
Contents lists available at ScienceDirect

Artficial Intelligence

journal homepage: www.elsevier.com/locate/artint

Lifted inference beyond first-order logic

Sagar Malhotra a, ,∗, Davide Bizzaro b,c, , Luciano Serafini b,
a TU Wien, Vienna, Austria
b Fondazione Bruno Kessler, Trento, Italy
c University of Padova, Padova, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Lifted inference
Enumerative combinatorics
Weighted model counting
First order logic
Directed acyclic graphs
Connected graphs
Counting quantfiers
Statistical relational learning

Weighted First Order Model Counting (WFOMC) is fundamental to probabilistic inference in
statistical relational learning models. As WFOMC is known to be intractable in general (#P
complete), logical fragments that admit polynomial time WFOMC are of significant interest. Such
fragments are called domain liftable. Recent works have shown that the two-variable fragment
of first order logic extended with counting quantfiers (C2) is domain-liftable. However, many
properties of real-world data, like acyclicity in citation networks and connectivity in social networks,
cannot be modeled in C2, or first order logic in general. In this work, we expand the domain
liftability of C2 with multiple such properties. We show that any C2 sentence remains domain
liftable when one of its relations is restricted to represent a directed acyclic graph, a connected
graph, a tree (resp. a directed tree) or a forest (resp. a directed forest). All our results rely on a
novel and general methodology of counting by splitting. Besides their application to probabilistic
inference, our results provide a general framework for counting combinatorial structures. We
expand a vast array of previous results in discrete mathematics literature on directed acyclic
graphs, phylogenetic networks, etc.

1. Introduction

Statistical Relational Learning (SRL) [1,2] is concerned with modeling, learning and inferring over relational data. Probabilistic
inference and learning in SRL models like Markov Logic Networks (MLN) [3] and Probabilistic Logic Programs (PLP) [4] can be
reduced to instances of Weighted First Order Model Counting (WFOMC) [5,6]. WFOMC is the task of computing the weighted sum of
the models of a First Order Logic (FOL) sentence Φ over a finite domain of size 𝑛. Formally,

wfomc(Φ,w, 𝑛) =
∑
𝜔⊧Φ

w(𝜔) (1)

where w is a weight function that associates a real number to each interpretation 𝜔. Fragments of FOL that admit polynomial time
WFOMC w.r.t the domain cardinality 𝑛 are known as domain-liftable [7] or equivalently are said to admit lifted-inference. Recent
works have also explored WFOMC as a tool for dealing with combinatorics, providing closed form formulae for counting combinatorial
structures [8--11] and identifying novel combinatorial sequences [12,13]. This generality of WFOMC applications has led to significant
interest in FOL fragments that are domain liftable [14--16].

* Corresponding author.

E-mail address: sagar.malhotra@tuwien.ac.at (S. Malhotra).

https://doi.org/10.1016/j.artint.2025.104310
Received 8 September 2023; Received in revised form 20 February 2025; Accepted 20 February 2025

Artiϧcial Intelligence 342 (2025) 104310

Available online 24 February 2025
0004-3702/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://orcid.org/0000-0001-6700-4311
http://orcid.org/0009-0004-0420-0453
http://orcid.org/0000-0003-4812-1031
mailto:sagar.malhotra@tuwien.ac.at
https://doi.org/10.1016/j.artint.2025.104310
https://doi.org/10.1016/j.artint.2025.104310
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2025.104310&domain=pdf
http://creativecommons.org/licenses/by/4.0/

S. Malhotra, D. Bizzaro and L. Serafini

A series of results [8,5] have led to a rather clear picture of domain-liftability in the two-variable fragment of FOL. Especially,
these results have shown that any FOL formula in the two-variable fragment is domain-liftable [8]. These positive results are also
accompanied by intractability results [8,17], showing that there is an FOL formula in the three-variable fragment whose (W)FOMC
can not be computed in polynomial time. Hence, a significant effort has been made towards expanding the domain-liftability of
the two-variable fragment of FOL with additional constraints [9,18,11,19,20]. However, many features of real-world data are still
not captured in these domain-liftable fragments. Among such constraints are acyclicity and connectivity. Both of them are ubiquitous
features of real-world data [21,22], and have been investigated extensively in combinatorics literature [23--25]. Therefore, extending
domain-liftable fragments of FOL with these constraints is of both theoretical and practical interest. However, both acyclicity and
connectivity cannot be expressed in FOL [26]. Formally, this means that there is no FOL sentence with fixed number of variables or
quantfiers, that can express that a graph is acyclic or connected for arbitrary number of nodes.

In this work, we introduce a general principle of counting by splitting for relational structures (Section 4). The principle is based on
the simple observation that any interpretation preserves the satisfaction of universally quantfied FOL sentences when projected onto
a subset of the domain (Proposition 1). Conversely, interpretations of a given universally quantfied FO2 sentence Φ over disjoint
sets of domain constants can be expanded (in different ways) to a new interpretation on the union of the sets, such that Φ and some
additional desired properties are satified (as evidenced in Lemma 1 and 2). Using counting by splitting with existing combinatorial
approaches, we expand the domain-liftability of the universally quantfied formulas in the two-variable fragment of FOL (FO2) with
directed acyclicity (Section 5) and connectivity constraints (Section 6). Formally, we show that a purely universally quantfied FO2

sentence, with a distinguished predicate restricted to represent a directed acyclic graph or a connected graph, is domain-liftable.
We expand these results to full FO2, extended with cardinality constraints, and counting quantfiers (C2), using existing techniques in
the literature [5,18]. The combination of directed acyclicity, connectivity, and counting quantfiers, allow easy extension of domain
liftability of C2, with tree, directed tree and directed forest constraints (Section 7). Finally, forest constraints are obtained by using
tree constraints, and counting by splitting.

