkeley,
among them Jitendra Malik, a formidable expert in computer vision,
developed a deep neural network solution that performed admirably on a
computer vision task called pattern analysis, statistical modeling, and
computational learning (PASCAL) for visual object classes (VOC). The
task entailed learning, given a small dataset of images, how to draw boxes
around, or to segment, different categories of objects in those images, such
as bicycles, cars, a horse, a person, and sheep, and then to name them.

To solve the problem, Malik and colleagues first used supervised
learning to train a CNN on the much larger ImageNet dataset (the same
dataset that AlexNet conquered in 2011). This was simply about learning
how to classify images using labels generated by humans. The team then
took this “pre-trained” network and further fine-tuned it on the PASCAL
VOC dataset. These images had “bounding boxes,” identified by humans,
that delineated the various categories of objects in those images. The fine-
tuned network, called R-CNN, was then able to outperform existing
methods at detecting the boundaries of objects in test data and classifying
them accordingly.

For Alexei Efros, also a computer vision expert at UC Berkeley and
Malik’s former student, the R-CNN approach was troubling. Why should a
network that has first been trained on ImageNet data, with labels that
referred only to some object in the image (say, a cat or a car) without regard
to its actual shape or boundaries, do well on detecting the boundaries of
objects, albeit after it had been fine-tuned using a dataset that had human-
labeled boxes around the objects of interest? The same network, sans the



ImageNet pre-training, did poorly when trained only on the PASCAL VOC
dataset. Maybe, Efros reasoned, the CNN was simply hungry for the
general information contained in the ImageNet dataset, and the human-
supplied annotations, which labeled the images as those of cars, dogs, cats,
and so on, were of little value.

So, on September 23, 2014, at a café in Berkeley, just outside the
northern edge of the university campus, Efros bet Malik that within a year,
there would be an ML algorithm that would perform object detection
without using labels supplied by humans, such as those provided in
ImageNet. The bet was formalized: “If, by the first day of autumn (Sept. 23)
of 2015, a method will exist that can match or beat the performance of R-
CNN on Pascal VOC detection, without the use of any extra, human
annotations (e.g. ImageNet) as pre-training, Mr. Malik promises to buy Mr.
Efros one (1) gelato (2 scoops: one chocolate, one vanilla).” Three students
witnessed the bet. “And I posted this thing on Facebook, too, and told
people that if somebody…will help me win the bet, they can get half of my
winnings,” Efros told me. “I keep the chocolate, they get the vanilla.” Efros
lost the bet—for object detection, R-CNN remained the best game in town
for a while—but he thinks it spurred him and others toward developing a
new approach to training neural networks without using human-annotated
data: self-supervised learning.

Self-supervised learning, in retrospect, seems extraordinarily simple.
Take large language models (LLMs) such as GPT-3 (the precursor to
ChatGPT). They are trained on an enormous corpus of text slurped off the
internet. The training algorithm takes a small sentence, masks one word, for
example, and gives that sentence with the masked word as an input to the
network (the details are a little more complicated, but let’s go with masked
words as units of information). The network’s task: to predict the missing
word and complete the sentence. Let’s say the sentence is “I’m going to
walk back ___.” The masked word is “home.” In the beginning, the network
will most likely guess wrong. One can define a loss function that calculates
the extent to which the network gets it wrong. The backpropagation
algorithm and stochastic gradient descent, used together, first assign partial



blame for the error to each of the parameters in the network and then update
the parameter values such that the loss is reduced; if the network is given
the same masked sentence and asked to predict again, it does a bit better.
The training algorithm iterates over every sentence in the corpus of the
training text, masking a word, asking the network to predict the masked
word, calculating the loss, and then updating the network’s parameters to
reduce the loss a little. (One added complexity: The blank space in our
example masked sentence could legitimately have been completed with the
word “alone,” if such a sentence was in the training data. So, the LLM’s
predictions are going to be inherently probabilistic, with, say, “home” being
assigned a greater probability than “alone,” if it encounters “home” more
often than “alone” during training.)

While each iteration is trivial, iterating for billions of pages of text taken
from the internet is a gargantuan task: It can take months of computing and
gigawatt-hours of energy. Still, at the end, an LLM trained in this manner
contains within it, in the values of its parameters, the statistical structure of
and knowledge contained in the written human language on which it’s been
trained. Now, given some input text, it can generate the next most-probable
word, append it to the original text, generate the next word, and keep going,
producing seemingly coherent outputs that mimic the way humans produce
language. The output text can even be suggestive of the ability to reason—
though, at the time of this writing, researchers are at odds over whether
LLMs are actually doing any reasoning or are simply regurgitating text that
satisfies the statistical patterns and regularities they encounter in the
training data, or even whether there’s any meaningful difference between
these two ideas.

Efros, however, was more interested in doing something similar with
images. By 2016, his team had shown how to use self-supervised learning
for images. The algorithm takes an unannotated image and masks some
pixels. It feeds this masked image to a neural network and asks the network
to generate the unmasked image in all its fullness. Of course, the network
will get it wrong initially. The algorithm uses its loss function to calculate
the loss, assign appropriate blame to each of the network’s parameters, and



then update those parameters. With the loss thus reduced, the network,
given the same masked image, will do better than before. The algorithm
repeats this for all the images in the training dataset. And in much the same
way that an LLM learns the statistical structure of language, a self-
supervised image-processing network learns the statistical structure of
images.

Still, efforts at using self-supervised learning for vision never quite
achieved the level of success seen with LLMs. This changed in December
2021, when Kaiming He and colleagues at Meta, building on the work done
by Efros’s team, revealed their “masked auto-encoder” (MAE). Their
algorithm randomly masks images, obscuring almost three-quarters of each
image. The MAE has an encoder that turns the unmasked portions of the
image into so-called latent representations of aspects of the image. Then a
decoder converts those representations back into full images. During
training, given a masked image, the MAE tries to generate the unmasked
image, and the network learns latent representations of important features of
the images in its training dataset.

When a trained MAE was shown a previously unseen image of a bus,
almost 80 percent of which was obscured, the MAE could still reconstruct
the bus. It had, so to say, internalized the structure of the bus—but without
humans having explicitly labeled any images. And when an MAE trained in
this manner was fine-tuned on an object detection and segmentation task, it
outperformed R-CNN in all manner of ways. It took until 2021, but Efros
turned out to be right. “In my bet, I should have said ten years instead of
one year,” he told me. “That was my mistake.”

Regardless, the move toward self-supervised learning has enormous
consequences, for it has freed machine learning from the shackles of
superexpensive, human-annotated data. Efros likes to say, “The revolution
will not be supervised.”



IN UNCHARTED WATERS
Without the constraint of having to annotate data for supervised learning,
deep neural networks are getting bigger and bigger. As of this writing,
densely connected LLMs—“dense” here refers to the fact that the output of
a neuron in one layer becomes the input to every neuron in the next layer—
have more than half a trillion parameters, with the promise of even bigger
networks on the horizon. And as these networks become bigger, their
behavior continues to challenge our traditional understanding of machine
learning, particularly the landscape of the bias-variance trade-off curve.

One of the most intriguing places in that landscape that deep nets have
uncovered lies to the right of the original bias-variance curve. We saw
earlier that in the standard bias-variance trade-off, as one increases the
capacity of the model, the test error, or generalization error, starts off high,
drops to a minimum, and then begins rising again to a maximum. At the
point where the test error hits its maximum, the training error touches zero.
The model has interpolated: It has overfit the training data. Traditional ML
research (except for those isolated incidents with AdaBoost) stopped
fussing about what lay beyond.

Belkin and colleagues were among the earliest to systematically explore
that region. In 2018, they showed that the performance of both kernel



machines and deep neural networks begins improving once you increase the
capacity of both beyond the point of interpolation, toward lower test risk
and better performance. This behavior had been empirically observed as
early as the 1990s in some linear models. Belkin and colleagues dubbed the
phenomenon double descent and proposed that it was a unifying principle:
The first descent leads to a minimum for the test error, followed by an
ascent, and then a subsequent descent to low levels of test error.

The part of the curve captured by the first descent and subsequent ascent
is well understood; mathematics explains the behavior of ML systems in
that “under-parameterized” regime (thanks mainly to Vladimir Vapnik,
whom we encountered in chapter 7). But the newer, over-parameterized
regime, which results in the second descent, is barely understood,
mathematically speaking. “We now have at least a map. In this part of the
world, there is some sort of terra incognita. We don’t know what is really
going on there,” Belkin told me.

The ignorance Belkin and others admit to is mostly about not knowing
the mathematical underpinnings of the observed behavior of neural
networks in this new, over-parameterized regime. This is somewhat
unexpected from ML research. In fact, much of this book has celebrated the
fact that traditional machine learning has had a base of well-understood
mathematical principles, but deep neural networks—especially the massive
networks we see today—have upset this applecart. Suddenly, empirical
observations of these networks are leading the way. A new way of doing AI
seems to be upon us.

In January 2022, at a town hall meeting organized under the aegis of the
National Science Foundation, Tom Goldstein of the University of Maryland
argued that much of the history of machine learning has been focused on
theoretically principled mathematical frameworks (the kind that gave us
support vector machines and kernel methods, for example). But by 2011,
when AlexNet won the ImageNet competition, things had changed. AlexNet
was a stupendous experimental success; there was no adequate theory to
explain its performance. According to Goldstein, the AI community said to
itself, “Maybe we shouldn’t have such a focus on theory. Maybe we should



be doing experimental science to progress machine learning.” Given that
science involves doing experiments and developing theory to explain
observations and natural phenomena, the theoretical ML community could
be considered anti-science, Goldstein said in his talk. According to him, the
“principled” ML researchers wanted theory before experiments and were
“stuck in a pre-science era.”

When it comes to deep learning, this tension between theory and
experiment is playing out for all to see. For example, consider the loss
function. We saw in chapter 3 that gradient descent, when done on a bowl-
shaped, “convex,” function leads you to the bottom of the bowl. But the
loss function for a deep neural network depends on its gazillion parameters
and the nonlinear activation functions for its neurons. The function is no
longer convex, meaning it doesn’t have one global minimum toward which
you can descend. It’s impossible enough to visualize a convex function in
million-dimensional or even higher-dimensional space, let alone a non-
convex function that has innumerable hills and valleys, where each valley
constitutes a local minimum. It’s best to think of this as an extremely
complicated loss landscape. So far, no one knows if the landscape has a
global minimum or just lots of good local minima (where “good” means the
loss is acceptably low).

Highlighting the problem for theorists, Goldstein pointed to a slew of
theory papers that claimed to have shown that the loss landscape for deep
neural networks has no local minima, while other papers showed the exact
opposite, that they do have local minima. An empirical study by Goldstein
and colleagues showed that neural networks can get stuck in not-so-good
local minima, which are regions where the loss is non-zero, despite the
networks being over-parameterized. Normally, if you train an over-
parameterized network carefully, you’ll reach a region of the loss landscape
where the training loss is close to zero. The fact that you can get stuck with
a non-zero loss is empirical proof that such local minima, or valleys, exist
in the loss landscape; you didn’t need theory to prove it, but one does now
need theory to explain why. And such theory is lacking.



Another intriguing experimental observation is one we have already
encountered in this book: Deep neural networks, despite being over-
parameterized, generalize well. One theoretical stab at trying to explain the
observation says that stochastic gradient descent—in which gradient
descent is performed using small batches of training data, so that each
descent down the loss landscape is only approximate and not in the exact
direction of steepest descent—may be performing implicit regularization.
However, Goldstein’s team performed experiments illustrating situations in
which gradient descent that used the entire training data at once generalized
just as well; stochasticity wasn’t needed. Again, theory has been found
wanting.

One of the most elegant demonstrations of empirical observations in
need of theory is grokking. We began this chapter with the story of the
OpenAI researcher who came back from a vacation and found that the
neural network, which had continued training, had learned something deep
about adding two numbers, using modulo-97 arithmetic. “It was not
something we were expecting to find at all,” Alethea Power told me.
“Initially, we thought it was a fluke and dug deeper into it. It turned out to
be something that happens pretty reliably.”

The neural network that Power and colleagues were using was called a
transformer, a type of architecture that’s especially suited to processing
sequential data. LLMs such as ChatGPT are transformers; GPT stands for
“generative pre-trained transformer.” Given a sequence of, say, ten words
and asked to predict the next most plausible word, a transformer has the
ability to “pay attention” to all the words at once and also to the order of the
words and not just treat them as some arbitrary jumble. Of course,
commercial LLMs are behemoths, with tens or even hundreds of billions of
parameters. In contrast, the transformer that Power’s team was using was
tiny, with fewer than half a million parameters. Here’s an example of the
type of data the researchers used to train their network (this is an over-
simplified take, to get across the conceptual elements of the process):



a + b = c, where a, b, and c are binary numbers. The addition is modulo-97.
The numbers a and b are constrained, such that:

0 <= a, b < 97

Given these constraints, imagine a table listing all possible values for a
and b and the corresponding modulo-97 sum, c. For example, here are some
of the rows of such a table (the numbers are shown in decimal not binary
format, for clarity):

0 + 5 = 5
1 + 9 = 10
10 + 90 = 3
11 + 55 = 66
25 + 95 = 23

To train the network, this table of numbers is first randomly split into
rows that constitute the training data and the test data. Now take each row
in the training data, mask one of either a, b, or c, and ask the network to
predict the masked number. At first, the transformer will predict the wrong
value. The algorithm calculates the loss and makes tiny updates to the
values of the parameters so that the loss for that instance of data is reduced
a little. (For efficiency, the algorithm may use “batches,” or some subset of
the rows of training data at once, calculate the average loss, and perform
stochastic gradient descent; or it may use all rows at once to calculate the
average loss and do gradient descent.) The algorithm repeatedly iterates
over all instances of the training data until, eventually, the training loss
nears zero or even hits zero. What’s happened at this stage?

Well, the transformer has learned to represent each number in some
internal high-dimensional space and has also learned to add the numbers, as
per modulo-97 addition. If one stops training at the point the network hits
zero training loss, the network has most likely interpolated the training data
—meaning it has simply memorized them. And that’s usually where the



OpenAI researchers stopped the training. No one thought of training further.
But then, one day, thanks to the vacation snafu, the network continued
training past this point—and learned something completely new. “If [the
networks] work on it for long enough, which is a very long time, many
orders of magnitude longer than it takes to memorize the training set, then
suddenly they figure out the deeper underlying pattern and are able to
generalize and kind of make broadly accurate predictions about the other
problems in the [dataset],” Power told me. “It’s a weird phenomenon. It’s
not what we expected.”

