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ARTICLE INFO ABSTRACT

Keywords: Weighted First Order Model Counting (WFOMC) is fundamental to probabilistic inference in
Lifted infe_rence ) ) statistical relational learning models. As WFOMC is known to be intractable in general (#P-
Enumerative combinatorics complete), logical fragments that admit polynomial time WFOMC are of significant interest. Such

Weighted model counting

X . fragments are called domain liftable. Recent works have shown that the two-variable fragment
First order logic

Directed acyclic graphs of first order logic extended with counting quantifiers (C?) is domain-liftable. However, many

Connected graphs properties of real-world data, like acyclicity in citation networks and connectivity in social networks,

Counting quantifiers cannot be modeled in C?, or first order logic in general. In this work, we expand the domain

Statistical relational learning liftability of C?> with multiple such properties. We show that any C? sentence remains domain
liftable when one of its relations is restricted to represent a directed acyclic graph, a connected
graph, a tree (resp. a directed tree) or a forest (resp. a directed forest). All our results rely on a
novel and general methodology of counting by splitting. Besides their application to probabilistic
inference, our results provide a general framework for counting combinatorial structures. We
expand a vast array of previous results in discrete mathematics literature on directed acyclic
graphs, phylogenetic networks, etc.

1. Introduction

Statistical Relational Learning (SRL) [1,2] is concerned with modeling, learning and inferring over relational data. Probabilistic
inference and learning in SRL models like Markov Logic Networks (MLN) [3] and Probabilistic Logic Programs (PLP) [4] can be
reduced to instances of Weighted First Order Model Counting (WFOMC) [5,6]. WFOMC is the task of computing the weighted sum of
the models of a First Order Logic (FOL) sentence @ over a finite domain of size n. Formally,

WFOMC(®,W,n) = Z W(w) 1)
wkD
where W is a weight function that associates a real number to each interpretation w. Fragments of FOL that admit polynomial time
WFOMC w.r.t the domain cardinality n are known as domain-liftable [7] or equivalently are said to admit lifted-inference. Recent
works have also explored WFOMC as a tool for dealing with combinatorics, providing closed form formulae for counting combinatorial
structures [8-11] and identifying novel combinatorial sequences [12,13]. This generality of WFOMC applications has led to significant
interest in FOL fragments that are domain liftable [14-16].
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A series of results [8,5] have led to a rather clear picture of domain-liftability in the two-variable fragment of FOL. Especially,
these results have shown that any FOL formula in the two-variable fragment is domain-liftable [8]. These positive results are also
accompanied by intractability results [8,17], showing that there is an FOL formula in the three-variable fragment whose (W)FOMC
can not be computed in polynomial time. Hence, a significant effort has been made towards expanding the domain-liftability of
the two-variable fragment of FOL with additional constraints [9,18,11,19,20]. However, many features of real-world data are still
not captured in these domain-liftable fragments. Among such constraints are acyclicity and connectivity. Both of them are ubiquitous
features of real-world data [21,22], and have been investigated extensively in combinatorics literature [23-25]. Therefore, extending
domain-liftable fragments of FOL with these constraints is of both theoretical and practical interest. However, both acyclicity and
connectivity cannot be expressed in FOL [26]. Formally, this means that there is no FOL sentence with fixed number of variables or
quantifiers, that can express that a graph is acyclic or connected for arbitrary number of nodes.

In this work, we introduce a general principle of counting by splitting for relational structures (Section 4). The principle is based on
the simple observation that any interpretation preserves the satisfaction of universally quantified FOL sentences when projected onto
a subset of the domain (Proposition 1). Conversely, interpretations of a given universally quantified FO? sentence ® over disjoint
sets of domain constants can be expanded (in different ways) to a new interpretation on the union of the sets, such that ® and some
additional desired properties are satisfied (as evidenced in Lemma 1 and 2). Using counting by splitting with existing combinatorial
approaches, we expand the domain-liftability of the universally quantified formulas in the two-variable fragment of FOL (FO2) with
directed acyclicity (Section 5) and connectivity constraints (Section 6). Formally, we show that a purely universally quantified FO?
sentence, with a distinguished predicate restricted to represent a directed acyclic graph or a connected graph, is domain-liftable.
We expand these results to full FO?, extended with cardindlity constraints, and counting quantifiers (C2), using existing techniques in
the literature [5,18]. The combination of directed acyclicity, connectivity, and counting quantifiers, allow easy extension of domain-
liftability of C2, with tree, directed tree and directed forest constraints (Section 7). Finally, forest constraints are obtained by using
tree constraints, and counting by splitting.

Besides its applications to SRL, our work provides a formal language in which any expressed constraint can be counted tractably,
offering a valuable tool for solving problems in enumerative combinatorics [27]. Most algorithms in this field are devised on a
case-by-case basis, almost independently for each problem. In contrast, WFOMC with graph-theoretical constraints offers a general
framework: with it, the main task reduces to formulating a logical expression for each problem — something that is significantly
easier than devising individual counting algorithms. We illustrate this point with multiple examples of problems investigated in the
combinatorics literature that can be easily expressed as the WFOMC of C2 formulas with the presented constraints. To the best of our
knowledge, we show for the first time that the number of binary phylogenetic networks on n nodes can be counted in polynomial time
w.r.t the number of nodes (see Example 7).

Before presenting our main results (Sections 4-7), we briefly survey the existing related work in Section 2, and provide the
necessary background in Section 3. Finally, in Section 8, we empirically investigate the efficiency and scalability of WFOMC with
graph-theoretical constraints as a combinatorial framework, and investigate the increase in expressivity of MLNs with the presented
constraints.

2. Related work

WFOMC was initially formalized in [6] and [14] for its applications to SRL frameworks like MLNs [3] and PLPs [4]. Initial
works in WFOMC generalized knowledge compilation techniques to FOL theories, providing an algorithm for Symmetric-WFOMC over
universally quantified FOL theories. The formal definition of lifted inference as FOL theories admitting polynomial time weighted
model counting w.r.t the domain cardinality was provided in [7]. This created a deep connection between the investigation of
efficient probabilistic inference algorithms and the theoretical analysis of WFOMC. A significant advance in WFOMC techniques came
in the form of a WFOMC-preserving skolemization procedure [5], which allowed for the complete two-variable fragment to admit
polynomial time WFOMC. These works were followed by extensive complexity analysis of WFOMC [8], providing a closed-form
formula for WFOMC in the universally quantified fragment of FO2. However, these results also showed that in the three-variable
fragment of FOL there is a formula whose WFOMC cannot be computed in polynomial time, demonstrating that WFOMC is #P, -
complete in general. This led to significant interest in expanding domain liftable fragments in other directions, for instance by adding
functionality constraints [9] (i.e., a relation in the language is a function). A major expansion in domain-liftable fragments came in the
form of domain-liftability of G2 [18,11]. Recent results have focused on expanding the expressivity of G2 with additional constraints
like the linear order axiom [19] and tree axiom [20]. The approaches proposed in this paper — which proves domain-liftability of FO?
extended with acyclicity, connectivity, forests and trees constraints — are most closely related to [8,11,10]. We also exploit the results
from [18] (especially for dealing with cardinality constraints) to expand our results to C2. Our work is also related to recent results
that expand WFOMC of C? with Tree axiom [20]. However, the techniques introduced in this paper are different and more general
than the ones used in [20]. This is because we are able to obtain trees as an instance of connected graphs with n — 1 edges, which can
be simply encoded in cardinality constraints. Finally, our work also draws significantly from combinatorics literature on DAGs [24],
connected graphs [28] and forests [25]. And it provides a new resource for tackling other problems of interest in combinatorics, like
the enumeration of phylogenetic networks [29-31].
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3. Background

This section overviews basic notation, assumptions and aspects of FOL and WFOMC, revisiting and reformulating existing works
— as relevant to our results — on WFOMC in FO? and C2. Additional necessary background is provided at the beginning of each
section.

3.1. Basic notation

We use [n] to denote the set of integers {1,...,n}. Whenever the set of integers [n] is obvious from the context and m € [n] we
will use [m] to represent the set {m+ 1,...,n}. Bold font letters (e.g. k) are used to denote integer vectors, and corresponding regular
font letters (with an additional index) for the components of the vectors (e.g. k;). Hence, we use k = (ky,...,k,) to denote a vector of
u non-negative integers. Given an integer vector k, we use |k| to denote Zie[u] k;, i.e. the sum of all the components of k. We will
also use the multinomial coefficients denoted by

( 17 >=<|k|> Ikl
Ky ek, k icu k!

When summing two vectors k' = (K|, ...k, and K" =(k!,...,k!"), we always intend element-wise sum, i.e., k' + k" = (K K K+
k”).
u

3.2. First-order logic

We assume a function-free FOL language L defined by a set of variables V and a set of relational symbols R. We write R/k
to denote that the relational symbol R has arity k. For (x,...,x;) € V¥ and R/k € R, we call R(xy,...,x;) an atom. A literal is an
atom or its negation. A formula is formed by connecting atoms with boolean operators (=, Vv and A) and quantifiers of the form 3x;.
(existential quantification) and Vx;. (universal quantification), using FOL syntax rules. The free variables of a formula are those that
are not bound by a quantifier. We write ®(x, ... x;) to denote a formula whose free variables are {x,,...,x; }. An FOL formula with
no free-variables is called a sentence. Hence, a sentence is denoted by a capital Greek letter (e.g. ). The sentences in L are interpreted
over a set of constants called the domain. The set of ground atoms (resp. ground literals) are obtained by replacing all the variables
in the atoms (resp. literals) of £ with domain constants. Hence, given a predicate R/k, and a domain A of size n, we have n* ground
atoms of the form R(ay,...,a;), where (a; ...aq;) € A¥. An interpretation w, on a finite domain A, is a truth assignment to all the
ground atoms. We assume Herbrand semantics [32], hence w is an interpretation or a model of ¥ if w E ¥ under Herbrand semantics.
Given a literal (resp. ground literal) /, we use pred(l) to denote the relational symbol in /. For a subset A’ of the domain A, we use
| A’ to denote the partial interpretation induced on A’. Hence, w | A’ is an interpretation over the ground atoms containing only
the domain elements in A’. Finally, we use wp to represent the partial interpretation of w restricted to the relation R. When R is
binary, wy can be seen as a directed graph in which there is an edge from a domain element ¢ to a domain element d whenever
o E R(c,d). We can also restrict wg to undirected graphs by axiomatizing R to be anti-reflexive and symmetric, by adding the axiom
Vx.7R(x,x) AVxy.R(x,y) = R(y, x).

Example 1. Let us have a language with only the two relational symbols R and B, both of arity 2. We represent an interpretation w
as a multi-relational directed graph, where a pair of domain elements (c,d) has a red (resp. blue) directed edge from c to d if and
only if R(c,d) (resp. B(c,d)) is true in w. (For interpretation of the references to color please refer to the web version of this article.)
Let us take for example the following interpretation @ on A = [4]:

O 'e ®

Then, o’ =w | [2] and 0" = w | [2] are given respectively as

D@ = D0

On the other hand, wy, is obtained by projecting on the predicate R and is given as
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We will also exploit the following proposition about purely universally quantified FOL sentences.

Proposition 1. Let ¥ be a first order logic sentence such that ¥ is of the form Vx.®(x), where x = x1, ..., x; represents the free variables in
®(x), and ®(x) is quantifier-free. If w is an interpretation over a domain A, and w kP, then w | A’ £ ¥ for all A’ C A.

Proof. Under Herbrand semantics, w F Vx.®(x) can be equivalently written as w F /\ce Ak @(c). Hence, o F /\CE ark ®(0), for any
A’ C A. Now, w | A’ is the truth assignment to all the atoms on the domain A’. Hence, w | A" E A cax P(c). Therefore, w | A’ F
Vx.®(x). [

Proposition 1 allows us to split an interpretation over disjoint subsets of the domain while preserving satisfaction of a universally
quantified FOL sentence. We will also deal with expanding interpretations from two disjoint subsets of the domain. Given disjoint
sets of domain constants A’ and A”, we use A=A’y A” to denote the fact that A is the union of the two disjoint sets. If @’ is an
interpretation on A’ and " is an interpretation on A", then we use @’ ¥ @'’ to denote the partial interpretation on A’ ¢ A” obtained
by interpreting the ground atoms over A’ as they are interpreted in @’ and the ground atoms over A" as they are interpreted in ©”.
The ground atoms involving domain constants from both A’ and A" are left un-interpreted in @’ & @’’. We illustrate this point in the
following:

Example 2. Let us have an FOL language with only one relational symbol R, of arity 2. Let A =[3], A’ =[2] and A” =[2] = {3}. We
represent an interpretation w as a directed graph where each pair (¢, d) of domain elements has a red edge from c to d if and only if

R(c,d) is true in w. Let us have the following two interpretations @’ and »’”” on the domains [2] and [2], respectively:

OO = O

0{ a{l

We now create a partial interpretation o’ @ @'’ as follows:
1

“‘.------q...
.

.

e

o R bbbt
» %

The gray dotted lines .... represent the fact that R(1,3), R(3,1), R(2,3) and R(3,2) are not interpreted in o’ & »’”’. A possible
extension of @’ W'’ is given as

O—0O

where R(2,3) is interpreted to be true and R(1,3), R(3,1) and R(3,2) are interpreted to be false. We can see that o’ & '’ can be
extended in 2* ways.

3.2.1. FO? and its extensions

FO? is the fragment of FOL with only two variables. An extension of FO? is obtained by introducing counting quantifiers of the
form 3= (there exist exactly k), 32k (there exist at least k) and 3=¥ (there exist at most k). This extended fragment is denoted by c?
[33]. Cardinality constraints are constraints on the cardinality of predicates in an interpretation [18]. For example, w E ® A (|R| > 5)
iff  F ® and the sum of the ground atoms in w, with the predicate R, that are interpreted to be true is at least 5.

3.2.2. Types and tables
We will use the notion of 1-types, 2-type, and 2-tables as presented in [9,34]. A 1-type is a maximally consistent conjunction of
literals containing only one variable. For example, in a language with only the relational symbols U /1 and R/2, both U(x) A R(x, x)
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and U(x) A 7R(x, x) are examples of 1-types with variable x. A 2-table is a maximally consistent conjunction of literals containing
exactly two distinct variables. Extending the previous example, both R(x,y) A "R(y,x) A (x # y) and R(x,y) A R(y,x) A (x # y) are
instances of 2-tables. We assume an arbitrary order on the 1-types and 2-tables. Hence, we use i(x) (resp. i(y)) to denote the i"# 1-type
with variable x (resp. with variable y), and /(x, y) to denote the [ 2-table. A 2-type is a formula of the form i(x) A j(y) A [(x, ), and
we use ijl(x, ) to represent it. In a given interpretation w, we say that a domain constant ¢ realizes the " 1-type if  F i(c), that a
pair of domain constants (c,d) realizes the I"h 2-table if w F I(c,d) and that (c, d) realizes the 2-type ijl(x,y) if oFijl(c,d). We will
use u to denote the number of 1-types and b to denote the number of 2-tables in a given FOL language. For instance, in the language
with the relational symbols U /1 and R/2, we have that u =22 and b = 22.

Definition 1 (I-type Cardinality Vector). An interpretation w is said to have the 1-type cardinality vector k = (k,,...,k,) if for all
i € [u], it has k; domain elements ¢ such that w F i(c), where i(x) is the i" 1-type. If @ has 1-type cardinality vector k, then we say
that w E k.

Notice that in a given interpretation @ each domain element realizes exactly one 1-type. Hence, given a 1-type cardinality vector
k, |k| is equal to the domain cardinality. Furthermore, for a given k and a fixed pair of 1-types i and j, where i < j, there are k;k;
pairs of domain constants (c,d) such that w F i(c) A j(d). Similarly, for a given k and a 1-type i, there are (kZ’) unordered pairs of
distinct domain constants (c, d) such that w E i(¢) A i(d).

3.3. Weighted first order model counting

In WFOMC as defined in equation (1), we assume that the weight function w does not depend on individual domain constants,
which implies that w assigns the same weight to two interpretations which are isomorphic under a permutation of domain elements.
Hence, for a domain A of size n we can equivalently use [n] as our domain. Furthermore, as common in literature, we will focus on
a special class of weight functions, namely symmetric weight functions, defined as follows:

Definition 2 (Symmetric Weight Function). Let G be the set of all ground atoms and R the set of all relational symbols in a given FOL
language. A symmetric weight function associates two real-valued weights, w : R — R and w : R — R, to each relational symbol in
the language. The weight of an interpretation w is then defined as follows:

w(w) := [ wpred@) [] @(pred(g). @
set po

We use (w, t0) to denote a symmetric weight function.

Many techniques [5,18,11] for WFOMC of a sentence ® require WFOMC-preserving reductions. That is, constructing another
sentence ®’ and a new weight function (w', ") such that

WFOMC(®, (w, i0), n) = wroMc(d', (w', '), n).

A key property desired from a WFOMC-preserving reduction is that adding new formulas to it should not invalidate the reduction.
Reductions satisfying this requirement are called modular. We formalize this in the following definition:

Definition 3. [5] A reduction (®, w, ) to (®',w’, '), where ® and @' are two sentences and (w, w) and (w', ') are two weight
functions, is modular if

WFOMC(®P A A, (w, D), n) = WEOMC(®' A A, (W', '), n) 3)

for any sentence A.

Intuitively, modular reductions are sound under the presence of another sentence A, and any new sentence A does not invalidate
a modular reduction.

For the rest of the paper, whenever referring to weights, we intend symmetric weights. Hence, we denote wroMc(®, (w, w), n)
without explicitly mentioning the weights, i.e. as WFOMC(®, n). We will often compute the WFOMC of interpretations with a fixed
1-type cardinality vector, and with a slight abuse of notation denote it as WFoOMC(®, k). Formally,

WFOMC(®D, k) := Z wW(w) 4
wFDAk

3.3.1. WFOMC in FO?
We revisit WFOMC for universally quantified FO? formulas, i.e. formulas of the form Vxy.®(x, y), where ®(x, y) is quantifier-free.
We define ®({x, y}) as
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D(x, x) A DP(x, ) AP, x) AD(y, ») A (X #y)
We also define the notion of consistent 2-types as follows:

Definition 4. Given an FO? sentence Vxy.®(x,y), where ®(x, y) is quantifier-free, we say that a 2-type ijl(x,y) is consistent with
Vxy.®(x,y) if

ijl(x, y) E®({x,y}) (5)

Note that the entailment in equation (5) is checked by assuming a propositional language consisting of only the (constant free)
atoms in the FO? language.

Example 3. Let ®(x,y) := (A(x) A R(x,y)) = A(y). The following is an example of a consistent 2-type for the sentence Vxy.®(x, y):

7(x,y) 1= 7AX) A R(x,X) A~AY) A R(y, ) AR, y) ARy, X) A (X # y)

A key idea in analyzing domain-liftability of universally quantified FO? formula is that a pair of domain constants (c,d) in an
interpretation w F Vxy.®(x, y) can realize a 2-type ijl(c,d) only if the 2-type is consistent with the formula Vxy.®(x, y), i.e. only if
ijl(x,y) F ®({x,y}). We formalize this intuition in the following proposition.

Proposition 2. Let Vxy.®(x, y) be an FO? sentence where ®(x, y) is quantifier-free. Then, w £ Vxy.®(x, y) iff for any pair of distinct domain
constants (c,d), such that w k ijl(c,d), we have that ijl(x, y) is consistent with Vxy.®(x, y), i.e. ijl(x,y) E ®({x,y}).

Proof. If w F Vxy.®(x,y)and wF ijl(c,d), then w F Vxy.®(x,y) Aijl(c,d). Now, ijl(c,d) is a complete truth assignment to the ground
atoms containing only the domain constants ¢ or d or both. Hence, @ F Vxy.®(x, y) A ijl(c,d) only if ijl(c,d) E ®({c,d}), i.e. only if
ijl(x,y) F ®({x,y}). On the other hand, let @ be such that all pair of domain constants realize only the 2-types ij/(x, y) consistent
with Vxy.®(x, y). It means that w E ®({c,d}) for all the pairs of domain constants (c,d). Hence, w £ Vxy.®(x,y). []

To facilitate the treatment of WFOMC, we will now introduce some weight parameters associated with an FO? language. Consider
an FO? language £ with symmetric weight function (w, (o), and let T denote the set of atoms in £ that contain only variables. We
define the following weight parameters associated with each 1-type i(x) and 2-table /(x, y):

w; = [] wipred(e) [] wipred(e) ®)
i(x)Eg i(x)F-g
g€l g€l
and
o= [] wreden [] @pred(e) )
I(x.y)Fg 1(x,y)F~g
gel g€l

We now present an analytical formula for WFOMC of FO? sentences of the form Vxy.®(x, y) where ®(x, y) is quantifier-free. Qur
presentation is based on the treatment proposed in [8].

Theorem 1 (reformulated from [8]). Given an FO? sentence Vxy.®(x,y) where ®(x,y) is quantifier-free, let us define, for any pair of
1-types (i, j), the quantity = E,G[b] R0 with nji being 1 if ijl(x,y) F ®({x,y}) and O otherwise. Then, the weighted model count of
Vxy.®(x, y) with 1-types cardinality vector k is given as follows:

k.

i k(i.j)
w; H r J (€)]

WFOMC(Vxy.®(x, y), k) = <|’; |> 11

i€lu] i<j€lul
where k(i, j) is defined as
N I
kG, j) = 2 .
kik; otherwise

Proof. Ina 1-type cardinality vector k, and k; represents the number of domain constants that realize the 1-type i. Since any domain
constant realizes one and only one 1-type in any given interpretation, there are exactly (I:I) ways of assigning 1-types to |k| domain
constants. Suppose that a domain constant ¢ realizes the i 1-type for an interpretation w  k; then i(c) contributes to the weight of

the interpretation with the weight w;, multiplicatively. Therefore, the contribution due to 1-type realizations is given by Hie[u] w”."'

for any interpretation w F k. Summing over all such interpretations gives us the factor of (':') Hie[u] wl’.c".
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Now consider an interpretation w and a pair of distinct domain constants (c,d) such that w E i(c) A j(d). Using Proposition 2,
we know that (c,d) realizes the 2-table I(c,d) if and only if ijl(x,y) F ®({x,y}). Therefore, in an arbitrary interpretation w, the
multiplicative weight contribution due to the realization of the 1" 2-table by a pair of constants (c,d) such that o F i(c) A j(d) is
given by n;;,v;. Also, each ordered pair of constants can realize exactly one and only one 2-table. Hence, the sum of the weights of the
possible 2-table realizations of a pair of domain constants (c, d) such that i(c) and j(d) are true is given as r; ;= >un 11 Furthermore,
given the 1-type assignments i(c) and j(d), the ordered pair (c,d) can realize 2-tables independently of all other domain constants.
Since there are k(i, j) possible such pairs, the contribution given by the realization of 2-tables over all the interpretations w F k is

k(i.j)
[li<jera ry e O

Equation (8) can be computed in polynomial time w.r.t. the domain cardinality n, and there are only polynomially many k w.r.t.
n. Hence, WFOMC(Vxy.®(x, y), n), which is equal to

Z WFOMC(Vxy.®(x, y), k) )
|k|=n
can be computed in polynomial time w.r.t. domain size n. Furthermore, [5] shows that any FOL formula with existential quantification
can be modularly reduced to a WFOMC preserving universally quantified FO? formula, with additional new predicates and negative
weights. Hence, showing that FO? is domain-liftable.