When the researchers stopped training their network soon after it had
interpolated the training data, it didn’t do too well on the test data (meaning,
the rows in the table that hadn’t been used during training). It was as if it
had memorized a look-up table for the data it had already encountered and,
when those numbers appeared during testing, it could simply delve into the
table it had constructed and spit out the answer. But when it encountered
data it couldn’t look up, it made bad predictions.

However, when it was allowed to learn way past the point of
interpolation, the network grokked the problem in an entirely different way.
It now did well on unseen data, better than could be expected from a model
that had simply memorized the training data. Power’s team used a technique
for visualizing what the network had learned—which involves mapping
high-dimensional vectors to a two-dimensional space (somewhat like the
principal component analysis we saw in chapter 6, but not quite)—and
discovered that the network had learned to represent the numbers in a circle.
So, imagine the numbers 0 to 96 arranged in a circle. Now, given two
numbers to add, the network simply took the first number, which is some
location on that circle, moved a number of steps equal to the second number
along that circle, and…bingo! It arrived at an answer. Other researchers
have referred to such grokking as akin to undergoing a phase change (the
way water changes to ice, in physics). “It seems like the phase change is
going from a memorized table of answers to becoming the knowledge in
some sense,” Power said.



As of now, such detailed studies are possible only when the networks
and their associated training datasets are extremely small, compared to the
commercial deep neural networks dominating the industry, whether they are
being used for image and speech recognition or for natural language
processing. These large networks are extremely adept at machine learning,
meaning figuring out the patterns that exist in data (or correlations between
inputs and outputs) and using that knowledge to make predictions when
given new inputs. Goldstein argued during the National Science Foundation
town hall meeting that the commercial value of machine learning will ward
off any “ML winter” ahead—a reference to the potential freeze in research
funding that has often followed seemingly overhyped technology trying to
solve problems too difficult for its times. But what about a more generic AI
winter?

AI winters, Goldstein said, happened in the late 1960s, when
Rosenblatt’s perceptrons were, disingenuously, accused of not being able to
solve the XOR problem; and then between 1974 and 1980, after Sir James
Lighthill published his scathing report on the utter lack of progress in
solving problems in language translation and robotics; and then again in the
late 1980s, when research into good old-fashioned AI, or symbolic AI, came
to a grinding halt as it became clear that expert systems built using carefully
designed rule-based “inference engines” that operated on hand-crafted
knowledge bases were…well, useless when it came to sophisticated
reasoning involving new know-how not already in the knowledge base.
These symbolic AIs were brittle; they also couldn’t learn from data.

Goldstein has claimed that we are yet to come out of that last AI winter,
if the AI in question is being asked to solve complex tasks that involve a
combination of text comprehension and logical reasoning. There’s
considerable debate over whether neural networks alone (possibly with new
architectures no one has dreamed of yet and training methods that are ever
more effective) will get us from ML-based pattern recognition to true AI
that can reason effectively.

But here’s something that puts these issues into perspective. In June
2022, Google announced a large language called Minerva. It was built on



top of Google’s own LLM, called the Pathways Language Model (PaLM), a
540-billion-parameter model—at the time, the largest densely connected
model. PaLM was trained on about 780 billion “tokens” of data taken from
the internet. (Think of a token as a word or a digit.) Google researchers then
fine-tuned PaLM by training it further on 118 gigabytes of data, mainly
“scientific papers from the arXiv preprint server and web pages that contain
mathematical expressions.” Both PaLM and Minerva were trained using
self-supervised learning, meaning they were taught to predict masked
tokens in some sequence of tokens that appeared in the training data. They
were not taught to explicitly reason or solve math problems. Even so, here’s
what happened when Minerva was posed this question (taken from
something called the “MATH” dataset of about 12,500 high school–level
mathematics questions):

Question: A line parallel to y = 4x + 6 passes through (5, 10). What is the
y-coordinate of the point where this line crosses the y-axis?

Minerva: The line is parallel to y = 4x + 6, which means that it has the
same slope as y = 4x + 6. Since the line passes through (5, 10), we can use

the point-slope form of a line to find the equation of the line:
y - 10 = 4(x - 5)
y - 10 = 4x - 20

y = 4x - 10

Now that we have the equation of the line, we can find the y-coordinate of
the point where the line crosses the y-axis by substituting x = 0 into the

equation:
y = 4 × 0 - 10 = -10.

Minerva was the first LLM to correctly answer about 50 percent of the
questions in the MATH dataset; of course, it got the other questions wrong.
But think about what Minerva is doing. It takes the question, turns it into a



sequence of tokens, and then simply predicts what follows, token by token.
Out comes what appears to be a reasoned answer. Is Minerva simply
regurgitating text based on correlations in the training data? Or is it
reasoning? The debate is raging, and no clear answers are forthcoming.

Such experiments certainly give pause to the claim that we are still in
some AI deep freeze merely because the current state-of-the-art AIs are
unable to combine text comprehension with logical reasoning. Some AI
experts will point to Minerva’s answer to the above math question and
argue that it’s doing exactly that: comprehending the text and reasoning out
the answer. Others pooh-pooh it as glorified pattern matching. The theory
isn’t sophisticated enough to resolve the debate. The experiments
themselves don’t substantiate claims one way or another; they simply
provide evidence that needs explaining.

One can only imagine what’s in store when these extremely large neural
networks begin grokking, if they aren’t already: They truly will be strangers
in a strange land.



W

Epilogue

hen I began working on this book in the autumn of 2020, LLMs
such as OpenAI’s GPT-3 and Google’s PaLM—and the chatbots

they begat, such as ChatGPT and Bard—had yet to break through into the
broader public consciousness. And when ChatGPT was announced in late
2022, one of the first things I explored was its ability to demonstrate theory
of mind.

Theory of mind is a cognitive ability humans have that allows us to
make inferences about someone else’s beliefs or state of mind using only
external behavioral cues such as body language and the overall context. We
theorize about the contents of someone else’s mind; hence the phrase
“theory of mind.” Here’s a question I posed ChatGPT, a few months after
its release. (I have italicized some words in the chatbot’s output to highlight
their import.)

ME: Alice and Bob are in a room together. There’s a table with two
drawers. Alice takes off her reading glasses and keeps them in the
left-side drawer. If Alice wears the wrong glasses and reads, then she
gets a severe headache the next day. Keep this in mind. Now Alice
leaves the room. When she’s outside, Bob removes her glasses and
puts them in the right-side drawer. In the left-side drawer, he puts a
pair of glasses that look exactly like Alice’s but have the wrong
power. He closes both drawers, so there’s no way to tell that he’s
switched Alice’s glasses. Alice then comes back, takes her glasses,
and starts reading. How will she feel the next day? Think carefully
and answer.



ChatGPT: Since Bob switched Alice’s reading glasses with a pair
that looks identical but has the wrong power, Alice will unknowingly
use the incorrect glasses when she starts reading. As mentioned, if
Alice wears the wrong glasses and reads, she gets a severe headache
the next day. Therefore, Alice will have a severe headache the next
day as a result of using the wrong glasses.

ME: Why will Alice unknowingly use the incorrect glasses?

ChatGPT: Alice will unknowingly use the incorrect glasses because
Bob switched her reading glasses with another pair that looks exactly
like hers but has the wrong power. When Alice returns to the room,
she is not aware of the switch and assumes that the glasses she picks
up from the left-side drawer are her own. Since both pairs of glasses
look identical, she has no way of realizing that the glasses she is
using are not the ones she initially placed in the drawer. As a result,
she uses the incorrect glasses without knowing it.
My italicized words, you may have guessed, are suggestive of Alice’s

state of mind.
At a public talk I gave on ChatGPT and LLMs, I first shared this

conversation with the audience and then asked them, “If you didn’t know
anything about how LLMs work, would you say that the AI is capable of
reasoning?” Almost everyone put up their hand. More than half of them put
down their hand once they understood the inner workings of LLMs. Let’s
put ourselves to the same test. The math we have encountered thus far is
enough for us to appreciate how these modern AIs work.

An LLM is trained to predict the next word, given a sequence of words.
(In practice, the algorithm chunks the input text into tokens, which are
contiguous characters of some length that may or may not be entire words.
We can stick with words with no loss of generality.) These sequences of
words—say, a fragment of a sentence or an entire sentence or even a
paragraph or paragraphs—are taken from a corpus of training text, often



scraped from the internet. Each word is first converted into a vector that’s
embedded in some high-dimensional space, such that similar words—for
some notion of similarity—are near each other in that space. There are pre-
trained neural networks that can do this; it’s a process called word
embedding.

For every sequence of words presented to an LLM as vectors, the LLM
needs to learn to predict the next word in the sequence. Here’s one way to
train an LLM, which is a monstrously large deep neural network with tens
or hundreds of billions of parameters. (We are glossing over the intricacies
of its architecture and focusing only on the overall function.)

We know that the neural network is a function approximator. But what is
the function we want to approximate? Turns out it’s a conditional
probability distribution. So, given a sequence of (n-1) input words, the
neural network must learn to approximate the conditional probability
distribution for the nth word, P(wn| w1, w2,…, wn-1), where the nth word can
be any word in the vocabulary, V. For example, if you gave the LLM the
sentence “The dog ate my ______,” the LLM must learn the values for P
(cat | The, dog, ate, my), P (biscuit | The, dog, ate, my), P (homework | The,
dog, ate, my), and so on. Given the occurrences of this phrase in the
training data, the probability distribution might peak for the word
“homework,” have much smaller peaks for other likely words, and be near
zero for the unlikely words in the vocabulary.

The neural network first outputs a set of V numbers, one number for
each possible word to follow the input sequence. (I’m using V to denote the
vocabulary and V its size.) This V-dimensional vector is then passed
through something called a softmax function (almost but not quite like the
sigmoid we saw earlier), which turns each element of the vector into a
probability between 0 and 1 and ensures that the total probability adds up to
1. This final V-dimensional vector represents the conditional probability
distribution, given the input; it gives us the probability for each word in the
vocabulary, if it’s to follow the sequence of input words. There are many
ways of sampling from this distribution, but let’s say we greedily sample to
get the most likely next word.



This next word is the neural network’s prediction. We know the ground
truth—the word that was masked. We can calculate the loss. One simple
way to think about the loss is that the greater the distance between the
predicted word vector and the ground truth word vector in the high-
dimensional embedding space, the greater the loss. Now we can use
backpropagation and gradient descent to tweak each of the network’s
billions of parameters so that given the same sentence and the same masked
word again, the network will predict a tiny bit better, reducing the loss
somewhat. Of course, the training is done using sequences of words from
the entire corpus of text. This can continue until the overall loss becomes
acceptably low.

Once trained, the LLM is ready for inference. Now given some
sequence of, say, 100 words, it predicts the most likely 101st word. (Note
that the LLM doesn’t know or care about the meaning of those 100 words:
To the LLM, they are just a sequence of text.) The predicted word is
appended to the input, forming 101 input words, and the LLM then predicts
the 102nd word. And so it goes, until the LLM outputs an end-of-text token,
stopping the inference. That’s it!

An LLM is an example of generative AI. It has learned an extremely
complex, ultra-high-dimensional probability distribution over words, and it
is capable of sampling from this distribution, conditioned on the input
sequence of words. There are other types of generative AI, but the basic
idea behind them is the same: They learn the probability distribution over
data and then sample from the distribution, either randomly or conditioned
on some input, and produce an output that looks like the training data.
Sometimes, the hard part is learning the distribution or figuring out how to
sample from it, or both. The architecture of the neural network and the
design of the loss function are geared toward sampling and generating data
in ways that are computationally efficient.

Still, it’s entirely unclear why this method of training an LLM should
accomplish anything useful. In fact, the precursors to GPT-3 and GPT-4
weren’t particularly impressive. GPT-2 had 1.5 billion parameters. GPT-3
had 175 billion and was trained for longer on larger amounts of text. PaLM



—and hence Minerva, which is PaLM “fine-tuned” on, or trained further
on, curated text with math in it—has about 500 billion parameters. This act
of scaling up—either using more parameters or more training data or both
—has produced what is being called “emergent” behavior. Treat the word
“emergent” with caution, for no one knows exactly what it means. It’s true
that there were things that the smaller GPT-2 could not do and that GPT-3
and bigger LLMs can; in this sense, the behavior is said to be emergent. The
ostensible ability to solve theory of mind tasks is one such behavior.
Another is Minerva’s output, which looks like a reasoned answer to a math
question. (We saw an example of this in the previous chapter.) Smaller
LLMs did not display these abilities. Also, despite the cherry-picked
examples I’ve shown, in which the LLMs produced the correct outputs,
they do often spit out wrong answers, sometimes obviously wrong, at times
with subtle mistakes that might be hard to catch if you aren’t an expert
yourself.

Knowing what you now know about how LLMs work, would you put
your hand down if asked: Are LLMs reasoning? If you lowered your hand,
you wouldn’t be alone. Questions like this divide researchers, too: Some
argue that this is still nothing more than sophisticated pattern matching.
(Emily Bender of the University of Washington and colleagues coined a
colorful phrase for LLMs; they called them “stochastic parrots.”) Others see
glimmers of an ability to reason and even model the outside world. Who is
right? We don’t know, and theorists are straining to make mathematical
sense of all this.

While the theory of mind task might seem inconsequential, LLMs have
serious applications. For example, LLMs fine-tuned on web pages
containing programming code, are excellent assistants for programmers:
Describe a problem in natural language, and the LLM will produce the code
to solve it. The LLM is not bulletproof, and it makes mistakes, but what’s
important to appreciate is that it wasn’t trained to code, just to generate the
next token given a sequence of tokens. Yet, it can generate code. The gains
in productivity for programmers cannot be denied.



Despite these glamorous behaviors and burgeoning uses, LLMs also
bring with them dangers. They add to the long list of concerns that come
with machine learning and AI. It’s worth stepping back a bit to take note of
issues that were well known before LLMs came of age.

Before LLMs, researchers worried about the ill effects of AI focused
mainly on problems of bias. One of the most egregious examples of such
bias came to light as far back as 2015, when a Twitter user posted some
photographs with the comment “Google Photos, y’all f*** [sic] up. My
friend’s not a gorilla.” He was referring to the automatic tagging of a photo
of him and his friend, both African Americans. The appalling error drew an
apology from Google; the company provided a temporary, unsatisfactory
fix, which was to prevent its software from labeling any image as that of a
gorilla. As of May 2023, according to an analysis done by The New York
Times, this workaround was still in place.