Remark 1. Note that the number of distinct k in equation (9) can be super-exponentially many w.r.t the number of symbols in the
language. However, as common in domain-liftability literature, in this paper we are only concerned with computational complexity
of WFOMC w.r.t. the domain cardinality ».

3.3.2. WFOMC in G?
[11] and [18] show that WFOMC in C? can be reduced to WFOMC in FO? with cardinality constraints. The key result that leads
to domain liftability of C2, is the following:

Theorem 2. ([18], slightly reformulated) Let ® be a first-order logic sentence and let I" be an arbitrary cardinality constraint. Then,
WFOMC(D AT, k) can be computed in polynomial time with respect to the domain cardinality, relative to the WFOMC(®D, k) oracle.

In order to prove Theorem 2, the proof in [18] relies on polynomial interpolation. We provide an easier presentation of the proof
using Gauss-elimination based polynomial interpolation in the appendix.

Remark 2. In the proof presented in the appendix (and in [18]), the first-order definability of ® is never invoked. This property has
also been exploited for imposing cardinality constraints with tree axiom in [20].

Theorem 2 extends domain-liftability of any sentence ® to its domain-liftability with cardinality constraints. We now move to
domain-liftability in C2:

Theorem 3 ([18]). The fragment of first-order logic with two variables and counting quantifiers is domain-liftable.

The key idea behind Theorem 3 is that WFOMC of a C sentence @ can be converted to a problem of WFOMC of an FO? sentence
@’ with cardinality constraints I on an extended vocabulary with additional weights for the new predicates (the new predicates are
weighted 1 or -1). We refer the reader to [18] and [11] for the detailed treatment of Theorem 3. However, for our purposes it is
important to note that this transformation is modular. The modularity of the WFOMC procedure, as presented in [18], has also been
exploited to demonstrate domain-liftability of C? extended with Tree axiom [20] and Linear Order axiom [19].

4. Main approach: counting by splitting

As shown in Example 2, the possible ways of merging two interpretations @’ and ", on disjoint domains A’ and A”, can be
efficiently computed. Moreover, additional constraints can be imposed on the way the interpretations are merged. Such constraints,
for instance, may express statements like “for the binary predicate R, there is no R-edge going from A” to A’”. Formally, we express
this constraint as Vx € A’ Vy € A” =~ R(y, x).

Example 4. Among the 2* possible extensions of @’ @ @” in Example 2, the following 2? satisfy the additional constraint
Vx € [2]Vy € [2].7R(y, x):
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A key insight of the paper is that such merging can also be done for disjoint interpretations of a universally quantified FO? formula,
while preserving the satisfaction of such formula. This is formalized in the following lemma.

Lemma 1. Let ®(x, y) and O(x, y) be quantifier-free FO? formulas. Let o' and ' be interpretations satisfying Vxy.®(x, y) on two disjoint
domains A" and A" (respectively). We define r;; := Z,E[b] n;; vy, where n; is 1if ijl(x,y) F @({x, y}) A ©(x, y) and O otherwise, and v,
is defined in equation (7). Then, the sum of the weights of the extensions w of @' ¢ @'’ such that

* wFVxy.®(x,y)
s wkEVxe A Vye A”.O(x,y)

is given as
KK
wew") ] r, . (10)

i,j€lu]

/ " : i ;th ith ; / Z :
where k| and kj are the number of domain constants realizing the i'" and j'" 1-types in @' and " respectively.

Proof. In order to obtain an interpretation @ from o’ W', we only need to extend o’ W' with interpretations of the ground-atoms
containing pairs (c,d) € A’ x A”. For a given pair (c,d) € A’ x A", let i and j be the 1-types such that @’ F i(c) and o E j(d). Since
we want @ to be a model of Vxy.®(x, y), if w F I(c,d), then by Proposition 2 we must have that ij/(c,d) F ®({c,d}). Moreover, since
we want o to satisfy the condition Vx € A’ Vy € A” .O(x, y), we must have that ijl(c,d) F ©(c,d). Therefore, (c,d) can realize the /"
2-table if and only if n,;; = 1. The multiplicative weight contribution to the weight of a given extension w of ' w " due to (c,d)
realizing the /" 2-table is given as n, 1V Furthermore, (c, d) realizes the 2-tables mutually-exclusively. Also, the weight contribution
of the 2-table realizations of (c,d) only depends on the 1-types of ¢ and d and is independent of all other domain constants. Hence,
= ZIE[b] n;;v; is the multiplicative weight contribution given by the interpretation of all the possible ground atoms containing a
pair (c,d) € A’ x A” with c realizing the i’ 1-type in @ and j realizing the j 1-type in . Since there are k] domain elements ¢

realizing the i’ 1-type in ', and k;’ domain elements d realizing the j* 1-type in ', the weight contribution of the interpretation
i
i

of all the possible ground atoms containing a pair (c,d) € A’ x A" is given by ], jetu i)
two disjoint sets of ground atoms, their weights w(w’) and W(w'') contribute independently to each W(w). []

/. Furthermore, since o’ and '’ interpret

Lemma 1 provides us a method to compute the (weighted sum of the) number of ways to merge two FO? interpretations on two
disjoint domains. We will now use Lemma 1 to compute weighted model count of FO? formulas, where the models are restricted to
obey additional constraints (potentially inexpressible in FOL) on disjoint subsets of the domain.

Lemma 2 (Counting by Splitting). Let ®(x, y) and ©O(x, y) be quantifier-free FO? formulas. Let W' := Vxy.®(x,y) A axiom’ and ¥ :=
Vxy.®(x,y) A axiom”, where axiom’ and axiom’ denote arbitrary constraints — potentially inexpressible in first-order logic. Let [n] be the
domain, and let m < n be a natural number. Let ¥, denote the conjunction of the following four conditions on interpretations w:

Cl: w | [m] E axiom’

C2: w | [m] E axiom'

C3: wkVx e[m]Vye[m].O(,y)
C4: wEVxy.®(x,y)

Then, the weighted model count of the interpretations w satisfying both ‘Y|, and the cardinality vector k is given as:

11

! ! " " ki J
WFOMC(¥,,, k) = Z wroMc(¥', k" )ywromc(W", k") I I rij an
K +k" =k ij€lu]
[K'|=m
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Table 1

Axioms used for counting by splitting for different constraints.
Constraint axiom’ axiom” O(x,y)
DAG(R) Vxy.=R(x,y) DAG(R) “R(y,x)
Connected(R) Connected(R) T - R(x,y)
Forest(R) Tree(R) Forest(R) “R(x,y)

where rij = ZIE[b] 10, and njp is 1 if ijl(x,y) E ®({x,y}) AO(x,y) and 0 otherwise, and v, is as defined in equation (7).

Proof. Let wF ¥},,. Using condition C4 and Proposition 1, we have that @ | [m] F Vxy.®(x, y). Furthermore, using condition C1, we
have that w | [m] F axiom’. Hence, w | [m] F'¥’, and similarly w | [m] F ¥"'. The WFOMC of ¥’ on [m] with 1-type cardinality vector
k' is wroMc(¥, k'). Similarly, the WFOMC of ¥’ on [m] with 1-type cardinality vector k" is wroMc(¥”,k"’). For a given pair of
models o’ and " counted respectively in wroMc(¥’, k') and wroMc(¥, k"), the weighted sum of extensions w F ¥, is given by
equation (10), due to Lemma 1. Summing over extensions of all such possible pairs of @’ and w”, we get:
Kk
wroMc(¥', kK ywromc(P”, k) | H | r
i.jE€lu

(12)

Expression (12) gives us the WFOMC of the models  such that w F ¥, @ | [m] F k" and w | [] F k”. To compute the WFOMC of
the models  such that w F '¥|,,; A k, we have to sum expression (12) over all possible decompositions of the 1-type cardinality vector
k into k’ and k"', where |k'|=m. [

The techniques developed in this paper will use counting by splitting with different instantiations of axiom’, axiom” and ©(x, y).
Table 1 summarizes how we will instantiate them when providing the algorithms for WFOMC with DAG, connected graph and forest
constraints (as given respectively in Definitions 5, 8 and 13, and making use of Remarks 3, 4 and 8).

5. WFOMC with DAG axiom

A Directed Acyclic Graph (DAG) is a directed graph such that starting from an arbitrary node i and traversing an arbitrary path along
directed edges we would never arrive back at node i. We present a recursive formula based on the principle of inclusion-exclusion for
WFOMC of an FO? sentence, say @, where a special predicate, say R, is axiomatized to be a DAG, i.e. we count the models @ F ® such
that wy represents a DAG. We begin by revisiting the principle of inclusion-exclusion and the recursive formula for counting DAGs
on n nodes, as presented in [24]. We identify key observations that lead to the formula for counting DAGs and exploit analogous
ideas for WFOMC with the DAG axiom. We then expand the DAG axiom with source and sink constraints. Our results also shed a new
light on counting phylogenetic networks [29-31] — a widely investigated problem in combinatorics and mathematical biology.

5.1. Principle of inclusion-exclusion

Given a set of finite sets {A;};cp,, let Ay i=();c; A ; for any subset J C [n]. The principle of inclusion-exclusion (PIE) states that:

_ Z (_1)|J|+1‘AJ‘ 13)
P#J Cln]

jeJ
U4

If the cardinality of the intersections A; only depends on the cardinality of J, then the formula can be simplified. In this case, all
Ay’s with |J| = m have cardinality equal to |A[,,|. Since for any m € [n] there are (::.) sets Ay with |J| = m, equation (13) reduces
to:

[Ud=Z 0 ()

The principle of inclusion-exclusion can be easily extended to the case when the sets A; contain weighted FOL interpretations and
we want the weighted sum of all the interpretations in | J; A;. Indeed, if W(A;) denotes the weighted sum of all the interpretations in
A;, then the PIE reduces to:

W(UA,-): > =hH W) (15)
i #£Cln]

Analogously, when W(A ;) =W(A ) for all J, J’ with the same cardinality, then:

w( L[J 4,)= ,Z‘l(_l)'nﬂ <:1>W(A[m]) (16)
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Algorithm 1 Number of DAG on n nodes.

1: Input: n

2: Output: a,

3: A[0] « 1

4: fori=1tondo
5 Alil < E;;(l)(fl)km (;)2’('*’>A[l]
6: end for
7: return A[n]

5.2. Counting directed acyclic graphs

We now derive the formula for counting DAGs as presented in [24]. Without loss of generality, we assume the set of nodes to be
[n]. For each i € [n], let A; be the set of DAGs on [n] for which the node i has indegree zero. Since every DAG has at least one node
with indegree zero, we have that the total number of DAGs a,, is equal to | |J ieln] A;|. The set of DAGs such that all nodes in J C [n]
have indegree zero is given by A; 1= jes Aj- The cardinality of A; depends only on the cardinality of J, and not on the individual
elements in J. Hence, we can assume w.l.o.g that J = [m], where m = |J|. We now derive a method for computing |A[m]|. We make
the following key observations:

* Observation 1. If w € A[,,, then there are no edges between the nodes in [m], as otherwise a node in [m] will have a non-zero
indegree. In other words, only directed edges from [m] to [/m] or within [m] are allowed.

 Observation 2. If w € Apmps then the subgraph of w restricted to [], i.e. w | [m], is a DAG. And the subgraph of w restricted to
[m] is just an empty graph, i.e. the set of isolated nodes [m] with no edges between them.

+ Observation 3. Any DAG on [#] can be extended to 2"~ DAGs in A[y)- This is because DAGs in A[,, have no edges between
the nodes in [m]; they only have outgoing edges from [m] to []. For extending a given DAG on [] to a DAG in A[,,, we have
two choices for each pair of nodes in [m] X [m]: we can either draw an out-going edge from [m] to [m] or not. Hence, there are
2llmIXURl = pm(n=m) ways to extend a given DAG on [in] to a DAG in A,

The number of possible DAGs on [#] is a,,_,,. Due to Observation 3, we have that A4,,; has gmn-mg  DAGs obtained by extending
the DAGs on [m]. Furthermore, due to Observation 1 and Observation 2, these are all the possible DAGs in A[,,;. Hence, |A,,| =

omin=mg . Now we can repeat this argument for any m-sized subset of [n]: if |J| = |J| = m, then |A;| = |A /| =2"""™gq, _ . Using
the principle of inclusion-exclusion as given in equation (14), we have that:
n
a,= z(_])m+1 <n>2m(n—m)an_m a17)
m
m=1

Notice that, after replacing n — m with /, the equation becomes:

n—1
a,= Y (-1 (7) 2/(1=Dyg, (18)
=0

The change of variable allows us to write a bottom-up algorithm for counting DAGs, given in Algorithm 1. Based on this algorithm, it
can be seen that g, can be computed in polynomial time w.r.t n. Indeed, the for loop in line 4 runs » times, and in line 5 we compute
a; (and store it as A[i]) using equation (18), which requires only polynomially many operations in n.

5.3. WFOMC with DAG axiom

Definition 5. Let R be a binary predicate. We say that an interpretation w is a model of Acyclic(R), and write w F Acyclic(R), if wg
forms a DAG.

Remark 3. Our goal is to compute the WFOMC of ¥ :=Vxy.®(x, y) A Acyclic(R), where ®(x, y) is a quantifier-free FO? formula. By
definition, this entails that wy forms an antireflexive relation of R. Hence, we can assume without loss of generality that Vxy.®(x, y) F
Vx.mR(x, x).

W.l.o.g., we assume that the domain is [n]. We will now redefine ¥, for the purposes of WFOMC with DAG axiom.

Definition 6. Let ¥ :=Vxy.®(x, y) A Acyclic(R), where ®(x, y) is a quantifier-free FO? formula such that Vxy.®(x, y) E Vx.~R(x, x).
For any m < n, we say that an interpretation ® is a model of ¥ and write w k Y if w is a model of ¥ on [n] and the domain
elements [m] have indegree zero in wg.

It can be shown that ¥,,,) in Definition 6 corresponds to an instantiation of ¥,,; in Lemma 2, where we instantiate axiom’, axiom”
and O(x, y) as follows:

10
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» axiom’ :=Vxy.—R(x,y)
* axiom'" := Acyclic(R)
* O(x,y) :="R(y,x)

A formal proof of this correspondence is in the appendix (Lemma 3). With this specific instantiation of ¥[,,;, we can use Lemma 2
and get the following proposition.

Proposition 3. Let ¥ :=Vxy.®(x, y) A Acyclic(R) and ¥’ :=Vxy.®(x,y) A—R(x,y), where ®(x, y) is a quantifier-free FO? formula, such
that Vxy.®(x, y) E Vx.=R(x, x). Then:

11

WFOMC(P . k) = Z wroMmc(V', k' ywromc(P, k') H r (19)
Kk =k ij€lu
[K'|=m

where rij = > ;10 and njp is 1 if ijl(x,y) E®({x,y}) A= R(y,x) and O otherwise.

Similarly to equation (17), we can use WFOMC('¥[,,}, k) and the principle of inclusion-exclusion for computing the WFOMC for
Y :=Vxy.d(x,y) A Acyclic(R).

Proposition 4. Let ¥ := Vxy.®(x, y) A Acyclic(R), where ®(x, y) is a quantifier-free FO? formula, such that Vxy.®(x, y) E Vx.~R(x, x).
Then:
k| k|
wroMc(P, k) = Z(—l)"’“( >WF0MC(‘P[M],k) (20)
m

m=1

Proof. The proof idea is very similar to the case for counting DAGs as given in equation (17). W.l.o.g., we are assuming the domain
to be [n], so |k| = n. Let A; be the set of models @ of ¥, such that w has 1-type cardinality k and the domain element i has zero
R-indegree in wg. Since every DAG has at least one node with zero R-indegree, our goal is to compute W(U;¢(,,;A4;). For any J C [n],
let A; := ﬂjeJ A;. For any J and J' such that |J| = |J’|, we always have that |A;| = |A;|. Hence, using the principle of inclusion-
exclusion as given in equation (16), we have that:

k|
— _qym+1 [
wroMc(¥, k) = E( 1) <m>W(A[m]) 21D

m=1

Now, A, is the set of models such that domain elements in [m] have zero R-indegree. Hence, W(A[,,)) = WFOMC(¥,,, k). []

We make a change of variable in equation (20) — similar to the one from (17) to (18) — by replacing m with |k| — /. We obtain
the following equation:

k|-1
wroMc(P, k) = 2 (=1)lkI=i+1 ("ld)mec(\PHkl,,],k) (22)
1=0
We provide pseudocode for evaluating equation (22) in Algorithm 2, namely WFOMC-DAG. We now analyze how WFOMC-DAG
works, and show that it runs in polynomial time with respect to domain cardinality |k| = n.

WFOMC-DAG takes as input ¥ = Vxy.®(x, y) A Acyclic(R) and k and it returns WFOMC(W, k). In line 3, an array A with u indices
is initiated, and A[0] is assigned the value 1, where 0 corresponds to the u-dimensional zero vector. The for loop in lines 5 — 7 incre-
mentally computes WFOMC(Y, p), where the loop runs over all u-dimensional integer vectors p, such that p; < k;, in lexicographical
order. The number of possible p vectors is bounded by n“. Hence, the for loop in line 5 runs at most n* iterations. In line 6, we
compute WFOMC(Y, p) as given in equation (22). Also in line 6, the function WFOMC('¥,,, p) — that computes WFOMC(¥,,;, p) —
is called at most |p| — 1 times, which is bounded above by n. A[p] stores the value WFOMC('Y, p). In the function WFOMC('¥,,,, 5),
the number of iterations in the for loop (line 12) is bounded above by n?. And wroMc(¥,s’) is an FO? WFOMC problem, again
computable in polynomial time. Hence, the algorithm WFOMC-DAG runs in polynomial time w.r.t domain cardinality. Notice that
since loop 5-7 runs in lexicographical order, the A[s”'] required in the function W(‘le 1»§) are always already stored in A.

There are only polynomially many k w.r.t domain cardinality. Hence, computing WFOMC(W, k) over all possible k values, we can
compute WFOMC(Y, n) in polynomial time w.r.t domain cardinality. Using the modular WFOMC-preserving Skolemization process as
provided in [5], we can extend this result to prove the domain liftability of the entire FO? fragment, with DAG axiom.

Using Theorem 2 and Remark 2, we can also extend domain-liftability of FO?, with DAG axiom and cardinality constraints. Finally,
since WFOMC of any C? formula can be modularly reduced to WFOMC of an FO? formula with cardinality constraints [18], we have
the following theorem:

Theorem 4. Let ¥ := ® A Acyclic(R), where ®@ is a C* sentence. WFOMC(¥, n) can be computed in polynomial time with respect to the
domain cardinality.

11
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Algorithm 2 WFOMC-DAG.

1: Input: ¥,k

2: Output: wroMcC(V, k)
3: A[0] <1 > A has u indices
4: > 0=0,...,0)
5: for 0 < p < k where p € Nj do > Lexical order
6
7
8

Alp] < TP~ 1P (1P) . WROMC(y 1 P)
: end for
: return A[k]

10: function WFOMC(Y¥,;, 5) > Equation (19)
11: S=0

12: for s’ +s” =sand |s'| =m do

13: S « S +wromc(¥,s’) - A[s"] - Hus[uj ry
14: end for

15: return .S

16: end function

oS
%)

Our results expand and cover previously investigated problems in combinatorics literature, such as counting the number of DAGs
with a fixed number of edges and nodes [35]. Such results in the combinatorics literature provide a simple benchmark and sanity-
check for our methodology. Hence, we will often check if model-counts for constraints axiomatized using our methodology align
with the counts reported in the On-Line Encyclopedia of Integer Sequences (OEIS) [36] — an open-source collection of sequences,
enumerating solutions to various counting problems. We illustrate this in the following example.

Example 5. Suppose we want to count the number of DAGs with n labeled nodes and d edges, as can be done through [35]. Clearly,
this can be encoded in FOL with DAG constraint as follows
FOMCG(Acyclic(R) A |R| =d,n) (23)

for an FOL language with only the binary relation R. Indeed, with our implementation of Algorithm 1, the FOMC in (23), for different
values of d and n, leads to the same sequence as A081064 of the OEIS [36].

This (and later examples) show that our implementation provides a simple method to enumerate structures respecting interesting
combinatorial constraints directly from their logical encoding — without the need to explicitly derive a different formula for each
constraint.

5.4. Source and sink

In the following, we show that extending G> with a DAG axiom allows us to easily express sources and sinks. We then provide
some examples from combinatorics where this is useful.

Definition 7. Let @ be a first order sentence, possibly containing a binary relation R, a unary relation Source and a unary relation
Sink. We say that an interpretation w is a model of ® A Acyclic(R, Source, Sink) if:

* w is a model of ® A Acyclic(R),
+ the sources of the DAG represented by wy are interpreted to be true in wg,, ce»
+ the sinks of the DAG represented by wy are interpreted to be true in wg;,, .

The Source and the Sink predicates can allow us to encode constraints like 3=¥x.Source(x) or 3=*x.Sink(x). See the example
below.