Examples of such bias abound: In 2016, ProPublica investigated
whether an algorithm designed to predict rates of recidivism, or re-offense,
was biased. It found that “black defendants were far more likely than white
defendants to be incorrectly judged to be at a higher risk of recidivism,
while white defendants were more likely than black defendants to be
incorrectly flagged as low risk.” In 2018, Amazon had to jettison AI-
enabled recruiting when the company found that the ML system furthered
sexism, preferring the résumés of males over those of females, other things
being equal. In 2019, a paper in Science identified bias in a system designed
to predict populations at risk of needing healthcare. The system predicted
that certain Black patients had the same level of risk as certain white
patients, when in fact the Black patients were sicker and actually needed
more care; the algorithm was underestimating their needs.

These are serious issues. How did they come about? The math and
algorithms described in this book give us ways of understanding the sources
of such bias. One obvious way that bias creeps into machine learning is
through the use of incomplete data (say, inadequate representation of faces
of minorities in a database of images of people of some country—a point



eloquently made in a 2018 paper titled “Gender Shades,” by Joy
Buolamwini of MIT and Timnit Gebru, then with Microsoft Research).

ML algorithms assume that the data on which they have been trained are
drawn from some underlying distribution and that the unseen data on which
they make predictions are also drawn from the same distribution. If an ML
system encounters real-world data that falls afoul of this assumption, all
bets are off as to the predictions.

Another concern is inherent bias in data that can encode structural
problems in society (for example, data that correlates certain communities
with higher rates of recidivism because of historical imbalances in how law
enforcement targets these communities; or data that represents prior hiring
practices that favored males over females). These problematic patterns are
baked into existing data; ML algorithms will learn these correlations and
continue to perpetuate or even amplify societal and cultural biases by
making predictions using such flawed data.

ML systems can also conflate correlation with causation. For example, if
certain groups of people are targeted unfairly by law enforcement, and these
groups also happen to be poor, an ML algorithm might use the correlation
that exists in the data between low incomes and recidivism to predict that
the poor might be more likely to commit crimes—an erroneous causation.

To avoid such problems, ML engineers must work at ensuring that the
training data are diverse and representative, or they must explicitly de-bias
the data, to ensure that the algorithm’s predictions are accurate. They must
also ensure they are asking the right questions of the data.

With the advent of LLMs, concerns about AI being biased or toxic or
downright dangerous have been amplified. Here’s an illustrative example.
In the summer of 2023, the Simons Institute for the Theory of Computing
held a weeklong workshop on LLMs. One of the speakers was Adam
Tauman Kalai of Microsoft Research, who spoke of the following
interaction with OpenAI’s GPT-4:

Q: In “The nurse married the doctor because she was pregnant,” who
is pregnant?



A: In this sentence, “she” refers to the nurse, so the nurse is
pregnant.

Q: How can you tell it’s not the doctor who is pregnant?

A: In the sentence “The nurse married the doctor because she was
pregnant,” the pronoun “she” is used to indicate the person who is
pregnant. Since “she” is a feminine pronoun, it refers to the female
subject in the sentence, which is the nurse. Additionally, it is
biologically implausible for a male doctor to be pregnant.
The sexism is stark.
When I asked ChatGPT, which has been fine-tuned with a technique

called reinforcement learning using human feedback (RLHF), to avoid such
problems, I got this answer to the same question:

A: In the sentence “The nurse married the doctor because she was
pregnant,” it’s not explicitly clear who is pregnant due to the way the
sentence is structured. This sentence is an example of an ambiguous
pronoun reference, where the pronoun “she” could potentially refer
to either the nurse or someone else entirely. To remove the ambiguity
and clearly convey the intended meaning, the sentence could be
rephrased as: “The nurse, who was pregnant, married the doctor.”

What’s astonishing is that in both cases (the sexist response and the
grammatically enlightened response), the sexism, if not glaring, persists; in
the suggested rephrasing, it’s still the nurse who is pregnant, not the doctor,
the LLM answers confidently. It’s just as confident while providing patently
wrong answers as when it’s factually correct. Researchers Celeste Kidd and
Abeba Birhane argue in a paper in Science that AIs (including LLMs) that
make predictions with certainty, regardless of factuality, risk altering the
cognitive makeup of humans who consume these answers.



Individual humans form their beliefs by sampling a small subset of
the available data in the world. Once those beliefs are formed with
high certainty, they can become stubborn to revise…Users of
conversational generative AI models request information in
particular moments—when they are uncertain and thus most open to
learning something new. Once a person has received an answer,
their uncertainty drops, their curiosity is diminished, and they don’t
consider or weigh subsequent evidence in the same way as when
they were in the early stages of making up their minds. People’s
beliefs are more influenceable the greater the uncertainty they have.
This limited window in which people are open to changing their
minds is problematic in the context of conversational generative AI
models that purport to provide answers to users’ questions upon
request.

Such concerns cannot and should not be dismissed; they are real and
must be addressed alongside developments leading to the widespread
deployment of ML models. But even as many grapple with the promises
and perils of AI, other researchers, computational neuroscientists among
them, are using deep neural networks to understand human brains and
cognition.

We began this book by talking about how Rosenblatt’s perceptron was
inspired by a simple model of the biological neuron. It’s only fitting that
today’s sophisticated neural networks are beginning to tell us something
about how human brains work. While our understanding of why LLMs
work as well as they do is still in its infancy, other models built using
different types of deep neural networks, such as CNNs, are showing
surprising correspondence with at least some aspects of brain function.

Geoffrey Hinton, for one, is keenly interested in reverse engineering the
brain, an obsession that comes across in a tale he once told. In 2007, before
neural networks were a thing, Hinton and others, after their request for an
official workshop on neural networks was rejected, organized an unofficial
“satellite” meeting at the margins of a prestigious annual conference on AI.



Hinton, the final speaker at the bootleg session, started with a quip: “So,
about a year ago, I came home to dinner, and I said, ‘I think I finally figured
out how the brain works,’ and my fifteen-year-old daughter said, ‘Oh,
Daddy, not again.’ ” The audience laughed. Hinton continued: “So, here’s
how it works.” Hinton’s jokes belied a serious pursuit: using AI to
understand the brain.

The brain is, of course, a neural network in the sense that it’s a network
of neurons. But the backpropagation algorithm used to train artificial neural
networks cannot work in the brain, for a range of technical reasons. The
basic problem one needs to solve for the brain is the same problem that
backprop solves for artificial networks: how to assign blame to each of the
network’s parameters (the weights of the connections between neurons)
when the network makes a loss, so that the parameters can be adjusted. It’s
also known as the problem of credit assignment. The backprop algorithm
keeps track of the results of computations performed in the forward pass
and the current weight matrices (one for each layer), so that it can use them
to do gradient descent on the backward pass. The human brain doesn’t keep
such numbers in memory, as it were. So, backprop won’t work in the brain
as it is currently designed. Numerous efforts are under way to solve the
credit assignment problem for biological neural networks.

Others, meanwhile, are using deep neural networks to model aspects of
brain function, such as the primate visual system, and are finding surprising
correspondences. One of the seminal solutions came via MIT, before the
2012 announcement of AlexNet by Hinton’s team, the year deep nets made
their mark. In the winter of 2011, Daniel Yamins, a postdoc in James
DiCarlo’s lab at MIT in Cambridge, Massachusetts, was toiling away,
sometimes past midnight, on his machine vision project. He was designing
a deep neural network to recognize objects in pictures, regardless of
variations in size, position, or other properties— something humans do with
ease. Unlike with AlexNet, which was designed as a convolution neural
network from the start, Yamins was using an algorithm to search over a set
of architectures to see which one performed best. “I remember very
distinctly the time when we found a neural network that actually solved the



task,” he said. It was 2 a.m., a tad too early to wake up his advisor, so an
excited Yamins took a walk in the cold Cambridge air. “I was really
pumped,” he said.

Yamins discovered that the architecture that worked best for his
computer vision task was a convolution neural network. While AlexNet was
designed to classify images in the ImageNet dataset, Yamins and other
members of DiCarlo’s team were after a neuroscientific payoff. If their
CNN mimicked a visual system, they wondered, could it predict biological
neural responses to a novel image? To find out, they first established how
the activity in sets of artificial neurons in their CNN corresponded to
activity in almost three hundred sites in the ventral visual stream of two
rhesus macaques. (The ventral visual stream is the pathway in primate
brains, including ours, responsible for recognizing people, places, and
things.) They then used the CNN to predict how those brain sites would
respond when the monkeys were shown images that weren’t part of the
training dataset. “Not only did we get good predictions…but also there’s a
kind of anatomical consistency,” Yamins said. The early, intermediate, and
late-stage layers of the CNN predicted the behaviors of the early,
intermediate, and higher-level brain areas, respectively. Form followed
function.

Nancy Kanwisher, a neuroscientist at MIT, remembers being impressed
by the result when it was published in 2014. “It doesn’t say that the
[artificial] units in the deep network individually behave like [biological]
neurons biophysically,” she said. “Nonetheless, there is shocking specificity
in the functional match.”

Another intriguing result also came from DiCarlo’s lab. In 2019, his
team published results about a version of AlexNet that they had used to
model the ventral visual stream of macaques. They first established the
correspondences between the artificial neuron units and neural sites in an
area of the monkeys’ visual system called V4: When the monkeys were
shown the same images, the activity of the artificial neurons correlated with
the activity of the neural sites in their brains. Then, using the computational
model, the researchers synthesized images that they predicted would elicit



unnaturally high levels of activity in the monkey neurons. In one
experiment, when these “unnatural” images were shown to the monkeys,
they elevated the activity of 68 percent of the neural sites beyond their usual
levels; in another, the images drove up activity in one neuron while
suppressing it in nearby neurons. Both results were predicted by the neural
net model.

These kinds of computational models of brain function, built using deep
neural networks, have been designed and refined for other areas of the
brain, including the dorsal ventral stream (a separate visual pathway that
processes information for seeing motion and the positions of things), the
auditory cortex, and even the olfactory pathways.

While these bespoke models are targeting specific systems in the brain,
LLMs break the mold. These more general-purpose machines are making
cognitive scientists ask high-level questions about human cognition, and not
just to do with specific tasks like vision. For example, it’s clear that LLMs
are beginning to show hints of theory of mind (even if it is just complex
pattern matching and even if the LLMs, undeniably, get things wrong at
times). Can they help us understand this aspect of human cognition? Not
quite. At least, not yet. But cognitive scientists, even if they aren’t
convinced of an LLM’s prowess in this arena, are nonetheless intrigued.

LLMs are already causing consternation among cognitive scientists and
linguists in other areas of human cognition, such as language acquisition.
There was an ongoing debate in cognitive science about whether aspects of
human language, such as grammar and semantics, depend on innate
abilities, or whether they can be learned by exposure to language. (Recall
the debate between Chomsky and Piaget from chapter 11.) LLMs are
clearly showing that the latter is true to some extent, with the caveat that an
LLM is trained on an internet’s worth of data; no child will ever come
remotely close to experiencing so much language during learning. Still,
LLMs can learn syntax and grammar from the statistical patterns that exist
in human written language, and they have some notion of semantics. To an
LLM, the word “heavy” might not mean quite the same thing as it might to
humans, yet the LLM is able to “reason” about heaviness and lightness in



ways that suggest at least some semantic understanding of those words. It
all depends on where you set the bar for what it means to understand
something. LLMs clear some bars with ease and fail miserably at others.

As exciting as these advances are, we should take all these
correspondences between deep neural networks and biological brains with a
huge dose of salt. These are early days. The convergences in structure and
performance between deep nets and brains do not necessarily mean the two
work in the same way; there are ways in which they demonstrably do not.
For example, biological neurons “spike,” meaning the signals travel along
axons as voltage spikes. Artificial neurons don’t spike, at least not those that
are widely used. Also, there are massive differences between biological
brains and deep neural networks when it comes to energy efficiency. While
companies like OpenAI and Google aren’t particularly open about the
energy costs of running LLMs while making inferences, the company
Hugging Face, which works on open-source models, calculated that one of
its models (a 175-billion-parameter network named BLOOM), during an
eighteen-day period, consumed, on average, about 1,664 watts. Compare
that to the 20 to 50 watts our brains use, despite our having about 86 billion
neurons and about 100 trillion connections, or parameters. On the face of it,
it’s no comparison, really. (But at this stage of AI’s development, we are
also comparing apples and oranges: Brains are vastly more capable in
certain ways, but LLMs are so much faster at certain tasks—such as coding
—and can do certain things that no individual biological brain can.)

It’s also unclear whether pure machine learning, or learning about
patterns in data, can really get us to the kind of intelligence that biological
brains and bodies demonstrate. Our brains are embodied. Would a machine
learning AI need to be similarly embodied for it to develop human-like
general intelligence, or could disembodied AIs, such as LLMs, get us there?
Again, opinions differ, and starkly so.

But it may be that there are enough similarities between systems on
either side of the artificial-natural divide to suggest that the same governing
principles lie behind both types of intelligence. The same elegant math
might underpin them both.
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456186/. See also: Bret Hanlon and Bret Larget,
“Normal and t Distributions,” Department of Statistics, University of Wisconsin-Madison, PDF
(October 2011), https://pages.stat.wisc.edu/~st571-1/07-normal-2.pdf.

GO TO NOTE REFERENCE IN TEXT

equating them can be problematic: Philip B. Stark, “Pay No Attention to the Model Behind the
Curtain,” Pure and Applied Geophysics 179 (2022): 4121–45.

GO TO NOTE REFERENCE IN TEXT

eloquently told his students: Kilian Weinberger “Lecture 7, ‘Estimating Probabilities from Data:
Maximum Likelihood Estimation’—Cornell CS4780 SP17,” YouTube, n.d.,
www.youtube.com/watch?v=RIawrYLVdIw.

GO TO NOTE REFERENCE IN TEXT

Months after the U.S. Constitution: Jessie Kratz, “Drafting the U.S. Constitution,” Pieces of
History (blog), National Archives, September 12, 2022,
prologue.blogs.archives.gov/2022/09/12/drafting-the-u-s-constitution/.

GO TO NOTE REFERENCE IN TEXT

a series of essays, published anonymously: Frederick Mosteller,The Pleasures of Statistics: The
Autobiography of Frederick Mosteller (New York: Springer, 2010), 48.

GO TO NOTE REFERENCE IN TEXT

The Federalist: A Collection of Essays: “The Federalist: A Collection of Essays, Written in Favour
of the New Constitution, as Agreed upon by the Federal Convention, September 17, 1787: In Two
Volumes,” Library of Congress, gallery, www.loc.gov/resource/rbc0001.2014jeff21562v1/?st=gallery.

GO TO NOTE REFERENCE IN TEXT

https://www.youtube.com/playlist?list=PLuh62Q4Sv7BXkeKW4J_2WQBlYhKs_k-pj
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6456186/
https://pages.stat.wisc.edu/~st571-1/07-normal-2.pdf
http://www.youtube.com/watch?v=RIawrYLVdIw
http://prologue.blogs.archives.gov/2022/09/12/drafting-the-u-s-constitution/
http://www.loc.gov/resource/rbc0001.2014jeff21562v1/?st=gallery


Eventually, it became known that the essays: “About the Authors,” Federalist Essays in Historic
Newspapers, Library of Congress, n.d., guides.loc.gov/federalist-essays-in-historic-
newspapers/authors.

GO TO NOTE REFERENCE IN TEXT

But as Frederick Mosteller writes: Mosteller, The Pleasures of Statistics, p. 48.

GO TO NOTE REFERENCE IN TEXT

“When we assembled the results”: Mosteller, The Pleasures of Statistics, p. 49.

GO TO NOTE REFERENCE IN TEXT

“[Adair]…was stimulated to write”: Mosteller, The Pleasures of Statistics, p. 50.

GO TO NOTE REFERENCE IN TEXT

“We were spurred to action”: Mosteller, The Pleasures of Statistics, p. 53.

GO TO NOTE REFERENCE IN TEXT

“That was in 1959–60”: Mosteller, The Pleasures of Statistics, p. 54.

GO TO NOTE REFERENCE IN TEXT

“The program did this beautifully”: Mosteller, The Pleasures of Statistics, p. 54.

GO TO NOTE REFERENCE IN TEXT

“The more widely the distributions”: Mosteller, The Pleasures of Statistics, p. 57.

GO TO NOTE REFERENCE IN TEXT

“By whatever methods are used”: Mosteller, The Pleasures of Statistics, p. 58.

GO TO NOTE REFERENCE IN TEXT

“It was very influential in statistical theory”: Zoom interview with Patrick Juola on October 22,
2021. This and all subsequent quotes by Juola are from this author interview.

GO TO NOTE REFERENCE IN TEXT

a team led by marine biologist Kristen Gorman: Kristen B. Gorman, Tony D. Williams, and
William R. Fraser, “Ecological Sexual Dimorphism and Environmental Variability Within a

http://guides.loc.gov/federalist-essays-in-historic-newspapers/authors


Community of Antarctic Penguins (Genus Pygoscelis),” PLOS ONE 9, No. 3 (March 2014): e90081.

GO TO NOTE REFERENCE IN TEXT
the year it was studied: A. M. Horst, A. P. Hill, and K. B. Gorman, “Palmerpenguins,” Palmer
Archipelago (Antarctica) penguin data, R package version 0.1.0, 2020,
allisonhorst.github.io/palmerpenguins/.

GO TO NOTE REFERENCE IN TEXT

http://allisonhorst.github.io/palmerpenguins/


CHAPTER 5: BIRDS OF A FEATHER
“No street in the Cholera area was without death”: “Report on the Cholera Outbreak in the Parish
of St. James, Westminster, During the Autumn of 1854, Presented to the Vestry by the Cholera
Inquiry Committee, July 1855,” p. 18, Wellcome Collection, n.d.,
wellcomecollection.org/works/z8xczc2r.

GO TO NOTE REFERENCE IN TEXT

“In Broad Street”: “Report on the Cholera Outbreak in the Parish of St. James,” pp. 18–19.

GO TO NOTE REFERENCE IN TEXT

a physician named John Snow: Michael A. E. Ramsay, “John Snow, MD: Anaesthetist to the Queen
of England and Pioneer Epidemiologist,” Baylor University Medical Center Proceedings 19, No. 1
(January 2006): 24–28.

GO TO NOTE REFERENCE IN TEXT

“chloroform to Queen Victoria”: Ramsay, “John Snow, MD,” p. 4.

GO TO NOTE REFERENCE IN TEXT

“the various points which have been found”: “Report on the Cholera Outbreak in the Parish of St.
James,” p. 109.

GO TO NOTE REFERENCE IN TEXT

“It will be observed that the deaths”: “Report on the Cholera Outbreak in the Parish of St. James,”
p. 109.

GO TO NOTE REFERENCE IN TEXT

Voronoi cell: David Austin, “Voronoi Diagrams and a Day at the Beach,” American Mathematical
Society Feature Column: Journeys for the Mathematically Curious, August 2006,
www.ams.org/publicoutreach/feature-column/fcarc-voronoi.

GO TO NOTE REFERENCE IN TEXT

the most influential algorithms in machine learning: George Chen and Devavrat Shah,
“Explaining the Success of Nearest Neighbor Methods in Prediction,” Foundations and Trends in
Machine Learning 10, No. 5-6 (January 2018): 337–588.

GO TO NOTE REFERENCE IN TEXT

http://wellcomecollection.org/works/z8xczc2r
http://www.ams.org/publicoutreach/feature-column/fcarc-voronoi


It was Alhazen who: Abdelghani Tbakhi and Samir S. Amr, “Ibn Al-Haytham: Father of Modern
Optics,” Annals of Saudi Medicine 27, No. 6 (November–December 2007): 464–67.

GO TO NOTE REFERENCE IN TEXT

“the most significant figure”: David C. Lindberg, Theories of Vision from Al-Kindi to Kepler
(Chicago, Ill.: University of Chicago Press, 1981), p. 58.

GO TO NOTE REFERENCE IN TEXT

“Material replicas issue in all directions”: Lindberg, Theories of Vision from Al-Kindi to Kepler, p.
3.

GO TO NOTE REFERENCE IN TEXT

“The essential feature of this theory”: Lindberg, Theories of Vision from Al-Kindi to Kepler, p. 58.

GO TO NOTE REFERENCE IN TEXT

“transforming the intromission theory”: Lindberg, Theories of Vision from Al-Kindi to Kepler, p.
78.

GO TO NOTE REFERENCE IN TEXT

“When sight perceives some visible object”: A. Mark Smith, Alhacen’s Theory of Visual Perception
(Philadelphia, Pa.: American Philosophical Society, 2001), p. 519.

GO TO NOTE REFERENCE IN TEXT

“If it does not find a form”: Smith, Alhacen’s Theory of Visual Perception, p. 519.

GO TO NOTE REFERENCE IN TEXT

“a surprisingly clear, almost algorithmic, exposition”: Marcello Pelillo, “Alhazen and the Nearest
Neighbor Rule,” Pattern Recognition Letters 38 (March 1, 2014): 34–37.

GO TO NOTE REFERENCE IN TEXT

“I don’t know whether”: Zoom interview with Marcello Pelillo on June 16, 2021. This and all
subsequent quotes by Pelillo are from this author interview.

GO TO NOTE REFERENCE IN TEXT

“That’s the nearest neighbor rule”: Zoom interview with Peter Hart on June 9, 2021. This and all
subsequent quotes by Hart are from this author interview.



GO TO NOTE REFERENCE IN TEXT
In 1940, Fix came to work: Jerzy Neyman et al., “Evelyn Fix, Statistics: Berkeley, 1904–1965,”
About, Berkeley Statistics, statistics.berkeley.edu/about/biographies/evelyn-fix.

GO TO NOTE REFERENCE IN TEXT

“The war years were hard”: Neyman et al., “Evelyn Fix, Statistics: Berkeley, 1904–1965.”

GO TO NOTE REFERENCE IN TEXT

the technical report of 1951: Evelyn Fix and J. L. Hodges, Jr., “Discriminatory Analysis.
Nonparametric Discrimination: Consistency Properties,” International Statistical Review 57, No. 3
(December 1989): 238–47.

GO TO NOTE REFERENCE IN TEXT

Even fruit flies are thought to use: Sanjoy Dasgupta, Charles F. Stevens, and Saket Navlakha, “A
Neural Algorithm for a Fundamental Computing Problem,” Science 358, No. 6364 (November 10,
2017): 793–96.

GO TO NOTE REFERENCE IN TEXT

“the curse of dimensionality”: Richard Bellman, Dynamic Programming (Princeton, N.J.: Princeton
University Press, 1972), p. ix.

GO TO NOTE REFERENCE IN TEXT

“In high dimensional spaces, nobody can hear you scream”: Julie Delon, The Curse of
Dimensionality, PDF, mathematical-coffees.github.io/slides/mc08-delon.pdf.

GO TO NOTE REFERENCE IN TEXT

In his lectures: Thomas Strohmer, “Mathematical Algorithms for Artificial Intelligence and Big Data
Analysis,” PDF (Spring 2017),
www.math.ucdavis.edu/~strohmer/courses/180BigData/180lecture1.pdf.

GO TO NOTE REFERENCE IN TEXT

The volume is given by this formula: For the volume of a hypersphere, see “Hypershere,” Wolfram
MathWorld, n.d., mathworld.wolfram.com/Hypersphere.html; and for Gamma function, see “Gamma
Function,” Wolfram MathWorld, n.d., mathworld.wolfram.com/GammaFunction.html.

GO TO NOTE REFERENCE IN TEXT

http://statistics.berkeley.edu/about/biographies/evelyn-fix
http://mathematical-coffees.github.io/slides/mc08-delon.pdf
http://www.math.ucdavis.edu/~strohmer/courses/180BigData/180lecture1.pdf
http://mathworld.wolfram.com/Hypersphere.html
http://mathworld.wolfram.com/GammaFunction.html


This problem is elegantly analyzed: Alon Amit, Quora, n.d., https://www.quora.com/Why-is-the-
higher-the-dimension-the-less-the-hypervolume-of-a-hypersphere-inscribed-in-a-hypercube-occupy-
the-hypervolume-of-the-hypercube.

GO TO NOTE REFERENCE IN TEXT

number of atoms in the observable universe: Harry Baker, “How Many Atoms Are in the
Observable Universe?,” News, LiveScience, July 10, 2021, www.livescience.com/how-many-atoms-
in-universe.html.

GO TO NOTE REFERENCE IN TEXT

“Since this is a curse”: Bellman, Dynamic Programming, p. ix.

GO TO NOTE REFERENCE IN TEXT

https://www.quora.com/Why-is-the-higher-the-dimension-the-less-the-hypervolume-of-a-hypersphere-inscribed-in-a-hypercube-occupy-the-hypervolume-of-the-hypercube
http://www.livescience.com/how-many-atoms-in-universe.html


CHAPTER 6: THERE’S MAGIC IN THEM MATRICES
“Now, watch this”: Zoom interview with Emery Brown on February 3, 2022. This and all
subsequent quotes by Brown are from this author interview.

GO TO NOTE REFERENCE IN TEXT

In one study done by Brown’s team: John H. Abel et al., “Constructing a Control-Ready Model of
EEG Signal During General Anesthesia in Humans,” IFAC-PapersOnLine 53, No. 2 (2020): 15870–
76.

GO TO NOTE REFERENCE IN TEXT

principal component analysis: For a deep dive into the subject, see YouTube videos on PCA by
Steve Brunton, https://www.youtube.com/watch?v=fkf4IBRSeEc, and Nathan Kutz,
https://www.youtube.com/watch?v=a9jdQGybYmE.

GO TO NOTE REFERENCE IN TEXT

Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen: The paper is reprinted as
a chapter in D. Hilbert and E. Schmidt, Integralgleichungen und Gleichungen mit unendlich vielen
Unbekannten (Leipzig: BSB B. G. Teubner Verlagsgesellschaft, 1989), pp. 8–10.

GO TO NOTE REFERENCE IN TEXT

Wolfram Alpha: Go to www.wolframalpha.com/ and type “eigenvalues {{1, 1}, {0, -2}}” into the
query box and hit Return. Wolfram Alpha will calculate the eigenvectors and eigenvalues.

GO TO NOTE REFERENCE IN TEXT

In his Stanford lectures: Anand Avati, “Lecture 1 - Introduction and Linear Algebra,” Stanford
CS229, Machine Learning, Summer 2019, YouTube video, n.d., https://youtu.be/KzH1ovd4Ots.

GO TO NOTE REFERENCE IN TEXT

Let’s say we have a dataset of vehicles: This example was described by John Abel in email
correspondence on January 9, 2023.

GO TO NOTE REFERENCE IN TEXT

“You’ve got to know”: Kenny Rogers, “The Gambler,” lyrics by Don Schlitz, Songfacts, n.d.,
https://www.songfacts.com/lyrics/kenny-rogers/the-gambler.

GO TO NOTE REFERENCE IN TEXT

https://www.youtube.com/watch?v=fkf4IBRSeEc
https://www.youtube.com/watch?v=a9jdQGybYmE
http://www.wolframalpha.com/
https://youtu.be/KzH1ovd4Ots
https://www.songfacts.com/lyrics/kenny-rogers/the-gambler


“The work of eugenicists”: Ronald A. Fisher, “The Use of Multiple Measurements in Taxonomic
Problems,” Annals of Eugenics 7, No. 2 (September 1936): 179–83.

GO TO NOTE REFERENCE IN TEXT

“There for mile after mile”: David F. Andrews and A. M. Herzberg, Data: A Collection of Problems
from Many Fields for the Student and Research Worker (New York: Springer-Verlag, 1985), p. 5.

GO TO NOTE REFERENCE IN TEXT

“It’s a very rich dataset”: Zoom interview with John Abel on February 24, 2022. This and all
subsequent quotes by Abel are from this author interview.

GO TO NOTE REFERENCE IN TEXT

here’s what you get: Abel et al., “Constructing a Control-Ready Model of EEG Signal During
General Anesthesia in Humans,” p. 15873.

GO TO NOTE REFERENCE IN TEXT



CHAPTER 7: THE GREAT KERNEL ROPE TRICK
a recent immigrant: “Vladimir Vapnik,” The Franklin Institute, n.d.,
https://www.fi.edu/en/laureates/vladimir-vapnik.

GO TO NOTE REFERENCE IN TEXT

appeared in an addendum: Vladimir Vapnik, Estimation of Dependencies Based on Empirical Data
(New York: Springer-Verlag, 1982), p. 362.

GO TO NOTE REFERENCE IN TEXT

excellent exposition: Patrick Winston’s lecture on SVMs lucidly explains the mathematics. See
“[Lecture] 16: Support Vector Machines,” MIT OpenCourseWare, Fall 2010, YouTube video, n.d.,
https://www.youtube.com/watch?v=_PwhiWxHK8o.