Theorem 5. Let ¥ := ® A Acyclic(R, Source, Sink), where ® is a C? sentence. WFOMC(¥, n) can be computed in polynomial time with
respect to the domain cardinality.
Proof. The sentence ¥ can be equivalently written as:

® A Acyclic(R)
AVx.Source(x) < —=3y.R(y, x) @4
AVx.Sink(x) < -3y.R(x,y)

which is a C? sentence with a DAG constraint, for which Theorem 4 applies. []

12
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Example 6. For an FOL language made only of the binary relation R,

FOMC(Acyclic(R, Source, Sink) A |R| =d A |Source| =1,n) (25)

counts the number of DAGs with » labeled nodes, d edges and a unique source. Similarly,

FOMC(Acyclic(R, Source, Sink) A |Source| = s,n) (26)

counts the number of DAGs with n labeled nodes and s sources, while

FOMC(Acyclic(R, Source, Sink) A |Source| = s A |Sink| = s',n) 27)

counts the number of DAGs with # labeled nodes, s sources and s’ sinks. Indeed, with our axiomatization and implementation, we
were able to compute the following sequences from OEIS:

« A350487 (DAGs with n labeled nodes, d edges and 1 source);

» A361718 (DAGs with n labeled nodes and s sources), A003025 (DAGs with n labeled nodes and 1 source), A003026 (DAGs with
n labeled nodes and 2 sources);

» A165950 (DAGs with n labeled nodes, 1 source and 1 sink).

These counting problems were also investigated in [23,37].

Example 7. Binary phylogenetic networks [38-41,30] are defined as DAGs consisting only of the following types of nodes:

+ one and only one source, which must have outdegree 2;

+ leaves, which are sinks with indegree 1;

« tree nodes, which are nodes with indegree 1 and outdegree 2;

- reticulation nodes, which are nodes with indegree 2 and outdegree 1.

Along with their many subclasses, they are commonly used for representing the evolutionary relationships among a group of taxa,
taking into account reticulate events like hybridization, horizontal gene transfer and recombination [42]. Counting binary phyloge-
netic networks is an interesting open problem in combinatorics [38]. Indeed, many recent studies are devoted to providing asymptotic
estimates [41,38], or the exact counting when the number of reticulation nodes is limited [38], or estimates and exact counting for
related networks, like tree-child and normal networks [43,41,40,31,44,29,39,45,30,46].

Notice that the definition of binary phylogenetic networks is expressible in C2 with the acyclicity axiom:

Vx.[(Source(x) A 3=2y.R(x, y))
V(Sink(x) AT~ y.R(y, x))
VE™'Y.R1.x) ATTy.R(x,y) (28)
V(32y.R(y,x) AT y.R(x, )]
AlSource| =1 A Acyclic(R, Source, Sink)

Hence, FOMC with acyclicity axiom can provide a way to count binary phylogenetic networks with a fixed number of nodes in
polynomial time. Moreover, this approach is flexible enough to allow to count also other related classes like tree-child networks,
and to count binary phylogenetic networks with any constraint expressible in C2. However, enumerating constraints with counting
quantifiers requires an FOMC-preserving reduction to FO? with cardinality constraints, with many additional predicates (see [18,11]),
and the computational complexity scales super-exponentially with respect to the number of predicates. The number of additional
predicates required in this case poses significant scalability issues.

6. WFOMC with connectivity axiom

A connected graph is an undirected graph such that for any pair of nodes i and j there exists a path connecting the two nodes. We
present a recursive formula for WFOMC of an FO? sentence, say ®, where a special predicate, say R, is axiomatized to be a connected
graph, i.e. we count the models w F @ such that wy represents a connected graph. We begin by revisiting the recursive formula for
counting connected graphs on n nodes. Much in the spirit of the previous section, we make observations that allow efficient counting
of connected graphs and exploit them for WFOMC with connectivity axiom.

6.1. Counting connected graphs

In a given undirected graph, a connected component is a subgraph that is not part of any larger connected subgraph. In a rooted
graph, one node is labeled in a special way, and called the root of the graph. Given a rooted graph, we call its connected component

13
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containing the root as the rooted-connected component. We now present a recursive way to count the number ¢, of connected graphs
on n nodes, as done in [28]. The base case is ¢; = 1.

Proposition 5. The number of rooted graphs on [n] with an m-sized rooted-connected component is given as:
<"> cmec, 2 (29)
m
where c,, is the number of connected graphs on m nodes.

Proof. Let w be a rooted graph such that @ | [m] forms a rooted-connected component. Since w | [m] is a connected component,
there can be no edges between [m] and [m]. The number of possible connected graphs on [m] is given by c,,. Also, in @ any node in
[m] can be chosen to be the root. Hence, the number of ways in which @ | [m] can be a rooted-connected component is m - c,,. Since
| [m] is a connected-component, there can be no edges between [m] and [m], and w | [/m] can be any n — m sized graph. Hence,

Z(n;m) subgraphs can be realized on [/]. Since subgraphs on [m] and [/] are realized independently, the total number of graphs on

[n] such that [m] is a rooted-connected component is given by m - ¢,,, - 22" These arguments can be repeated for any rooted graph

on [n] with a rooted-connected component of size m. Since there are (;) ways of choosing such subsets, we get formula (29). []

Summing up equation (29) over all m, for 1 <m < n, we get the total number of rooted graphs. This is the base of the proof of the
following proposition, which gives us a way to recursively count the number of connected graphs on » nodes.

Proposition 6 ([28]). For any m, let c,, be the number of connected graphs on m nodes. Then, the following holds:

n—1

6 =20 _ % ¥ <Zl> cmee, 23 (30)
m=1

Proof. Any rooted graph on [n] has a rooted-connected component of some size m, where 1 < m < n. Hence,

> (:1) cmec, 23 (31)

m=1

"
is counting all the rooted graphs on [n], whose number is n - 2(2). This gives us the following equation, where we have simply rewritten
the summation in a different way:

n—1
n n n—m
n-2(2)=n~cn+z<m>"m'cm'2(2) (32)
m=1
Clearly, this equation can be equivalently rewritten as equation (30). []
6.2. WFOMC with connectivity axiom
Definition 8. Let R be a binary predicate. An interpretation w is a model of Connected(R) if

+ wg forms a symmetric and antireflexive relation of R, and
* wg forms a connected graph.

Remark 4. Our goal is to compute WFOMC of ¥ := Vxy.®(x,y) A Connected(R), where ®(x,y) is a quantifier-free FO? formula
interpreted on the domain [#]. By definition, this entails that wy forms a symmetric and antireflexive relation of R. Hence, we can
assume without loss of generality that:

Vxy.®(x,y) F Vx.7R(x,x) AVxy.R(x,y) = R(y,x) (33)
Definition 9. Let ¥ := Vxy.®(x, y) A Connected(R), where ®(x,y) is a quantifier-free FO? formula interpreted on the domain [n],
such that (33) holds. For any m < n, we say that an interpretation o is a model of ¥, and write w F ¥|,,}, if @ is a model of ¥ on

[n] and wg | [m] is a connected component in wg.

It can be shown that Definition 9 corresponds to an instantiation of ¥|,, as introduced in Lemma 2 (see appendix Lemma 4 for a
formal proof), where

+ axiom’ := Connected(R)
« axiom” =T
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* O(x,y) :="R(x,y)
Using this instantiation of ¥|,; and Lemma 2, we have the following proposition.

Proposition 7. Let ¥ := Vxy.®(x, y) A Connected(R) and ¥ := Vxy.®(x, y), where ®(x,y) is a quantifier-free FO* formula such that
(33) holds. Then:

KK
WFOMC(Y|,,1, k) = Z wroMc(¥Y, k" ywromc(W”’, k") H r,.j' J (34)
K+k" =k ijelu]
[k |=m

where r;; 1= > n;;05, and ngy is 1if ijl(x, ) F ©({x, y}) A = R(x,y) and 0 otherwise.
Similar to Proposition 5, we will now compute the WFOMC for interpretations with rooted connected-components of size m.

Proposition 8. Let ¥ := Vxy.®(x, y) A Connected(R) be a sentence interpreted over [n], where ®(x, y) is a quantifier-free FO? formula
such that (33) holds. Then the WFOMC of all the models w F Vxy.®(x, y) with a rooted-connected component of size m is given as:

(;) - m - WFOMC(®,, k) 35)

Proof. The proof idea is similar to the one of Proposition 5. There are (::1) ways of choosing an m-sized subset C in [n]. Given such
a set C, the number of models w F Vxy.®@(x, ) with C as a connected component w.r.t R is WFOMC('¥,,,, k). Finally, if we also allow
a node in C to be distinguished as a root, then we have m ways of choosing the root. []

Summing up equation (35) over all m, for 1 <m < n, we get the total number of interpretations w F Vxy.®(x, y), where wy is a
rooted graph. This is the base of the proof of the following proposition, which gives us a way to recursively compute the WFOMC of
Y :=Vxy.®(x, y) A Connected(R).

Proposition 9. Let ¥ := Vxy.®(x, y) A Connected(R) and ¥ := Vxy.®(x, y), where ®(x,y) is a quantifier-free FO* formula such that
(33) holds. Then:

n—1

wroMc(¥, k) = wroMc(P”, k) — 1 Z (") - m - WFOMC(¥| .1, k) (36)
n m

m=1

Proof. The proof idea is similar to the one of Proposition 6. We notice that

n
Z <"> - m - WFOMC(¥|,, k) (37)
m=1 m
sums the WFOMC of all the models w of Vxy.®(x, y) for which wy, is a simple graph with an R-rooted-connected component of size
m, where 1 < m < n. But any rooted graph has a rooted-connected component of some size m, where 1 < m < n. Hence, equation
(37) computes the weighted sum of all models of Vxy.®(x,y) where wy is a rooted graph. This is equal to n times the WFOMC of
Vxy.®(x,y), because we have n choices for assigning a root in each model. Thus, we get the following equation

n- WFOMC(Vxy.®(x,y), k) =

n—1 n (38)
n- WEOMC(¥,1, k) + ) < ) - m - WFOMC(P . k)
m
m=1

and since ‘I’[,,] is equivalent to W, it can be rewritten as equation (36). []

Using Proposition 7 and Proposition 9 we can derive a recursive algorithm, very similar to Algorithm 2, for computing
WFOMC(Y, k). This can be achieved by replacing line 6 and line 13 of Algorithm 2 with the formulas coming from equations (34) and
(36). That is, replacing line 6 and line 13, with the following operations:

-1 _
6: A[p] « wroMc(¥", p) — |1ﬂ Z'”fil ("‘r’l') - m - WFOMC(¥ .} P)

and
r
13: S < S+ Als']- wroMc(¥”.s") - 1, e ru‘lsf
The analysis of the modified algorithm for WFOMC with a connectivity constraint (see Algorithm 3) is provided in the appendix.
Almost all of the tractability analysis for Algorithm 2 transfers identically to Algorithm 3, showing that the algorithm is tractable.

Hence giving us the following theorem:
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Theorem 6. Let ¥ := ® A Connected(R), where ® is a G* formula. Then WroMC(W, n) can be computed in polynomial time with respect
to the domain cardinality.

The following examples show possible applications of our results in the realm of combinatorics.

Example 8. For a FOL language made only of the binary relation R,

FOMC(Connected(R) A |R| =2d,n) 39)

counts the number of connected graphs with n labeled nodes and d edges. For it to be non-zero, d must be between n — 1 (trees) and
(;) (complete graph). Such counting problem is studied in chapter 6.3 of [47]. With our implementation, we were able to get the
array A062734 of OEIS, which is also equivalent to A123527 and A343088. Its diagonals also give the following sequences: A000272
(number of trees on n nodes), A0O57500 (number of connected unicyclic graphs on n nodes), A061540, A061541, A061542, A061543,
A096117, A061544 A096150, A096224, A182294, A182295, A182371.