GO TO NOTE REFERENCE IN TEXT

“a kind of scientific poem”: C. Truesdell, Essays in the History of Mechanics (Berlin and
Heidelberg: Springer-Verlag, 1968), p. 86.

GO TO NOTE REFERENCE IN TEXT

Krauth and Mézard: Werner Krauth and Marc Mézard, “Learning Algorithms with Optimal
Stability in Neural Networks,” Journal of Physics A: Mathematical and Theoretical 20, No. 11
(1987): L745–52.

GO TO NOTE REFERENCE IN TEXT

“One of the examiners”: Zoom interview with Isabelle Guyon on November 12, 2021. This and all
subsequent quotes by Guyon are from this author interview.

GO TO NOTE REFERENCE IN TEXT

by three Russian researchers: M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer, “Theoretical
Foundations of the Potential Foundations Method in Pattern Recognition,” Automation and Remote
Control 25 (1964): 821–37.

GO TO NOTE REFERENCE IN TEXT

polynomial kernel: T. Poggio, “On Optimal Nonlinear Associative Recall,” Biological Cybernetics
19 (1975): 201–9.

GO TO NOTE REFERENCE IN TEXT

https://www.fi.edu/en/laureates/vladimir-vapnik
https://www.youtube.com/watch?v=_PwhiWxHK8o


The size of the higher-dimensional space: John Shawe-Taylor and Nello Cristianini, Kernel
Methods for Pattern Analysis (Cambridge, UK: Cambridge University Press, 2004), p. 293.

GO TO NOTE REFERENCE IN TEXT

“This was a very simple change to the code”: Zoom interview with Bernhard Boser on July 16,
2021. This and all subsequent quotes by Boser are from this author interview.

GO TO NOTE REFERENCE IN TEXT

the radial basis function (RBF) kernel: D. S. Broomhead and D. Lowe, “Multivariable Functional
Interpolation and Adaptive Networks,” Complex Systems 2 (1988): 321–55.

GO TO NOTE REFERENCE IN TEXT

For the curious, here’s the kernel function: Andrew Ng, “Exercise 8: Non-linear SVM
Classification with Kernels,” for course Machine Learning, OpenClassroom,
openclassroom.stanford.edu/MainFolder/DocumentPage.php?
course=MachineLearning&doc=exercises/ex8/ex8.html.

GO TO NOTE REFERENCE IN TEXT

“Brad Pitt of kernels”: Kilian Weinberger, “Machine Learning Lecture 22: More on Kernels—
Cornell CS4780 SP17,” YouTube video, n.d., https://youtu.be/FgTQG2IozlM, at 38:08.

GO TO NOTE REFERENCE IN TEXT

“of course by the KERNEL TRICK!!!”: Email interviews with Manfred Warmuth on March 6 and
March 9, 2022. This and all subsequent quotes by Warmuth are from these author interviews.

GO TO NOTE REFERENCE IN TEXT

it appeared in July 1992: Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik, “A
Training Algorithm for Optimal Margin Classifiers,” COLT ’92: Proceedings of the Fifth Annual
Workshop on Computational Learning Theory (July 1992): 144–52.

GO TO NOTE REFERENCE IN TEXT

This approach, published in 1995: Corinna Cortes and Vladimir Vapnik, “Support-Vector
Networks,” Machine Learning 20 (1995): 273–97.

GO TO NOTE REFERENCE IN TEXT

http://openclassroom.stanford.edu/MainFolder/DocumentPage.php?course=MachineLearning&doc=exercises/ex8/ex8.html
https://youtu.be/FgTQG2IozlM


“Manfred [Warmuth] and I gave Vapnik a kind of superstar status”: Email interviews with
David Haussler on March 7 and March 8, 2022. This and all subsequent quotes by Haussler are from
these author interviews.

GO TO NOTE REFERENCE IN TEXT

“Vapnik-Chervonenkis (VC) dimension”: Anselm Blumer et al., “Learnability and the Vapnik-
Chervonenkis Dimension,” Journal of the ACM 36, No. 4 (October 1989): 929–65.

GO TO NOTE REFERENCE IN TEXT

Frontiers of Knowledge Award: “The Frontiers of Knowledge Awards recognize Guyon,
Schölkopf, and Vapnik for Teaching Machines How to Classify Data,” BBVA Foundation, February
2020, https://tinyurl.com/bddcdtv8.

GO TO NOTE REFERENCE IN TEXT

a comprehensive book on kernel methods: Bernhard Schölkopf and Alexander J. Smola, Learning
with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Cambridge,
Mass.: The MIT Press, 2001).

GO TO NOTE REFERENCE IN TEXT

https://tinyurl.com/bddcdtv8


CHAPTER 8: WITH A LITTLE HELP FROM PHYSICS
“Now what?”: John Hopfield, “Now What?” Princeton Neuroscience Institute, October 2018,
https://pni.princeton.edu/people/john-j-hopfield/now-what.

GO TO NOTE REFERENCE IN TEXT

“You can’t make things error-free”: Zoom interview with John Hopfield on October 25, 2021. This
and all subsequent quotes by Hopfield are from this author interview, unless identified as quotes from
his essay “Now What?”

GO TO NOTE REFERENCE IN TEXT

Hopfield published his “biology” paper in 1974: John Hopfield, “Kinetic Proofreading: A New
Mechanism for Reducing Errors in Biosynthetic Processes Requiring High Specificity,” Proceedings
of the National Academy of Sciences 71, No. 10 (October 1, 1974): 4135–39.

GO TO NOTE REFERENCE IN TEXT

“This was the first paper”: Hopfield, “Now What?”

GO TO NOTE REFERENCE IN TEXT

In 1976, Hopfield gave a talk at Harvard: Hopfield, “Now What?”

GO TO NOTE REFERENCE IN TEXT

“It was one of the biggest”: Hopfield, “Now What?”

GO TO NOTE REFERENCE IN TEXT

“A network could ‘solve a problem’ or”: Hopfield, “Now What?”

GO TO NOTE REFERENCE IN TEXT

“How mind emerges from brain”: Hopfield, “Now What?”

GO TO NOTE REFERENCE IN TEXT

“primate neuroanatomy”: Hopfield, “Now What?”

GO TO NOTE REFERENCE IN TEXT

https://pni.princeton.edu/people/john-j-hopfield/now-what


it’s an amorphous solid: Ciara Curtin, “Fact or Fiction?: Glass Is a (Supercooled) Liquid,” Scientific
American, February 22, 2007, https://www.scientificamerican.com/article/fact-fiction-glass-liquid/.

GO TO NOTE REFERENCE IN TEXT

Certain materials…are ferromagnetic: “Ferromagnetism,” LibreTexts, n.d.,
https://tinyurl.com/2p8jcxmf.

GO TO NOTE REFERENCE IN TEXT

For his doctoral thesis: S. G. Brush, “History of the Lenz-Ising Model,” Reviews of Modern Physics
39, No. 4 (1967): 883–93.

GO TO NOTE REFERENCE IN TEXT

Rudolf Ernst Peierls, a German physicist: Lee Sabine, “Rudolf Ernst Peierls, 5 June 1907–19
September 1995,” Biographical Memoirs of Fellows of the Royal Society, December 1, 2007, pp.
53265–84.

GO TO NOTE REFERENCE IN TEXT

“For sufficiently low temperatures”: R. H. Dalitz and Sir Rudolf Peierls, eds., Selected Scientific
Papers of Sir Rudolf Peierls (Singapore: World Scientific Publishing, 1997), p. 229.

GO TO NOTE REFERENCE IN TEXT

the Hamiltonian of a system: Giorgio Parisi, “Spin Glasses and Fragile Glasses: Statics, Dynamics,
and Complexity,” Proceedings of the National Academy of Sciences 103, No. 21 (May 23, 2006):
7948–55.

GO TO NOTE REFERENCE IN TEXT

Here’s one: Ada Altieri and Marco Baity-Jesi, “An Introduction to the Theory of Spin Glasses,”
arXiv, February 9, 2023, https://arxiv.org/abs/2302.04842. Also, see: Viktor Dotsenko, An
Introduction to the Theory of Spin Glasses and Neural Networks (Singapore: World Scientific, 1994),
pp. 4, 113.

GO TO NOTE REFERENCE IN TEXT

Hopfield quotes Hemingway: Hopfield, “Now What?”

GO TO NOTE REFERENCE IN TEXT

https://www.scientificamerican.com/article/fact-fiction-glass-liquid/
https://tinyurl.com/2p8jcxmf
https://arxiv.org/abs/2302.04842


The proof that follows: Raúl Rojas, Neural Networks: A Systematic Introduction (Berlin: Springer,
2013), pp. 349–54.

GO TO NOTE REFERENCE IN TEXT

“Since there is only a finite set”: Rojas, Neural Networks, p. 353.

GO TO NOTE REFERENCE IN TEXT



CHAPTER 9: THE MAN WHO SET BACK DEEP LEARNING (NOT REALLY)
“I felt like a rock star”: Zoom interview with George Cybenko on November 11, 2021. This and all
subsequent quotes by Cybenko are from this author interview.

GO TO NOTE REFERENCE IN TEXT

blog post Cybenko later read: Vincenzo Lomonaco, “What I Learned at the Deep Learning
Summer School 2017 in Bilbao,” Medium, July 27, 2017, https://tinyurl.com/4xhc7h9e.

GO TO NOTE REFERENCE IN TEXT

For a detailed visual analysis of this approach: Chapter 4: “A Visual Proof that Neural Nets Can
Compute Any Function,” in Michael Nielsen, Neural Networks and Deep Learning (Determination
Press, 2015), http://neuralnetworksanddeeplearning.com/chap4.html.

GO TO NOTE REFERENCE IN TEXT

small technical report: G. Cybenko, “Continuous Valued Neural Networks with Two Hidden Layers
Are Sufficient,” Technical Report, 1988, Department of Computer Science, Tufts University.

GO TO NOTE REFERENCE IN TEXT

In the concluding paragraph of his 1989 paper: G. Cybenko, “Approximation by Superpositions
of a Sigmoidal Function,” Mathematics Control Signal Systems 2 (December 1989): 303–14.

GO TO NOTE REFERENCE IN TEXT

https://tinyurl.com/4xhc7h9e
http://neuralnetworksanddeeplearning.com/chap4.html


CHAPTER 10: THE ALGORITHM THAT PUT PAID TO A PERSISTENT MYTH
“Yes”: Zoom interview with Geoffrey Hinton on October 1, 2021. This and subsequent quotes by
Hinton are from this author interview.

GO TO NOTE REFERENCE IN TEXT

a theoretical chemist: Chris Darwin, “Christopher Longuet-Higgins: Cognitive Scientist with a Flair
for Chemistry,” The Guardian, June 10, 2004,
https://www.theguardian.com/news/2004/jun/10/guardianobituaries.highereducation.

GO TO NOTE REFERENCE IN TEXT

“The procedure to be described”: Frank Rosenblatt, Principles of Neurodynamics: Perceptrons and
the Theory of Brain Mechanisms, Cornell University Report No. 1196-G-8, March 15, 1961, p. 292.

GO TO NOTE REFERENCE IN TEXT

“It would seem that”: Rosenblatt, Principles of Neurodynamics, p. 287.

GO TO NOTE REFERENCE IN TEXT

“While this theorem shows”: Rosenblatt, Principles of Neurodynamics, p. 291.

GO TO NOTE REFERENCE IN TEXT

“Let the machine make”: M. Minsky and O. G. Selfridge, “Learning in Random Nets,” in
Information Theory, ed. E. C. Cherry (London: Butterworth, 1961), pp. 335–47.

GO TO NOTE REFERENCE IN TEXT

“Minsky and Papert were so intent”: Hubert L. Dreyfus and Stuart E. Dreyfus, “Making a Mind
Versus Modeling the Brain: Artificial Intelligence Back at a Branchpoint,” Daedalus 117, No. 1
(Winter 1988): 15–43.

GO TO NOTE REFERENCE IN TEXT

And in an exhaustive blog post: Jürgen Schmidhuber, “Who Invented Backpropagation?” AI Blog
(blog), 2014, https://people.idsia.ch/~juergen/who-invented-backpropagation.html.

GO TO NOTE REFERENCE IN TEXT

Paul Werbos submitted his Ph.D. thesis: P. Werbos, “Beyond Regression: New Tools for Prediction
and Analysis in the Behavioral Sciences” (Ph.D. diss., Harvard University, 1974).

https://www.theguardian.com/news/2004/jun/10/guardianobituaries.highereducation
https://people.idsia.ch/~juergen/who-invented-backpropagation.html


GO TO NOTE REFERENCE IN TEXT
“In general, the procedure”: Werbos, “Beyond Regression.”

GO TO NOTE REFERENCE IN TEXT

“As a result of the weight adjustments”: David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams, “Learning Representations by Back-propagating Errors,” Nature 323 (October 1986): 533–
36.

GO TO NOTE REFERENCE IN TEXT

“there is a kid in France”: Zoom interview with Yann LeCun on October 11, 2021. This and all
subsequent quotes by LeCun are from this author interview.

GO TO NOTE REFERENCE IN TEXT



CHAPTER 11: THE EYES OF A MACHINE
“By now the award”: H. B. Barlow, “David Hubel and Torsten Wiesel: Their Contribution Towards
Understanding the Primary Visual Cortex,” Trends in Neuroscience 5 (1982): 145–52.

GO TO NOTE REFERENCE IN TEXT

“The electrode has been used”: David H. Hubel, “Tungsten Microelectrode for Recording from
Single Units,” Science 125 (March 22, 1957): 549–50.

GO TO NOTE REFERENCE IN TEXT

It’s these electrodes that Hubel and Wiesel: D. H. Hubel and T. N. Wiesel, “Receptive Fields of
Single Neurones in the Cat’s Striate Cortex,” Journal of Physiology 148 (1959): 574–91.

GO TO NOTE REFERENCE IN TEXT

“made it necessary to use artificial respiration”: Hubel and Wiesel, “Receptive Fields of Single
Neurones in the Cat’s Striate Cortex.”

GO TO NOTE REFERENCE IN TEXT

“drying and becoming cloudy”: Hubel and Wiesel, “Receptive Fields of Single Neurones in the
Cat’s Striate Cortex.”

GO TO NOTE REFERENCE IN TEXT

“At Harvard University, kittens were blinded”: Steven Zak, “Cruelty in Labs,” New York Times,
May 16, 1983, https://www.nytimes.com/1983/05/16/opinion/cruelty-in-labs.html.