Example 9. Suppose we want to count the number of connected graphs with n labeled nodes, each one colored by one of three colors,
with the condition that adjacent nodes must have different colors. This problem was already studied and solved in [48], where such
number is denoted by m,(3). We consider a FOL language with a relational symbol R/2 for representing the connected graph, and
three relational symbols A/1, B/1,C/1 representing the colors. The fact that one and only one color is assigned to each node can be
encoded with the sentence

¥, :=Vx.(A(x) V B(x) Vv C(x))
AT(AX) A B(x)) A(A(x) A C(x)) A(B(x) A C(x))

(40)

while the fact that adjacent nodes must have different colors can be encoded with the sentence
¥, :=Vxy.(A(x) A R(x,y) = 7A®Y))
A(B(x) A R(x,y) = ~B(¥)) (41)
ANCx) A R(x,y) = ~C(y))
Hence, the number of colored graphs that we want can be computed as
FOMC(Y; A ¥, A Connected(R),n) (42)
and with our implementation we were able to compute sequence A002028 of OEIS.
7. Trees and forests
In this section, we investigate the domain liftability of C2 where one of the relational symbols is axiomatized to be a tree or a
forest. Tree axioms have been previously investigated in [20]. However, we provide a completely different method of WFOMC for
both directed and undirected tree axioms. Furthermore, we also demonstrate domain liftability of both directed and undirected forest
axioms — an open problem raised in the conclusion of [20].
7.1. WFOMC with directed tree and directed forest axioms
Directed trees are DAGs with exactly one node with indegree zero and with all the other nodes having indegree 1. Similarly, directed

forests are DAGs such that every node has indegree at most 1. (Equivalently, directed forests are DAGs such that each connected
component is a directed tree.)

Definition 10. An interpretation  is a model of DirectedTree(R, Root) if wy forms a directed tree whose root (i.e. the node with
no R-parent) is the unique domain element interpreted to be true in wpg,,,.

Definition 11. An interpretation  is a model of Directed Forest(R) if wp forms a directed forest.

Using the definition of directed trees, as DAGs with exactly one root and with all the other nodes having indegree 1, we get the
following proposition.

Proposition 10. ® A DirectedTree(R, Root) is equivalent to

® A Acyelic(R) A |Root| = 1 AVx.mRoot(x) — 37 y. R(y, x) (43)

for any sentence ®. Hence, WFOMC with directed tree axiom can be modularly reduced to WFOMC with DAG axiom.
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Proof. Let w be a model of formula (43), so that wg is a DAG. Since @ F Vx.~Root(x) — 3=1y.R(y, x), we have that any element ¢
such that w F = Root(c), has exactly one R-parent. Since w F (| Root| = 1), we have that w is a DAG with only one node, say r, such
that r does not have exactly one R-parent, and all other nodes have exactly one R-parent. But wy is a DAG, hence it necessarily has
one node with no parent, which hast to be r. Hence, wy, is a directed rooted tree. It can also be checked that any @ F @ such that wp
is directed rooted tree is a model of formula (43). []

Analogously, using the definition of directed forests, as DAGs where each node has indegree at most 1, we get the following
proposition:

Proposition 11. ® A Directed Forest(R) is equivalent to
@ A Acyclic(R) AVx.3<=1y.R(y, x)

for any sentence ®. Hence, WFOMC with directed forest axiom can be modularly reduced to WFOMC with DAG axiom.

Since both DirectedTree(R, Root) and Directed Forest(R) can be modularly reduced to WFOMC with DAG axiom and additional
C? constraints, the domain liftability results for the DAG axiom — such as Theorem 4 — also transfer to DirectedTree(R, Root) and
Directed Forest(R) axioms.

Remark 5. In the definition above we used the predicate Root only for directed trees. Notice, however, that we could define it also
for directed forests, by imposing the satisfaction of the following sentence

Vx.Root(x) < —~3y.R(y, x)

In a similar way, one could define a unary predicate Leaf for representing leaves, both for directed trees and for directed forests,
using the following sentence:

Vx.Leaf(x) < —-3y.R(x,y)
7.2. WFOMC with tree axiom

We will now focus on the undirected tree axiom.
Definition 12. Let R be a binary predicate, an interpretation w is a model of Tree(R) if

+ wp forms a symmetric and antireflexive relation of R, and
* wg forms a Tree

Remark 6. Notice that one could also define a unary predicate Leaf for representing leaves by imposing the satisfaction of the
following sentence:

Vx.Leaf(x) & 3= y.R(x, y)

This applies also to the case of undirected forests, which will be introduced later.

Note that a connected graph on n nodes is a tree if and only if it has n — 1 edges [49, Theorem 2.1]. This gives us the following
proposition:

Proposition 12. For any sentence ® on a domain of cardinality n, we have that ® A Tree(R) is equivalent to
® A Connected(R)A |R| =2n—2

Hence, WFOMC with tree axiom can be modularly reduced to WFOMC with connectivity axiom.

Remark 7. Since Tree(R) can be modularly reduced to WFOMC with connectivity axiom and additional cardinality constraints, the
domain liftability results for the connectivity axiom — such as Theorem 6 — also transfer to the T'ree(R) axiom. These results were
already established in [20], but we are providing a different way to arrive at them.

7.3. WFOMC with forest axiom
We now present an algorithm for extending domain liftability of C> with an undirected forest axiom. We first prove the formula

for counting undirected forests as presented in [25]. This will then form the basis of our algorithm for WFOMC with forest axiom,
which is subsequently presented.
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Proposition 13. Let t,, denote the number of trees on m labeled nodes, and let f, be the number of forests on n labeled nodes. Then,
c 1
n—
f,= n; <m _ ])zm Fnem (44)

Proof. Without loss of generality, we can assume the n labeled nodes to be the set [n]. We will prove the proposition by observing
that any forest on such nodes can be viewed as a tree containing the node 1 plus a forest made up of the remaining connected
components. Consider an arbitrary forest on [n], and let m denote the number of nodes of the connected component containing the
node 1. Clearly, for an arbitrary forest, m can be any number from 1 to n. Now, fixing m, the number of different trees containing
node 1 and m — 1 other nodes is given by (,'r:ll)tm, where (:1:11) represents the number of ways to choose m — 1 nodes from [1], and
t,, denotes the number of different trees on the m selected nodes (1 included). On the other hand, there are f,_,, different forests
on the remaining n — m nodes, independently of the tree containing 1. It follows that the number of forests such that the connected
component containing 1 has m — 1 other nodes is (,':,:ll)tm fn_m- To count all possible forests on n nodes, we only need to sum up the
contributions from each m, and this gives us the desired recursive formula. []

Note that the number 7, of trees on m nodes is given by mmn=2 (Cayley’s formula [25]). However, this is irrelevant for what follows.
Definition 13. Let R be a binary predicate. An interpretation w is a model of Forest(R) if wp forms a forest.

Remark 8. As done before for connectivity, since Vxy.®(x,y) A Forest(R) assumes that wg forms a symmetric and anti-reflexive
relation, we can assume without loss of generality that

Vxy.®(x,y) EVx.mR(x,x) AVxy.R(x,y) = R(y,x) (45)

Definition 14. Let ¥ := Vxy.®(x, y) A Forest(R), where ®(x, y) is a quantifier-free FO? formula interpreted on the domain [n], such
that (45) holds. For any m < n, we say that an interpretation w is a model of ‘I‘[m], and write w F ‘I’[m], if w is a model of ¥ on [n] and
wpg | [m] forms a connected component of wg (and hence a tree).

It is easy to check that ¥|,,; in Definition 14 is the same as ¥|,,; in Lemma 2, where we instantiate axiom’, axiom” and ©(x, y) as
follows:

« axiom' :=Tree(R)
+ axiom'" := Forest(R)
* O(x,y) :="R(x,y)

A formal proof can be found in the appendix, as Lemma 5. Using this characterization and Lemma 2, we have the following proposition.

Proposition 14. Let ¥ := Vxy.®(x,y) A Forest(R), and ¥' := Vxy.®(x,y) A Tree(R), where ®(x,y) is a quantifier free FO? formula
satisfying the condition in Remark 8. Then:

44
WFOMC(Y |1, k) = 2 Hrij’ T wromc(¥', k" Y wroMc(¥, k') (46)
k=k'+K"" i\
|K'|=m

where rij = > nij 10, and nj is 1 if ijl(x,y) F ®({x,y}) AR(x,y) and 0 otherwise.

Proposition 15. Let ¥ := Vxy.®(x,y) A Forest(R) be interpreted over [n], where ®(x,y) is a quantifier free FO? formula satisfying the
condition in Remark 8. Then:

WFOMC(Y, k)= ) <ZZ : 11>WFOMC(‘P[m] k) (47)

m=1

Proof. The proof idea is essentially the same as the one for Proposition 13. Let ¥ be the generalization of ¥}, to a generic subset
C C [n]. Clearly, w is a model of ¥ if and only if w is a model of ¥ for a subset C containing the node 1. Notice also that for any @
there can be only one subset C such that wy | C is the connected component of wy containing the node 1. Hence,

wroMc(W, k) = 2 WFOMC(¥ ., k) (48)

CCln]
leC

Now, WFOMC(P,,,, k) is the same as WFOMC(¥ ¢, k) for any C C [n] with |C| = m. Furthermore, there are ( r"n:']) ways of choosing
a subset C of [n] in such a way that it contains 1. This gives us equation (47). []
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Fig. 1. Run-times of all experiments as function of the domain cardinality n. For the WFOMC encoding see the referred examples. The number of active 1-types for
each formula, and if cardinality constraints on binary predicates were used, is reported in Table 2 of the appendix.

We provide the pseudocode for computing WFOMC(W, k) as Algorithm 4 in the appendix. The only changes w.r.t Algorithm 2 are
that line 6 is substituted with

6: Alp] < LI.L ('Z'_‘II)WFOMC(‘P[,"],p)
and that wroMc(¥’, k') in line 13 is using WFOMC with tree axiom, whose liftability is ensured by Remark 7. With this in mind, it
can be proved that the algorithm runs in polynomial time w.r.t domain cardinality in the same way of Algorithm 2. Thus, we can
derive the domain liftability of C? with the forest axiom by using the modular reductions from [5] and [18] (in the same way as we
did for DAG and connected axioms).

Theorem 7. Let ¥ := ® A Forest(R), where ® is a C* formula. Then WFOMC(, n) can be computed in polynomial time with respect to the
domain cardinality.

Again, we provide an example to show that our results can be useful in enumerative combinatorics.

Example 10. The number of forests without isolated vertices on n labeled nodes can be computed as

FOMC(Vx.3y.R(x,y) A Forest(R),n) (49)

for a FOL language made only of the binary relation R. Using the procedure in [5], this is reduced to a form to which Algorithm 4
can be directly applied:

WFOMC(Vxy.S(x) V ~R(x,y) A Forest(R),n) (50)

for a FOL language made only of R/2 and S/1, with S having weights w(S) = 1 and @(S) = —1, and R having weights w(R) =
w(R) = 1. In fact, with our implementation, we were able to compute sequence A105784 of OEIS.