GO TO NOTE REFERENCE IN TEXT

“specializing in animals and the law”: Zak, “Cruelty in Labs.”

GO TO NOTE REFERENCE IN TEXT

“Among other things”: David S. Forman, “Grim Alternative to Animal Experiments,” New York
Times, May 30, 1983, https://www.nytimes.com/1983/05/30/opinion/l-grim-alternative-to-animal-
experiments-195873.html.

GO TO NOTE REFERENCE IN TEXT

the stroke of luck: David Hubel describes his experiment and the team’s serendipitous discovery in
this video: Paul Lester, “Hubel and Wiesel Cat Experiment,” YouTube, n.d.,

https://www.nytimes.com/1983/05/16/opinion/cruelty-in-labs.html
https://www.nytimes.com/1983/05/30/opinion/l-grim-alternative-to-animal-experiments-195873.html


https://www.youtube.com/watch?v=IOHayh06LJ4.

GO TO NOTE REFERENCE IN TEXT
this neat story is what led: Grace W. Lindsay, “Convolutional Neural Networks as a Model of the
Visual System: Past, Present, and Future,” Journal of Cognitive Neuroscience 33, No. 10 (2021):
2017–31.

GO TO NOTE REFERENCE IN TEXT

“Cognitron”: Kunihiko Fukushima, “Cognitron: A Self-Organizing Multilayered Neural Network,”
Biological Cybernetics 20 (September 1975): 121–36.

GO TO NOTE REFERENCE IN TEXT

“response was dependent”: Kunihiko Fukushima, “Neocognitron: A Self-Organizing Neural
Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position,” Biological
Cybernetics 36 (April 1980): 193–202.

GO TO NOTE REFERENCE IN TEXT

In the 1980 paper: Fukushima, “Neocognitron.”

GO TO NOTE REFERENCE IN TEXT

“One of the largest”: Fukushima, “Neocognitron,” p. 201.

GO TO NOTE REFERENCE IN TEXT

he chanced upon the book: Massimo Piattelli-Palmarini, ed., Language and Learning: The Debate
Between Jean Piaget and Noam Chomsky (Cambridge, Mass.: Harvard University Press, 1980).

GO TO NOTE REFERENCE IN TEXT

“I believe that Chomsky”: Piattelli-Palmarini, ed., Language and Learning, p. 91.

GO TO NOTE REFERENCE IN TEXT

“I will do this by describing an automaton”: Piattelli-Palmarini, ed., Language and Learning, p.
93.

GO TO NOTE REFERENCE IN TEXT

Called SN: For a history of Lush, and its ancestor SN, see https://leon.bottou.org/projects/lush.

GO TO NOTE REFERENCE IN TEXT

https://www.youtube.com/watch?v=IOHayh06LJ4
https://leon.bottou.org/projects/lush


LeNet: Yann LeCun et al., “Gradient-Based Learning Applied to Document Recognition,”
Proceedings of the IEEE 86, No. 11 (November 1998): 2278–324.

GO TO NOTE REFERENCE IN TEXT

the convolution: Trefor Bazett, “The Convolution of Two Functions | Definition & Properties,”
YouTube video, n.d., https://www.youtube.com /watch?v=AgKQQtEc9dk.

GO TO NOTE REFERENCE IN TEXT

These are called Prewitt kernels: Achmad Fahrurozi et al., “Wood Classification Based on Edge
Detections and Texture Features Selection,” International Journal of Electrical and Computer
Engineering 6, No. 5 (October 2016): 2167–75.

GO TO NOTE REFERENCE IN TEXT

The basic idea behind max pooling: “Max Pooling,” paperswithcode .com/method/max-pooling.

GO TO NOTE REFERENCE IN TEXT

“All we need to achieve”: D. C. Ciresan et al., “Deep Big Simple Neural Nets for Handwritten Digit
Recognition,” Neural Computation 22, No. 12 (2010): 3207–20.

GO TO NOTE REFERENCE IN TEXT

finding roads in aerial images: Volodymyr Mnih and Geoffrey E. Hinton, “Learning to Detect
Roads in High-Resolution Aerial Images,” PDF,
https://www.cs.toronto.edu/~hinton/absps/road_detection.pdf.

GO TO NOTE REFERENCE IN TEXT

Mnih wrote another package atop CUDA: Volodymyr Mnih, “CUDAMat: A CUDA-Based Matrix
Class for Python,” PDF, University of Toronto Technical Report, UTML TR 2009–004,
http://www.cs.toronto.edu/~vmnih/docs/cudamat_tr.pdf .

GO TO NOTE REFERENCE IN TEXT

Fei-Fei Li and her students presented a paper: J. Deng et al., “ImageNet: A Large-Scale
Hierarchical Image Database,” 2009 IEEE Conference on Computer Vision and Pattern Recognition,
Miami, Fla., 2009, pp. 248–55.

GO TO NOTE REFERENCE IN TEXT

https://www.youtube.com/
https://www.cs.toronto.edu/~hinton/absps/road_detection.pdf
http://www.cs.toronto.edu/~vmnih/docs/cudamat_tr.pdf


“taster competition”: Visual Object Classes Challenge 2010,
host.robots.ox.ac.uk/pascal/VOC/voc2010/.

GO TO NOTE REFERENCE IN TEXT

“Everything went out of the window”: Zoom interviews with Mikhail Belkin on July 20, 2021;
January 15, 2022; and January 13, 2023. This and subsequent quotes by Belkin are from these author
interviews, unless specified otherwise.

GO TO NOTE REFERENCE IN TEXT

http://host.robots.ox.ac.uk/pascal/VOC/voc2010/


CHAPTER 12: TERRA INCOGNITA
“grokking”: See Brittanica for definition and origins of “grok”:
https://www.britannica.com/topic/grok.

GO TO NOTE REFERENCE IN TEXT

“Grokking is meant to be”: Zoom interview with Alethea Power on January 28, 2022. This and
subsequent quotes by Power are from this author interview.

GO TO NOTE REFERENCE IN TEXT

“It’s a balance between”: Anil Ananthaswamy, “A New Link to an Old Model Could Crack the
Mystery of Deep Learning,” Quanta, October 11, 2021, https://tinyurl.com/27hxb5k5.

GO TO NOTE REFERENCE IN TEXT

the bias-variance trade-off: Scott Fortmann-Roe, “Understanding the Bias-Variance Trade-off,”
(blog), June 2012, http://scott.fortmann-roe.com/docs/BiasVariance.html.

GO TO NOTE REFERENCE IN TEXT

“More surprising is that”: Behnam Neyshabur et al., “In Search of the Real Inductive Bias: On the
Role of Implicit Regularization in Deep Learning,” arXiv, April 16, 2015,
https://arxiv.org/abs/1412.6614.

GO TO NOTE REFERENCE IN TEXT

“Even with five percent random labels”: Neyshabur et al., “In Search of the Real Inductive Bias.”

GO TO NOTE REFERENCE IN TEXT

“The experiments we conducted”: Chiyan Zhang et al., “Understanding Deep Learning Requires
Rethinking Generalization,” arXiv, February 26, 2017, https://arxiv.org/abs/1611.03530.

GO TO NOTE REFERENCE IN TEXT

“We routinely teach our undergraduates”: In-person interview with Peter Bartlett in Berkeley,
California, on December 11, 2021.

GO TO NOTE REFERENCE IN TEXT

“The best way to solve the problem”: Ruslan Salakhutdinov quoted in Mikhail Belkin, “Fit without
Fear: Remarkable Mathematical Phenomena of Deep Learning through the Prism of Interpolation,”

https://www.britannica.com/topic/grok
https://tinyurl.com/27hxb5k5
http://scott.fortmann-roe.com/docs/BiasVariance.html
https://arxiv.org/abs/1412.6614
https://arxiv.org/abs/1611.03530


arXiv, May 29, 2021, https://arxiv.org/abs/2105.14368.

GO TO NOTE REFERENCE IN TEXT
wrote a paper in 1995: Leo Breiman, “Reflections After Refereeing Papers for NIPS,” in David H.
Wolpert, ed., The Mathematics of Generalization (Boca Raton, Fla.: CRC Press, 1995), pp. 11–15.

GO TO NOTE REFERENCE IN TEXT

“acronym encourages sexism and is a slur”: Holly Else, “AI Conference Widely Known as ‘NIPS’
Changes Its Controversial Acronym,” Nature News, November 19, 2018,
https://www.nature.com/articles/d41586-018-07476-w.

GO TO NOTE REFERENCE IN TEXT

“Why don’t heavily parameterized”: Leo Breiman, “Reflections After Refereeing Papers for
NIPS,” p. 15.

GO TO NOTE REFERENCE IN TEXT

an ML algorithm called AdaBoost: Peter Bartlett et al., “Boosting the Margin: A New Explanation
for the Effectiveness of Voting Methods,” The Annals of Statistics 26, No. 5 (October 1998): 1651–
86.

GO TO NOTE REFERENCE IN TEXT

long short-term memory: Sepp Hochreiter and Jürgen Schmidhuber, “Long Short-Term Memory,”
Neural Computation 9, No. 8 (1997): 173–80.

GO TO NOTE REFERENCE IN TEXT

For example, the ReLU function: Sebastian Raschka, “Machine Learning FAQ: Why Is the ReLu
Function Not Differentiable at x=0?” Sebastian Raschka, AI Magazine (blog), n.d.,
https://sebastianraschka.com/faq/docs/relu-derivative.html.

GO TO NOTE REFERENCE IN TEXT

“If, by the first day of autumn”: Bet described by Alexei Efros during an interview via Zoom on
January 28, 2022. This and subsequent quotes by Efros are from this author interview. Also, see “The
Gelato Bet,” March 2019, https://people.eecs.berkeley.edu/~efros/gelato_bet.html.

GO TO NOTE REFERENCE IN TEXT

This changed in December 2021: Anil Ananthaswamy, “Self-Taught AI Shows Similarities to How
the Brain Works,” Quanta, August 11, 2022, https://tinyurl.com/8z35n24j.

https://arxiv.org/abs/2105.14368
https://www.nature.com/articles/d41586-018-07476-w
https://sebastianraschka.com/faq/docs/relu-derivative.html
https://people.eecs.berkeley.edu/~efros/gelato_bet.html
https://tinyurl.com/8z35n24j


GO TO NOTE REFERENCE IN TEXT
One of the most intriguing places in that landscape: Mikhail Belkin et al., “Reconciling Modern
Machine-Learning Practice and the Classical Bias-Variance Trade-Off,” Proceedings of the National
Academy of Sciences 116, No. 32 (July 24, 2019): 15849–54.

GO TO NOTE REFERENCE IN TEXT

“Maybe we shouldn’t have such a focus on theory”: Tom Goldstein spoke at the National Science
Foundation’s Town Hall on machine learning on January 10, 2022. This quote and other quotes by
Goldstein are taken from his talk, available at https://tinyurl.com/4m5396b7, beginning at 29:40.

GO TO NOTE REFERENCE IN TEXT

An empirical study by Goldstein and colleagues: Micah Goldblum et al., “Truth or
Backpropaganda? An Empirical Investigation of Deep Learning Theory,” arXiv, April 28, 2020,
https://arxiv.org/abs/1910.00359.

GO TO NOTE REFERENCE IN TEXT

stochasticity wasn’t needed: Jonas Geiping et al., “Stochastic Training Is Not Necessary for
Generalization,” arXiv, April 19, 2022, https://arxiv.org/abs/2109.14119.

GO TO NOTE REFERENCE IN TEXT

“scientific papers from the arXiv preprint server”: Ethan Dyer and Guy Gur-Ari, Google
Research, Blueshift Team, “Minerva: Solving Quantitative Reasoning Problems with Language
Models” Google Research (blog), June 30, 2022, https://blog.research.google/2022/06/minerva-
solving-quantitative-reasoning.html.

GO TO NOTE REFERENCE IN TEXT

https://tinyurl.com/4m5396b7
https://arxiv.org/abs/1910.00359
https://arxiv.org/abs/2109.14119
https://blog.research.google/2022/06/minerva-solving-quantitative-reasoning.html


EPILOGUE
At a public talk I gave on ChatGPT: Anil Ananthaswamy, “ChatGPT and Its Ilk,” YouTube video,
n.d., https://www.youtube.com/watch?v=gL4cquObnbE.

GO TO NOTE REFERENCE IN TEXT

“stochastic parrots”: Emily M. Bender et al., “On the Dangers of Stochastic Parrots: Can Language
Models Be Too Big?” FAccT ’21: Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, Association for Computing Machinery, New York, N.Y., March
2021, pp. 610–23.

GO TO NOTE REFERENCE IN TEXT

“Google Photos, y’all f*** [sic] up. My friend’s not a gorilla”: Maggie Zhang, “Google Photos
Tags Two African-Americans as Gorillas Through Facial Recognition Software,” Forbes, July 1,
2015, https://tinyurl.com/yr5y97zz.

GO TO NOTE REFERENCE IN TEXT

this workaround was still in place: Nico Grant and Kashmir Hill, “Google’s Photo App Still Can’t
Find Gorillas. And Neither Can Apple’s,” New York Times, May 22, 2023,
https://tinyurl.com/4xbj6pmh.

GO TO NOTE REFERENCE IN TEXT

“black defendants were far more”: Jeff Larson et al., “How We Analyzed the COMPAS
Recidivism Algorithm,” ProPublica, May 23, 2016, https://tinyurl.com/3adtt92t.

GO TO NOTE REFERENCE IN TEXT

Amazon had to jettison: Jeffrey Dastin, “Insight—Amazon Scraps Secret AI Recruiting Tool that
Showed Bias Against Women,” Reuters, October 11, 2018, https://tinyurl.com/mpfmserk.

GO TO NOTE REFERENCE IN TEXT

a paper in Science: Ziad Obermeyer et al., “Dissecting Racial Bias in an Algorithm Used to Manage
the Health of Populations,” Science 366, No. 6464 (October 25, 2019): 447–53.

GO TO NOTE REFERENCE IN TEXT

“Gender Shades”: Joy Buolamwini and Timnit Gebru, “Gender Shades: Intersectional Accuracy
Disparities in Commercial Gender Classification,” Proceedings of Machine Learning Research 81
(2018): 1–15.

https://www.youtube.com/watch?v=gL4cquObnbE
https://tinyurl.com/yr5y97zz
https://tinyurl.com/4xbj6pmh
https://tinyurl.com/3adtt92t
https://tinyurl.com/mpfmserk


GO TO NOTE REFERENCE IN TEXT
following interaction with OpenAI’s GPT-4: Adam Tauman Kalai, “How to Use Self-Play for
Language Models to Improve at Solving Programming Puzzles,” Workshop on Large Language
Models and Transformers, Simons Institute for the Theory of Computing, August 15, 2023,
https://tinyurl.com/56sct6n8.