8. Experiments

In this section we provide an empirical analysis of the practical efficiency and expressivity of the constraints introduced in this
paper. We implemented our WFOMC algorithms (Algorithms 2, 3, and 4) in Python,' and the experiments on an Apple M3 Pro
computer. The implementation of the cardinality constraints on unary predicates was done by filtering the 1-type cardinality vectors
k, as in [11]; while for binary predicates we used symbolic weights,2 as in [13].

8.1. Combinatorial examples
We experiment with the combinatorial examples provided in the previous sections, and run-times are reported in Fig. 1. Although
our approach provides a general language for easily formulating complex combinatorial problems, and our WFOMC algorithms run in

polynomial time w.r.t domain cardinality, our experiments show that they are far from optimal. This is especially pronounced in the
run-time for computing the number of trees, which admits the simple closed-form formula n"~2. In our observation, the number of

1 Code is available at https://github.com/dbizzaro/WFOMC-beyond-FOL.
2 The use of symbolic weights is equivalent to the procedure in the proof of Theorem 2, as explained in the appendix (to Section 3).
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(active) 1-types® and the presence of cardinality constraints on binary predicates constitute key sources of intractability (see Appendix
Table 2). As the former leads to more and larger operations, the latter leads to a complex polynomial interpolation task. Hence, the
generality of our proposed framework comes potentially at the cost of lower efficiency, in comparison to results obtained by more
fine-grained combinatorics. These results show that more work needs to be done on better practical implementation of the proposed
WFOMC results, potentially integrating solutions like [50,51].

8.2. Markov logic networks

A Markov Logic Network (MLN) [3] is a set of weighted formulas ® := {w; : ¢,};, where each ¢, is a quantifier free FOL formula
with weight w; € RU {o0}. The formulas with weight co are hard constraints, i.e., any world that does not follow those constraints
has probability 0. Let @ be the subset of real-valued weighted formulas in ®, and let ®_ be the hard constraints. Given a domain
A, an MLN @ defines a probability distribution over the set of possible interpretations:

1
PA (@) = “’;’m exp< Y wi-n(q}i,a))) (51)

[} w; ¢, Edp

where

* n(¢;, ) represents the number of true groundings of ¢; in w;
* Loro,, is 1 when wF @, and 0 otherwise;
- Z g is a normalization constant (ensuring that P£ is a probability distribution) called partition function.

One of the applications of WFOMC is probabilistic inference in MLNs [5]. For every finitely-weighted formula w; : ¢; in an MLN
@, we introduce a fresh predicate P;/a;, whose arity a; is the number of free variables in ¢;. We define a weight function (w, i0)
such that w(P;) = exp(w;) and w(P;) =1 for each i, while w(R) = w(R) =1 for every other predicate R. Moreover, let ¥ denote the
conjunction of @, with all the formulas

Vxp . xg Bi(xp, X)) © @lxg, X)) (52)
Then, for any query sentence ¢, probabilistic inference can be computed in the following way:

A, WFOMC(Y A ¢, |A])
Fo @)= wroMc(P, |A|) (53)

This means that inference can be performed in polynomial time (w.r.t domain cardinality) whenever ¥ and ¢ are domain-liftable.

The constrains introduced in this paper, i.e., DAG(R), Connected(R) and Forest(R), can also be used as hard constraints (V) or as
queries (¢b), while admitting polynomial time inference in MLNs. The experiments below demonstrate that the probability distributions
that can be obtained by incorporating these constraints in an MLN can be difficult to achieve otherwise. Such distributions may result
in a better model whenever we have reasons to believe that the graph formed by a particular binary relation should be a DAG, a
connected graph or a forest. All the distributions in the experiments below are computed (exactly) using the algorithms introduced
in the paper.

8.3. Graph statistics

Let us begin by examining the simplest scenario: an MLN that models only a directed (resp. undirected) graph. When restricting
the MLN to consider only graphs that are DAGs (resp. connected, or forests), then all the statistics about the graphs can be different.
An example of this is shown in Fig. 2. In this experiment, we show that MLNs with our constraints lead to different edge distributions
compared to the unconstrained cases. For this analysis, we considered a fixed prior on the distribution of edges given by the weighted
formula —1 : R(x,y) (which encodes a preference for sparse graphs), and plotted the distributions of the number of edges. We
compared the distributions when the graph constraints are imposed (blue curves), against what are arguably their best approximations
in FO? (orange curves). For connectivity and forests, we compared also the distribution produced by the corresponding FO? formula
together with the cardinality constraint that matches the support of the number of edges for the two cases* (green curves). The actual
distributions of the edge count for domain size n = 20 is available in the appendix (Fig. 5). As expected, the DAG and forest constraints
favor more sparsity, while the opposite is true for connectivity. The next example will show that even when this particular effect
is not very pronounced, the overall effect of a global constraint like connectivity can be significant (even compared to cardinality
constraints).

3 Active 1-types for a formula are the 1-types that are consistent with the formula.
4 Connected graphs can have any number of edges between n — 1 and (;), while forests can have any number of edges between 0 and n — 1.
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Fig. 2. Expected values of the number of edges of the directed/undirected graphs produced by MLNs with only the predicate R/2. The legends report the hard
constraints, while the soft constraint is always —1 : R(x, y).
8.4. Smokers & friends with connectivity constraint

We will now analyze the widely investigated social network example of “smokers and friends” in the sparse regime. The example
is encoded with the following soft constraints:

wg : S(x) 64
wp @ F(x,y) (55)
wp : SX)AF(x,y) = S©») (56)

where S/1 is the predicate for smokers and F /2 for friendship. If the weight wp is positive, then the MLN models the fact that friends
of smokers are more likely to be smokers. The network can be made sparse by setting the weight w to be negative — larger negative
weight leads to more sparsity.

The partition function for this MLN can be computed (in polynomial time) as the WFOMC of the following formula:

Vxy. P(x,y) < (S(x) A F(x,y) > S(») (57)
with the following weight function:
w(S) =exp(wg), w(S)=1 (58)
w(F)=exp(wg), wF)=1 (59)
w(P)=exp(wp), w(P)=1 (60)

Fig. 3 compares the distributions of the number of smokers for the following three cases®:

« the graph realized by F must be a connected undirected graph (blue);

+ the graph realized by F can be any undirected graph (orange);

« the graph realized by F must be an undirected graph with at least as many edges as the number of nodes minus one (which is
the minimum number of edges for connected graphs; green).

5 Each of the three cases is modeled by adding the corresponding hard constraint to the WFOMC of equation (57). The hard constraints are formally expressed in
the legends of Fig. 3.
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Fig. 3. Distributions of smokers for different weights. The legends report the hard constraints, while the titles report the weights of the soft constraints. The domain
size is fixed to n = 20.

In this experiment (Fig. 3), we analyze four different values of weight combinations for wy and wp, while wy is fixed to be zero.
We can see that the distribution becomes more concentrated at the extremes (either all smokers or none) when: (i) increasing the
bias towards the satisfaction of the “smoker and friends” formula (i.e. increasing wp), or (ii) decreasing the sparsity of the friendship
network (i.e. increasing w). This aligns with our intuition: (i) as wp increases, any connected component of the friendship network
is more likely to have either all smokers or none; (ii) the less sparsity (i.e., the larger wp), the more likely to have one large connected
component comprising most of the nodes — and all the nodes of such component tend to become homogeneously smokers or non-
smokers, modulated by the weight wp. The interplay of w; and wp controls the connectivity and smoking-homogeneity of the
networks modeled by the MLN.

Given that connectivity controls the “spreading” of homogeneity of smoking, adding connectivity constraints allow us to further
modulate the global distribution of smokers in the network — as reflected in the blue histograms in Fig. 3. Note that the connected
networks still maintain high sparsity, as evidenced in Fig. 2, and shown more precisely in the appendix (Fig. 6, top-right). Importantly,
connectivity is forcing the graph to have only one connected component, so smoking behavior can “spread” across the entire graph,
making most of the nodes either smokers or non-smokers. As expected, the distribution of smokers under the connectivity constraint
is consistently more concentrated at the extremes than in the other two cases.

Analogous experiments with DAG and forest constraints instead of connectivity are reported in the appendix (Figs. 7 and 8).
In these cases, the differences are mainly driven by the corresponding increase in sparsity. Although these constraints demonstrate
different artifacts than FOL and connectivity, we leave there qualitative analysis to future work for more relevant examples. For
instance, citation networks for DAGs, and genealogy networks for forests.

Finally, Fig. 4 shows the run-times of computing the partition function of the “smokers and friends” MLNs, i.e. the run-times of the
WFOMC of each of the expressions in the legend, together with formula (57). To avoid numerical issues, the weights were represented
as fractions, and exact calculations were performed.

9. Conclusion

We investigate the domain-liftability of the first order logic fragment with two variables and counting quantifiers (C?), with
additional graph theoretical constraints. We show that the domain liftability of G2 is preserved when one of the relations in the
language is restricted to represent an acyclic graph, a connected graph, a forest (resp. a directed forest), or a tree (resp. a directed
tree). A key novel idea used consistently throughout our work is counting by splitting. The generality of this principle can potentially
aid the lifting of many other novel constraints. Besides their application in statistical relational learning, our results provide a uniform
framework for combinatorics on different types of multi-relational graphs. In fact, our work covers and extends a vast array of results
in combinatorics, such as counting phylogenetic networks and enumerating acyclic graphs/forests with different constraints. Our
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Fig. 4. Run-times of computing the partition function of the “smokers and friends” MLNs.

work (along with [20]) can be seen as extending the relational language for constraints that admit lifted inference beyond first order
logic. Hence, these results motivate the following open problem:

Is there a formal language that captures all tractable counting problems for labeled relational structures?

Our experimental analysis shows that the new tractable constrains lead to potentially useful differences in distributions expressed
by Markov Logic Networks. However, we observe that our algorithms, though polynomial in time, have scalability issues, and of-
ten do not lead to the optimal computational complexity. This motivates further research into designing more efficient practical
implementations, and in understanding the gap between domain lifted and optimal inference.
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Appendix A. Appendix to Section 3

Theorem 2. ([18], slightly reformulated) Let ® be a first-order logic sentence and let I" be an arbitrary cardinality constraint. Then,
WFOMC(P AT, k) can be computed in polynomial time with respect to the domain cardinadlity, relative to the WFOMC(®D, k) oracle.

Proof. Let us consider an FOL language L that contains r relational symbols denoted by { R, /g, },[,1- Let @ be an interpretation and
let u=(|Ryl,....|R,|) be the vector comprising the cardinality of each predicate R; in w. Now, W(w) can be evaluated using the
definition of symmetric weight functions (Definition 2). Any two interpretations that have the same predicate cardinalities u as w
have the same weight W(w). Therefore, we use w, to indicate the weight wW(w), where @ E u. Given an FOL formula ®, let A " be the
number of interpretations @ F ® A p, then the following holds:

WFOMC(D, k) = Z AW, (61)
U

For each predicate R;/a; in the FOL language L, there exist n% ground atoms. Therefore, there are nZietn ¥ potential values of p,
which means that there are polynomially many vectors y with respect to n. By evaluating wroMc(®, k) for nZicln ¥ distinct weight
function pairs (w, i0), we can obtain a non-singular linear system of niein % equations on the nZiein % variables A - This system can

be solved using Gauss-elimination algorithm in O(n3 Lietr 4) time. Then, having found the numbers A x> We can compute the value
of any cardinality constraint as follows:

WFOMC(® AT, k) = Z AW, (62)
HET

where u E I' represents the fact that the predicate cardinalities u satisfy the cardinality constraint I'. Since, there is only a polynomial
number of vectors u, equation (62) can be computed in polynomial time. []
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Remark 9. In equation (62) we assume that u F I" can be checked in polynomial time w.r.t. n. This is a reasonable assumption for all
our purposes.