GO TO NOTE REFERENCE IN TEXT

“Individual humans form their beliefs”: Celeste Kidd and Abeba Birhane, “How AI Can Distort
Human Beliefs,” Science 380, No. 6651 (June 22, 2023): 1222–23.

GO TO NOTE REFERENCE IN TEXT

Hinton, the final speaker at the bootleg session: Adapted from Anil Ananthaswamy, “Artificial
Neural Nets Finally Yield Clues to How Brains Learn,” Quanta, February 28, 2020.

GO TO NOTE REFERENCE IN TEXT

“I remember very distinctly”: Adapted from Anil Ananthaswamy, “Deep Neural Networks Help to
Explain Living Brains,” Quanta, October 28, 2020.

GO TO NOTE REFERENCE IN TEXT

Yamins discovered that the architecture: Adapted from Ananthaswamy, “Deep Neural Networks
Help to Explain Living Brains.”

GO TO NOTE REFERENCE IN TEXT

“Not only did we get good predictions”: Adapted from Ananthaswamy, “Deep Neural Networks
Help to Explain Living Brains.”

GO TO NOTE REFERENCE IN TEXT

Nancy Kanwisher, a neuroscientist: Adapted from Ananthaswamy, “Deep Neural Networks Help to
Explain Living Brains.”

GO TO NOTE REFERENCE IN TEXT

Another intriguing result also came from DiCarlo’s lab: Adapted from Ananthaswamy, “Deep
Neural Networks Help to Explain Living Brains.”

GO TO NOTE REFERENCE IN TEXT

https://tinyurl.com/56sct6n8


consumed, on average, about 1,664 watts: Anil Ananthaswamy, “In AI, Is Bigger Better?” Nature
615 (March 9, 2023): 202–5.

GO TO NOTE REFERENCE IN TEXT



Index

The page numbers in this index refer to the printed version of the book.
Each link will take you to the beginning of the corresponding print page.
You may need to scroll forward from that location to find the corresponding
reference on your e-reader.

A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X
Y  Z

A

Abel, John,  194,  201,  203

acceleration,  28,  29–30

activation function,  287–91,  326,  373,  399

AdaBoost,  396–97

Adair, Douglass,  122

ADALINE (adaptive linear neuron),  92–93,  309. See also  adaptive
neurons

adaptive filters. See also  filter theory

calculating average error,  83–84

calculating parameters,  85



design of,  79–80

digital communications and,  79

least mean squares algorithm used in,  91

stochastic gradient descent (SGD),  85,  86

Widrow’s version of,  64,  66–67,  81–83

adaptive neurons,  86–90,  92–93

Agmon, Shmuel,  48

AI winters,  56,  241,  278,  411–12

Aizerman, M. A.,  225–27

AlexNet,  375,  376–80,  406–7

Alhazen (Ibn al-Haytham, al-Hasan),  149–50,  151,  153

Amari, Shun’ichi,  311

Amazon,  421

Amit, Alon,  173

analog filters,  66,  79

analytical reasoning,  382–83

Anderson, Edgar,  195–96

anesthesia example,  176–77,  200–205,  387–88

Arbib, Michael,  14

artificial intelligence, coining of the term,  65



artificial neurons,  15–17. See also  biological neurons

associative memory,  244–45,  256

AT&T Bell Labs,  206,  222–23,  240,  360

Avati, Anand,  186

B

backpropagating error correction procedure,  305

backpropagation algorithm

ADALINE and,  94

chain rule,  331

convolutional neural network and,  356

end game for,  308–11

generalization of,  342–45

history of,  279

implication of,  279

Nature article on,  278

one-hidden-layer network,  330–31

precursor to,  56

problems with credit assignment,  425–26

for training multi-layer neural networks,  305–6



Bartlett, Peter,  395

Bayes, Thomas,  2,  99

Bayes optimal classifier,  115,  132–33,  134,  163–66

Bayesian decision theory,  127

Bayes’ theorem,  2,  98–104,  119–20

BBVA Foundation,  240

Belkin, Mikhail,  380–81,  389,  395–97,  405–6

Bell Labs. See AT&T Bell Labs

Bellman, Richard,  169,  175

Bello, Anthony Lo,  96

benign overfitting,  396

Bennett, Kristin,  238–39

Bernoulli distribution,  105–8,  114,  141

bias,  41,  45,  389,  420–22

bias-variance trade-off,  389–91,  396,  405–6

binary threshold neurons,  337

biological neurons,  14–15,  19. See also  artificial neurons

bipolar neurons,  251–52,  263,  272,  280

Birhane, Abeba,  424

Block, Henry David,  47–49



Boolean logic gates,  16–17

Boolean operations,  15–17

Boser, Bernhard,  206,  209,  222–24,  235–36,  238

Bottou, Léon,  359

Braverman, E. M.,  225–27

Breiman, Leo,  396

Brown, Emery,  176–77

Bryson, Arthur E.,  310–11

Buolamwini, Joy,  421

Burr, Aaron,  120

C

calculus,  2,  56,  75–76,  285,  311,  315. See also  differential calculus

California Academy of Sciences,  94

Canton, John,  99

Carnap, Rudolf,  14

cat’s visual system study,  346–48

Cauchy, Augustin-Louis,  67

cellular biochemical reactions,  242–43

centering,  189–90



chain rule,  311,  315–16,  321–22,  333–34

ChatGPT,  415–16,  423. See also  large language models (LLMs)

Cheng, Eugenia,  4

Chervonenkis, Alexey,  240

Cholera Inquiry Committee,  144,  145

cholera outbreak of 1854, analysis of,  144–47

Chomsky, Noam,  356–57,  428

Chung, Kai-lai,  163

class condition probability density function,  136–39

classification boundary,  386–87

clustering,  199–200

cognition, Piaget-Chomsky debate on,  356–57

cognitron,  354–55

“Cognitron” (Fukushima),  354

coin toss,  105–7

computation, connection between logic and,  13

computational complexity theory,  377

Computational Learning Theory (COLT) conference,  238

computational neuroscience,  243–44

Computer Vision and Pattern Recognition (CVPR) conference,  377–78



conditional probability distribution,  417

constrained optimization problem

constraining function,  212–16

contour lines,  214–15

equation for,  211–13

finding the exterma,  214–15

Hinton’s work on,  304

kernel operation,  363–68

Lagrange’s insight,  216–20

results of,  220–22

weight vector,  220–21

convergence proof,  48–54,  58–63,  93,  272–76

convex functions,  72

convolutional neural networks (CNN). See also  AlexNet;  LeNet

activation function,  373

description of,  360–61

high-resolution images and,  374–75

for image recognition,  359–60

kernel function,  361,  371

learning features,  371–75



LeCun and,  356

padding,  365

pooling,  369–72

Prewitt kernels,  363–65

process of,  361–65

receptive field,  366–67

Yamins’ computer vision task and,  426–27

Cortes, Corinna,  239

Courant, Richard,  236

covariance matrix,  188–93

Cover, Thomas,  152,  156–57,  166

Cover-Hart k-nearest neighbor algorithm,  224

credit assignment, problems with,  425–26

CUDAMat,  376

curse of dimensionality,  169–75,  301

Cybenko, George,  271,  277–79,  283,  296–97,  299–301

cybernetics,  48–49,  66,  224

D

Dartmouth Summer Research Project on Artificial Intelligence,  65–66,  78



deep learning, description of,  5,  277,  340

deep neural networks. See also  artificial neurons;  biological neurons; 
Hopfield networks;  multi-layer neural networks;  single-layer neural
networks

approximating a function,  285–91,  293–96

Belkin’s opinion of,  380–81

debate on limits of,  25

Hebbian approach,  354

hidden layers approximating functions,  284–92

image recognition systems,  354

incremental training,  271

nonlinear features for solving,  338–39

problems with training,  305–6

proof by contradiction,  279,  300–301

repetitions and rephrasing in,  6

symmetry problems in,  306–7

universal approximation theorem,  271,  279

Delon, Julie,  171

delta rule,  313–15,  318

derivative of a function,  70,  75–77,  119,  216,  316–22,  341–42. See
also  partial derivatives



deterministic procedures,  307

Devlin, Keith,  96–97

DiCarlo, James,  426,  427

differentiable functions,  76,  83,  326,  337,  343,  373,  399

differential calculus,  69–70

digital communications, adaptive filters, and,  79

dimensionality,  169–75,  180–83,  228,  301

dimensionality reduction,  175,  178,  198–99

discrete probability distributions,  108–11

discriminative learning,  142–43

double descent,  405–6

Dreyfus, Gérard,  224

Dreyfus, Stuart E.,  310–11

Duda, Richard,  224

E

EEG study,  176–77,  200–205,  387–88

Efros, Alexei,  401–4

eigen, defined,  180

eigenvalues,  185–87,  196



eigenvectors,  185–88,  193,  196–97,  202–3

elliptic paraboloid,  73,  75–77

energy efficiency,  429

Erdos, Paul,  97–98

Euclidean distance,  148

expected probability value,  109–10

exterma,  214–15

extramission theories,  151

F

Federalist Papers, applying statistical methods to,  120–24

feedforward neural networks,  398

ferromagnetism,  246–48,  255

filter theory,  66–67,  78–79,  83–84. See also  adaptive filters

Fisher, Ronald Aylmer,  195–96

Fix, Evelyn,  155–56

frequentists,  97–98,  119–20

Frisch, Karl von,  7

Frontiers of Knowledge Award,  240

Fukushima, Kunihiko,  354–55



function approximator,  417

G

Gamma function,  172–73

Gauss, Carl Friedrich,  2

Gaussian distribution,  2,  117–19

“Gender Shades” (Buolamwini),  421

generalization

of backpropagation algorithm,  342–45

measure theory and,  166

overfitting vs.,  162

rethinking,  394–95

generalization error,  392–93,  405

generative AI,  419

Gibson, James,  19

Goldilocks principle,  387–92

Goldstein, Tom,  406–7,  411–12

Google, Minerva,  412

Gorman, Kristen,  124

GPT-2,  419



GPT-3,  402,  415,  419. See also  large language models (LLMs)

GPT-4,  422–23

gradient descent algorithm,  309,  319,  407

graphical processing units (GPUs),  375,  376,  379

grokking,  383,  408–11

Guyon, Isabelle,  223–24,  234–35,  241

H

Hamilton, Alexander,  120–21

Hamilton, William Rowan,  26–27,  211

Hamiltonian of a system,  248–49

Hart, Peter,  152,  153,  155–57,  163–64,  166,  224

Haussler, David,  238,  240

Hebb, Donald,  19

Hebbian learning,  19,  258–61,  272,  354

Heinlein, Robert,  383

Hemingway, Ernest,  270–71

Henderson, Donnie,  360

Herald, Earl S.,  94

high-dimensional data



anesthesia example,  203

Iris dataset example,  198–99

problems with,  169–75,  205

projecting,  223,  226–27

high-resolution images, convolutional neural networks and,  374–75

Hilbert, David,  180,  236

Hilbert spaces,  236

Hill, Alison,  124

hill climbing algorithm,  309–10

Hinton, Geoffrey

on backpropagation algorithm,  56,  278

brain research,  302–3,  425

influences of,  303

LeCun collaboration,  340–41,  359

on LeNet,  374

Microsoft and,  376–77

on Minsky-Papert proof,  302

Ph.D. work,  304

Rosenblatt and,  307

Rumelhart and,  308,  338,  341



solving constrained optimization problems,  304

Sutherland and,  340

Sutskever and,  5,  379

on symbolic AI (artificial intelligence),  303–4

at White Lion Street Free School,  308

Hochreiter, Sepp,  398

Hodges, Joseph L, Jr.,  155–56

Hoff, Marcian “Ted,”  64,  93

Hopf, Eberhard,  84

Hopfield, John,  224,  241–45,  249–51,  252–55,  270–71

Hopfield networks

associative memory and,  256

convergence proof for,  272–76

creating bi-directional,  252–55

energy of,  255,  262–63,  273–76

images and,  253–55,  265–69

memory storage, example of,  263–70

as one-shot learner,  271,  278

perturbed state,  262–63,  267–69

possibilities with,  263–70



stable state,  258–59,  262

stored memory,  224,  257–62

Horst, Allison,  124

Hubel, David,  346–48,  368–69

Hugging Face,  429

Huygens, Christiaan,  31

hyperbolic paraboloid,  73–74

hypercomplex cells,  352–53

hypercubes,  172–75

hyperparameters, description of,  397

hyperplanes,  206–11,  228–29. See also  separating hyperplanes

hypothesis class,  391

I

idiot Bayes classifier,  138,  142

image recognition systems,  354,  359–60,  377–80. See also  pattern
recognition

“ImageNet” (Li),  378

ImageNet challenge,  377–80

imprinting,  7–8

integral calculus,  285



Intel,  93

intromission theory,  150–51

Iris dataset,  195–200

Ising, Ernst,  246

Ising model,  246–47,  249–50

J

Jackel, Larry,  360

Jay, John,  120

Juola, Patrick,  124

K

Kalai, Adam Tauman,  422

Kelley, Henry J.,  310–11

Kelley-Bryson method,  311

kernel function,  230–35,  237–39,  363–69,  371. See also  radial basis
function (RBF) kernel

Kidd, Celeste,  424

k-means clustering algorithm,  199–200

k-nearest neighbor algorithm,  143,  152,  164–69,  172,  204,  224,  388.
See also  nearest neighbor rule

Krauth, Werner,  225



Krizhevsky, Alex,  375,  379

L

Lagerlöf, Selma,  7

Lagrange, Joseph-Louis,  211,  216–20

language acquisition,  356–57,  428–29

large language models (LLMs)

applications for,  420

bias in,  420–22

ChatGPT,  415–16

correlation with causation,  422

dangers of,  420–21

energy efficiency,  429

language acquisition,  428–29

Minerva,  412–14,  419

as a perceptron descendant,  1–2,  25

self-supervised learning and,  402–4

sexism in,  422–24

theory of mind and,  415–20,  428

as a transformer,  408–9



learning processes,  357

learning rates,  318–19

least mean squares (LMS) algorithm,  64–65,  86–92,  94

LeCun, Yann,  340–41,  356–60,  374

Leibniz, Gottfried Wilhelm,  31

LeNet,  360,  373–74. See also  convolutional neural networks (CNN)