A.1. Practical implementation of cardinality constraints

Note that the proof of Theorem 2 assumes only a black-box access to the WFOMC(®, k) oracle. However, for all the algorithms
introduced in the paper we can treat WFOMC(®, k) as a polynomial with symbolic weights for each predicate as variables. For example,
let @ :=Vxy.~R(x,x) A (R(x,y) = R(»,x)) (encoding for an undirected graph without self-loops). Then, equation (8) becomes:

(69 I
WEOMC(®, (10, D). n) = (w(R)? + (R = Y ( <]2€)>w(R)2k DRG0
k=1
which is a polynomial in the variables w(R) and w(R). Similarly to equation (61), we have that this polynomial can be written as

Y AW, The monomial ((g))w(R)z"LD(R)Z((g)_k) is equal to A,W,, where y is such that |R| =2k, W, = w(R)zku')(R)z((;)_k) and

hence 4, = ((;2? ) This procedure of inferring u from monomials is trivially implied from Theorem 1. All WFOMC algorithms presented
in this paper and in literature [18,10,11] only add simple arithmetic operations over the polynomials obtained in Theorem 1. Hence,
inferring u from monomials in the WFOMC polynomials is always possible. Keeping only the monomials satisfying the condition
pET can then be used to impose any cardinality constraint I" as done in Equation (62). For instance, for a cardinality constraint I,
one can simply eliminate the terms ((/%)) w(R)*k IIJ(R)z((;)_k) = A, W, such that u ¥T. Leaving us with ¥ . A, W,,.

In general, one can always consider the predicate weights as variables, and the WFOMC algorithms will produce a polynomial
on such weights. Once simplified, this polynomial can be expressed as in the RHS of equation (61), with the difference that now the
coefficients A, are known (since they are produced by the WFOMC algorithms and the polynomial simplification), while the weights
w,, are symbolic. Thus, in our implementation, instead of computing the coefficients A, as in the proof of Theorem 2, we proceed in
the following manner: with sympy Python library, we represent symbolically the predicate weights, and then perform the WFOMC
operations as operations between polynomials on such variables. This produces a polynomial that when simplified gives us directly
the coefficients A, and hence a simple way to impose any cardinality constraint as done in Equation (62).

Appendix B. Appendix to Section 5

Lemma 3. An interpretation o is a model of ¥, according to Definition 6 if and only if w satisfies conditions C1-C4 in Lemma 2, where
we instantiate axiom', axiom’ and ©(x,y) as follows:

* axiom' :=Vxy.~R(x,y)
+ axiom'" := Acyclic(R)
* O(x,y) :==R(y,x)

Proof. If o F ¥, according to Definition 6, since nodes in [m] have zero indegree, we have that w | [m] F axiom’ (C1). Since any
subgraph of an acyclic graph is acyclic, we also have that w | [7] F axiom” (C2). And since nodes in [m] have indegree zero, there
can be no arrow from [m] to [m], i.e., w F Vx € [m] Yy € [n].O(x, y) (C3). Finally, C4 is satisfied by construction. On the other hand,
if w satisfies C1 and C3 with the previous instantiations, then the nodes in [m] cannot have incoming arrows. And the graph obtained
from a DAG by adding m nodes without incoming arrows is still a DAG. []

Appendix C. Appendix to Section 6

Lemma 4. An interpretation o is a model of ¥, according to Definition 9 if and only if w satisfies conditions C1-C4 in Lemma 2, where
we instantiate axiom', axiom" and ©(x, y) as follows:

+ axiom’ := Connected(R)
e axiom' =T
* O(x,y) :=7R(x,y)

Proof. If w E ‘P[m] according to Definition 9, since [m] is a connected component, we have that @ | [m] F axiom’. Also, axiom’ is
vacuously satisfied. Since [m] is a connected component of wp, there can not be an R-edge between [m] and [] — as that would make
[m] part of a larger connected subgraph, leading to a contradiction. Hence, w F Vx € [m] Vy € [m].O(x, y). Finally, C4 is satisfied by
construction. On the other hand, if @ satisfies C4, then it satisfies the condition in Remark 4 for R to be a symmetric and antireflexive
relation. So, by satisfying also C1 and C3, the nodes in [m] must be connected and there cannot be edges between them and the other
n —m nodes. This means that precisely that wy | [m] forms a connected component of wg. []
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C.1. Analysis of the algorithm and proof of Theorem 6

We provide Algorithm 3 that takes as input ¥ := Vxy.®(x, y) A Connected(R) and k — where ®(x, y) is a quantifier-free FO? formula
and k is a 1-type cardinality vector with |k| = n — and returns WFOMC(Y, k). It can be seen that the algorithm runs in polynomial
time using much of the same analysis that was used for Algorithm 2. The key ideas being that: the for loops in line 5-8 and line
12-14 run both polynomially many iterations w.r.t n; the lexicographical order in the for loop on line 5 ensures that the values A[s']
required in the function WFOMC(¥[,,;, s) are always already stored in A; and WFOMC(Vxy.®(x, y),s") is an FO? WFOMC problem,
again computable in polynomial time.

Algorithm 3 WFOMC-Connected.

1: Input: ¥ :=Vxy.®(x, y) A Connected(R), k

2: Output: wroMcC(V, k)

3: A[0] <0 > A has u indices
4: > 0=0,...,0)
5: for 0 < p < k where p € N do > < is Lexical order
6
7.
8

Alp] = wroMC(¥”.p) = o T () - m - WFOMC(¥,,1. P)
: end for
: return A[k]
9:
10: function m(‘l’w, s) > Equation (34)
11: 5=0
12: for s’ +s” =sand |s'| =m do
13: S < S+ A[s']- wromc(W", s") - ]'[,.Vje[u] r
14: end for
15: return S

16: end function

"
s's’
%)

ij

In line 3, an array A with u indices is initiated and A[0] is assigned the value O, where 0 corresponds to the u-dimensional
zero vector. The for loop in lines 5 — 7 incrementally computes wroMcC(W, p), using equation (36), where the loop runs over all
u-dimensional integer vectors p, such that p < k, where < is the lexicographical order. The number of possible p vectors is at most
n“. Hence, the for loop runs at most n* iterations. In line 6, we compute WrFOMC(Y, p) as given in equation (36). Also in line 6, the
function WFOMG(¥/,,;, p) — that computes WFOMC(¥,,1, p) —is called at most |p| — I times, which is bounded above by n. A[p]
stores the value WFOMC(Y, p). In the function W(‘P[M], s), the number of iterations in the for loop is bounded above by n?. And
WFOMC(®, s”') is an FO? WFOMC problem, again computable in polynomial time. Hence, the algorithm WFOMC-Connected runs in
polynomial time w.r.t domain cardinality. Notice that since loop 5-7 runs in lexicographical order, the A[s’] required in the function
WFOMC(¥|,,. 5) are always already stored in A.

Summing WFOMC(YW, k) over all possible k such that |k| = n, we can compute WFOMC(¥, n) in polynomial time w.r.t domain
cardinality n. Moreover, due to the modularity of the skolemization process for WFOMC [5], we can extend this result to prove the
domain liftability of the entire FO? fragment, with connectivity axiom. Using Theorem 2 and Remark 2, we can also extend domain-
liftability of FO2, with connectivity axiom and cardinality constraints. Finally, since WFOMC of any C2 formula can be modularly
reduced to WFOMC of an FO? formula with cardinality constraints [18], we have Theorem 6.

Appendix D. Appendix to Section 7

Lemma 5. An interpretation w is a model of ¥, according to Definition 14 if and only if w satisfies conditions C1-C4 in Lemma 2, where
we instantiate axiom', axiom' and ©(x, y) as follows:

+ axiom' :=Tree(R)
« axiom'" := Forest(R)
* O(x,y) :="R(x,y)

Proof. If wF ¥}, according to Definition 14, since wg | [m] is a tree, we have that @ | [m] F axiom’. Also, any subgraph of a forest
is still a forest, so w | [m] E axiom’. Since [m] is a connected component of wg, there can not be an R-edge between [m] and [m].
Hence, w F Vx € [m] Vy € [m].O(x, y). Finally, C4 is satisfied by construction. On the other hand, if w satisfies C4, then it satisfies the
condition in Remark 8 for R to be a symmetric and antireflexive relation. Hence, by satisfying also C1, C2 and C3, the nodes in [m]
form a tree (C1), those in [m] form a forest (C2), and the two subgraphs are disconnected (C3). This implies that w F Wi according
to Definition 14. []
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Algorithm 4 WFOMC-Forest.

1:
: Output: wroMC(W, k)
: A[0] < 1

CONOD U A WN

Input: ¥ :=Vxy.®(x,y) A Forest(R),k

: for 0 < p < k where p € Nj do

Alpl = TP (2" ) WFOMC(¥,,, P)

: end for
: return A[k]

: function WFOMC(Y,,), 5)

S=0
for s’ +s” =sand |s'| =m do
S« S +wroMc(¥',5') - Als"]- TL, jqu 7y
end for
return .S

: end function

> A has u indices
> 0=0,...,0)
> Lexical order

> Equation (46)

Appendix E. Appendix to Section 8

Table 2

Number of active 1-types (# 1-types) and presence of cardinality constrains on binary
predicates (cardinality R/2) for each combinatorial experiment, after modular reduc-
tion to FO? with cardinality constraints and WFOMC-preserving skolemization. A clear
negative correlation between them and the maximum domain size having FOMC run-
time within 100 seconds (max n) can be observed.

Combinatorial problem # 1-types  cardinality R/2  maxn
DAGs w/ 2n edges (23) 1 yes 65
DAGs w/ 2n edges and one source (25) 3 yes 29
DAGs w/ one source (26) 3 no 122
DAGs w/ one source and one sink (27) 9 no 20
trees (39) 1 yes 79
3-colored connected graphs (42) 3 no 60
forests w/o isolated nodes (50) 2 yes 36
—— DAG(R) —— Connected(R)
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Fig. 5. Probability distributions of the number of edges of the directed/undirected graphs produced by MLNs with only the predicate R/2. The legends report the
hard constraints, while the soft constraint is always —1 : R(x, y). The domain size is fixed to n = 20.
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Fig. 6. Probability distributions of the number of edges of the graphs produced by predicate F with “smokers and friends” MLNs. The legends report the hard
constraints, while the soft constraints are always 0 : S(x), —1 : F(x,y) and 3 : P(x,y). The domain size is fixed to n = 20.
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Fig. 7. Distributions of smokers for different weight values. The legends report the hard constraints, while the titles report the weights of the soft constraints. The

domain size is fixed to n =20.

Data availability

The code for the paper is online.
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Fig. 8. Distributions of smokers for different weight values. The legends report the hard constraints, while the titles report the weights of the soft constraints. The
domain size is fixed to n = 20.
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