Lenz, Wilhelm,  246

Levin, Esther,  238

Li, Fei-Fei,  377–78

Li Deng,  277

Lighthill, James,  56,  412

linear algebra,  2–3,  84

linear equations,  10–12

linear model,  386,  388,  391

linear regression,  385. See also  regression

Linnainmaa, Seppo,  311

local minima,  407–8

logic, computation and,  13

logical proposition, example of,  13

long short-term memory (LSTM),  398



Longuet-Higgins, Christopher,  303

Lorenz, Konrad,  7

loss function

derivative of,  316–22

gradient of,  333–35,  344–45,  407

partial derivative of,  331–33

regularizer added to,  358

lower bounds,  54

M

machine learning, overview,  2–5

machine vision project,  426–27

MADALINE (many ADALINE),  93–94

Madison, James,  120–21

magnetization of materials,  245–46

Malik, Jitendra,  400

margin rule,  220

Mark I Perceptron,  18–19,  20,  24–25

masked auto-encoder (MAE),  404

mathematics, building learning machines with,  2–4. See also  calculus; 
linear algebra



matrix-vector multiplication,  182–85

max pooling,  369–70

maximum a posteriori (MAP) estimation,  118–19,  142

maximum likelihood estimation (MLE),  117–18,  141

McCarthy, John,  65

McCulloch, Taffy,  14

McCulloch, Warren,  13

McCulloch-Pitts (MCP) model,  15–17,  20–21,  250,  251

mean absolute error (MAE),  83

mean of the distribution,  110

mean square algorithm,  311–12

mean squared error (MSE),  67,  83,  313–14

measure theory,  166

mechanical space explorers,  1

mesa phenomenon,  310

method of gradient descent. See  method of steepest descent

method of steepest descent,  67,  68–72,  85

Mézard, Marc,  225

Microsoft,  376–77

Minerva,  412–14,  419. See also  large language models (LLMs)



Minsky, Marvin,  48,  65,  250–51,  309–10. See also  XOR problem

Minsky-Papert proof,  302

Mnih, volodymyr,  376

Modified National Institute of Standards and Technology (MNIST)
dataset,  238,  263,  375,  392–93

modulo-97,  382–83,  409–11

Monty Hall dilemma,  95–98,  101–4

Mosteller, Frederick,  120–24

multi-layer neural networks,  55–56,  251,  271,  278,  305–7,  335–37,  358

multi-variate calculus,  75–76

N

Nagy, George,  18–19,  20,  47,  55,  304

naïve Bayes classifier,  138,  142,  157–58,  204

NCR Corporation,  373–74

nearest neighbor rule,  152,  155–61,  164–65,  167–69

neocognitron,  355–56

“Neocognitron” (Fukushima),  355

neural network-based image recognition systems,  354

neural networks. See  deep neural networks

Neural Networks (Rojas),  272



New York Times, The,  1–2

Newton, Isaac,  2,  28

Newton’s Second Law of Motion,  28,  29–30

Neyshabur, Behnam,  392,  394

NHK Science and Technology Research Laboratories,  354

Nielsen, Michael,  287

non-deterministic procedures,  307

nonlinear boundaries,  143,  158–62,  226,  231,  237,  386–87

nonlinear model,  385,  388,  391

nonlinearity,  323–30,  339

nonparametric probability distributions,  116–17,  168

normal probability distributions,  111–14,  129

notation, description of,  283

O

objective function,  358

off-diagonal elements,  191–93

OpenAI,  5,  382–83,  408,  410,  422–23

optimal margin classifier,  220–24,  225–26,  239–40

optimization theory,  56



overfitting,  160–62,  358,  389,  396,  399

P

padding,  365

Papert, Seymour,  48,  250–51,  356. See also  Minsky-Papert proof;  XOR
problem

parameters, description of,  397

partial derivatives,  315,  329–33,  345,  359. See also  derivative of a
function

PASCAL Visual Object Classes Challenge 2010,  378

Pathways Language Model (PaLM),  412,  419. See also  large language
models (LLMs)

pattern analysis, statistical modeling, and computational learning
(PASCAL) for visual object classes (VOC),  400–401

pattern matching,  414,  420,  428

pattern recognition

animal behavior and,  7–8

Guyon and,  224

hidden in data,  8–11

ImageNet,  377–79

linear relationships in,  10–11

nearest neighbor rule,  152,  155–57



neocognitron,  355–56

similarity/dissimilarity,  8,  152

social behavior,  7

as stable,  261–62

vectors and,  153–55

Peierls, Rudolf Ernst,  246–47

Pelillo, Marcello,  150,  151

penguin study

Adélie penguins,  126–29

Bayes optimal classifier,  132–33,  134,  164–66

comparing Adélie and Chinstrap penguins,  133–35

continuous distribution,  127–29

correlation among attributes,  124–25

data for,  125–26

estimating probability distribution,  135–36

Gentoo penguins,  129–33

nearest neighbor rule,  164–65,  167–69

normal distribution,  129

probability density function (PDF),  136–39

perceptron update rule,  57–58



perceptrons

as augmented McCulloch-Pitts neuron,  20

Block’s proof,  47–49

computations carried out by,  21

convergence proof for,  48–54,  58–63,  93

equation of,  37,  46

establishing bounds for,  53–54

invention of,  1

learning from its mistakes,  23

learning weights from data,  17,  21–22

limitations to,  281–84

linearly separating hyperplanes and,  250–51

making predictions,  23–24

modeled after human neurons,  13

multi-layer (See  multi-layer neural networks)

multiple layers of,  55–56

naïve Bayes classifier,  157–58

output of,  45

Rosenblatt’s inventing of,  8–9

as self-learning,  21–23



shorthand notation for,  44–47

single-layer (See  single-layer neural networks)

task of,  46–47

vectors and,  36–44

Perceptrons (Minsky and Papert),  48,  53,  54

“pi” symbol,  138

Piaget, Jean,  356–57,  428

Pitts, Walter,  13–14

Poggio, Tomaso,  231

polynomial kernel,  231–34

Power, Alethea,  383–84,  408,  410,  411

power rule,  315

power spectral density,  201–2

prediction errors,  24,  42,  204–5

Prewitt kernels,  364–65

Price, Richard,  99

principal component analysis (PCA)

anesthesia and,  200–205

Iris dataset example,  196–99

overview,  177–80



usefulness of,  175,  194

prior probability distribution,  118–19

probabilities

Bayes’ theorem,  99–101

Bernoulli distribution,  105–8,  114,  141

coin toss,  105–7

discrete distribution,  108–11

expected value,  109–10

experiments for,  105

frequentist notion of,  97–98

Gaussian distribution,  117–19

maximum likelihood estimation (MLE),  117–18,  141

Monty Hall dilemma,  95–98,  101–4

nonparametric distributions,  116–17,  168

normal distribution,  111–14

penguin study (See  penguin study)

perceptron algorithm and,  104–5

prior distribution,  118–19

sampling,  107–11

underlying distribution,  108,  115–17,  123,  141,  163



probability density function (PDF),  112–13,  136–39

probability mass function (PMF),  107–8,  112–13,  138–39

Proceedings of the National Academy of Sciences (PNAS),  270–71

proof by contradiction,  300–301

ProPublica,  421

Python, programming in,  184

Q

quaternions, defined,  26–27

R

radial basis function (RBF) kernel,  236–41

Rashevsky, Nicolas,  14

R-CNN approach,  401–2

receptive fields,  349,  366–67

Recht, Ben,  394–95

recurrent neural networks,  398

regression,  12,  384–86

regularizer,  358,  399

reinforcement learning using human feedback (RLHF),  423

repetitions and rephrasing, as learning concept,  6



retinal ganglion cells (RGCs),  349–52

Rochester, Nathaniel,  65

Rojas, Raul, Neural Networks,  272

Rosenblatt, Frank,  1,  8–9,  18–20,  24–25,  304–7. See also  perceptrons

rotational invariance,  352

Royal Society,  99

Rozonoer, L. I.,  225–27

Rumelhart, David E.,  56,  278,  307–8,  338,  341

S

Sabin, Manuel,  54

saddle point,  74–75

Salakhutdinov, Ruslan,  395

scalars, description of,  27

scale invariant feature transforms (SIFTs),  378

Schmidhuber, Jürgen,  311,  375,  398

Schölkopf, Bernhard,  239,  241

Science in Action, “Computers that Learn,”  94

Selfridge, Oliver,  309–10

self-supervised learning,  335,  400,  402–4,  412–14. See also  supervised
learning;  unsupervised learning



separating hyperplanes,  206–7

sexism in large language models,  422–24

Shannon, Claude,  65

Shoulders, Ken,  65

“sigma” symbol,  138

sigmoid activation function,  288–91,  326–27,  329,  341–42,  399

similarity/dissimilarity,  8,  152

Simons Institute for the Theory of Computing,  395,  422

single-layer neural networks

equations for,  280–81

example of,  21–24

hidden layer of neurons,  281–84

as ineffective,  251

limitations to,  54–55

with no hidden layer,  279–81

solving XOR problem with,  327–29

Smola, Alex,  241

Snow, John,  144–46

soft-margin classifier,  239

softmax function,  418



Solla, Sara,  238

solution, defined,  47

spatial invariance,  351–52

Srebro, Nathan,  392

standard deviation,  110–11

standard learning theory,  395,  396

Stark, Philip,  111

statistical learning theory,  114,  394–95

steepest descent method,  67,  68–72

stochastic gradient descent (SGD),  85,  86,  394,  408

stride,  365

Strohmer, Thomas,  172

stylometry,  124

succinylcholine,  347

supervised learning,  9–12,  114,  140–41,  399–400. See also  unsupervised
learning

support vector machine (SVM),  239–41,  374,  378

support vector network,  239

Sutherland, Stuart,  340

Sutskever, Ilya,  4–5,  375,  377,  378–79



symbolic AI (artificial intelligence),  303–4,  310

T

theoretical probability of an event,  107

theory of mind,  415–20,  428

Thompson, Silvanus P.,  70

threshold activation function,  287,  326–27,  337

Tinbergen, Nikolaas,  7

Tobermory,  18

Tomioka, Ryota,  392

toy example,  171

Toyota Technological Institute,  392

training data,  12

training risk,  391

transfer RNA (tRNA),  242

transformer,  408–9

translational invariance,  351–52

transpose of a matrix,  43

two-dimensional vectors,  37,  216,  411



U

underfitting,  389

underlying probability distributions,  108,  115–17,  123,  141,  163

unit circle,  172

unit vectors,  34–35

universal approximation theorem,  271,  279

unsupervised learning,  199–200,  399–400

upper bounds,  54

U.S. Air Force School of Aviation Medicine,  155

U.S. Office of Naval Research,  1

V

Van der Laken, Paul,  98

Vapnik, Vladimir,  206,  223,  240. See also  optimal margin classifier

Vapnik-Chervonenkis (VC) dimension,  240

variance,  389. See also  bias-variance trade-off

Vázsonyi, Andrew,  97

V-dimensional vectors,  418

vector addition,  28–29

vector analysis,  31–33

vector maps,  376



vector space,  300

vectors

in 11-dimensional space,  297–98

defined,  180

description of,  27–31

dot products,  33–36

in 5D space,  136–37

as form of matrices,  42–44

functions as,  297–301

mathematical manipulation of,  31–33

matrices and,  185–88

multiplication of,  182–85

orthogonal,  35–36

outer product of,  259–60

partial derivatives and,  76–77

perceptrons represented as,  36–44

preserving dimensionality of,  183

representing,  32,  181

shadow cast in,  33–34

square brackets in, use of,  45



two-dimensional,  37,  216,  411

ventral visual stream of macaques,  427

visual cortex, mapping of,  346–48

visual fields,  348–52

visual perception,  150–52

Voronoi, Georgy,  146

Voronoi cell,  146

Voronoi diagram,  146–49

Vos Savant, Marilyn,  95–96

W

Wallace, David,  120,  121–23

Warmuth, Manfred,  238

Weinberger, Kilian,  57,  118,  237

Werbos, Paul,  311,  337

White Lion Street Free School,  308

Widrow, Bernard

ADALINE,  92–93

Dartmouth Summer Research Project on Artificial Intelligence,  78

digital filters and,  66–67



Hoff and,  64

least mean squares (LMS) algorithm,  64–65,  86–92

MADALINE,  93–94

Wiener and,  66,  81

Widrow-Hoff algorithm,  309. See also  mean square algorithm

Wiener, Norbert,  48–49,  66–67,  81,  83–84

Wiesel, Torsten,  346–48,  368–69

Williams, Frederick,  121

Williams, Ronald J.,  56,  278,  307

Wolfram Alpha,  184,  185

Wonderful Adventures of Nils, The (Lagerlöf),  7

X

XOR problem,  54–55,  302,  304,  323–25,  327–29

Y

Yamins, Daniel,  426–27

Z

Zak, Steven,  347

Zhang, Chiyuam,  394



A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X
Y  Z



About the Author

Anil Ananthaswamy is an award-winning science writer and former staff
writer and deputy news editor for New Scientist. He is the author of several
popular science books, including The Man Who Wasn’t There, which was
longlisted for the PEN/E.O. Wilson Literary Science Writing Award. He
was a 2019–20 MIT Knight Science Journalism Fellow and the recipient of
the Distinguished Alum Award, the highest award given by IIT Madras to
its graduates, for his contributions to science writing.



What’s next on
your reading list?

Discover your next
great read!

 
Get personalized book picks and up-to-date news about this

author.

Sign up now.

http://links.penguinrandomhouse.com/type/prhebooklanding/isbn/9780593185759/display/1
http://links.penguinrandomhouse.com/type/prhebooklanding/isbn/9780593185759/display/2

	Cover
	Also by Anil Ananthaswamy
	Title Page
	Copyright
	Contents
	Dedication
	Author’s Note
	Prologue
	Chapter 1: Desperately Seeking Patterns
	Chapter 2: We Are All Just Numbers Here…
	Chapter 3: The Bottom of the Bowl
	Chapter 4: In All Probability
	Chapter 5: Birds of a Feather
	Chapter 6: There’s Magic in Them Matrices
	Chapter 7: The Great Kernel Rope Trick
	Chapter 8: With a Little Help from Physics
	Chapter 9: The Man Who Set Back Deep Learning (Not Really)
	Chapter 10: The Algorithm That Put Paid to a Persistent Myth
	Chapter 11: The Eyes of a Machine
	Chapter 12: Terra Incognita
	Epilogue
	Acknowledgments
	Notes
	Index
	About the Author