Besides its applications to SRL, our work provides a formal language in which any expressed constraint can be counted tractably,
offering a valuable tool for solving problems in enumerative combinatorics [27]. Most algorithms in this field are devised on a
case-by-case basis, almost independently for each problem. In contrast, WFOMC with graph-theoretical constraints offers a general
framework: with it, the main task reduces to formulating a logical expression for each problem �- something that is significantly
easier than devising individual counting algorithms. We illustrate this point with multiple examples of problems investigated in the
combinatorics literature that can be easily expressed as the WFOMC of C2 formulas with the presented constraints. To the best of our
knowledge, we show for the first time that the number of binary phylogenetic networks on 𝑛 nodes can be counted in polynomial time
w.r.t the number of nodes (see Example 7).

Before presenting our main results (Sections 4-7), we briefly survey the existing related work in Section 2, and provide the
necessary background in Section 3. Finally, in Section 8, we empirically investigate the efficiency and scalability of WFOMC with
graph-theoretical constraints as a combinatorial framework, and investigate the increase in expressivity of MLNs with the presented
constraints.

2. Related work

WFOMC was initially formalized in [6] and [14] for its applications to SRL frameworks like MLNs [3] and PLPs [4]. Initial
works in WFOMC generalized knowledge compilation techniques to FOL theories, providing an algorithm for Symmetric-WFOMC over
universally quantfied FOL theories. The formal definition of lifted inference as FOL theories admitting polynomial time weighted
model counting w.r.t the domain cardinality was provided in [7]. This created a deep connection between the investigation of
efficient probabilistic inference algorithms and the theoretical analysis of WFOMC. A significant advance in WFOMC techniques came
in the form of a WFOMC-preserving skolemization procedure [5], which allowed for the complete two-variable fragment to admit
polynomial time WFOMC. These works were followed by extensive complexity analysis of WFOMC [8], providing a closed-form
formula for WFOMC in the universally quantfied fragment of FO2 . However, these results also showed that in the three-variable
fragment of FOL there is a formula whose WFOMC cannot be computed in polynomial time, demonstrating that WFOMC is #P1
complete in general. This led to significant interest in expanding domain liftable fragments in other directions, for instance by adding
functionality constraints [9] (i.e., a relation in the language is a function). A major expansion in domain-liftable fragments came in the
form of domain-liftability of C2 [18,11]. Recent results have focused on expanding the expressivity of C2 with additional constraints
like the linear order axiom [19] and tree axiom [20]. The approaches proposed in this paper �- which proves domain-liftability of FO2

extended with acyclicity, connectivity, forests and trees constraints �- are most closely related to [8,11,10]. We also exploit the results
from [18] (especially for dealing with cardinality constraints) to expand our results to C2 . Our work is also related to recent results
that expand WFOMC of C2 with Tree axiom [20]. However, the techniques introduced in this paper are different and more general
than the ones used in [20]. This is because we are able to obtain trees as an instance of connected graphs with 𝑛−1 edges, which can
be simply encoded in cardinality constraints. Finally, our work also draws significantly from combinatorics literature on DAGs [24],
connected graphs [28] and forests [25]. And it provides a new resource for tackling other problems of interest in combinatorics, like
the enumeration of phylogenetic networks [29--31].

Artiϧcial Intelligence 342 (2025) 104310

2

S. Malhotra, D. Bizzaro and L. Serafini

3. Background

This section overviews basic notation, assumptions and aspects of FOL and WFOMC, revisiting and reformulating existing works
— as relevant to our results �- on WFOMC in FO2 and C2. Additional necessary background is provided at the beginning of each
section.

3.1. Basic notation

We use [𝑛] to denote the set of integers {1,… , 𝑛}. Whenever the set of integers [𝑛] is obvious from the context and 𝑚 ∈ [𝑛] we
will use [𝑚̄] to represent the set {𝑚+1,… , 𝑛}. Bold font letters (e.g. 𝒌) are used to denote integer vectors, and corresponding regular
font letters (with an additional index) for the components of the vectors (e.g. 𝑘𝑖). Hence, we use 𝒌 = ⟨𝑘1, ..., 𝑘𝑢⟩ to denote a vector of
𝑢 non-negative integers. Given an integer vector 𝒌, we use |𝒌| to denote

∑
𝑖∈[𝑢] 𝑘𝑖, i.e. the sum of all the components of 𝒌. We will

also use the multinomial coefficients denoted by(|𝒌|
𝑘1, ..., 𝑘𝑢

)
=
(|𝒌|

𝒌

)
∶= |𝒌|! ∏

𝑖∈[𝑢] 𝑘𝑖!

When summing two vectors 𝒌′ = ⟨𝑘′1, ..., 𝑘′𝑢⟩ and 𝒌′′ = ⟨𝑘′′1 , ..., 𝑘′′𝑢 ⟩, we always intend element-wise sum, i.e., 𝒌′ +𝒌′′ = ⟨𝑘′1 +𝑘′′1 , ..., 𝑘
′
𝑢
+

𝑘′′
𝑢
⟩.

3.2. First-order logic

We assume a function-free FOL language  dfined by a set of variables  and a set of relational symbols . We write 𝑅∕𝑘
to denote that the relational symbol 𝑅 has arity 𝑘. For (𝑥1, ..., 𝑥𝑘) ∈ 𝑘 and 𝑅∕𝑘 ∈, we call 𝑅(𝑥1, ..., 𝑥𝑘) an atom. A literal is an
atom or its negation. A formula is formed by connecting atoms with boolean operators (¬,∨ and ∧) and quantfiers of the form ∃𝑥𝑖.
(existential quantification) and ∀𝑥𝑖. (universal quantification), using FOL syntax rules. The free variables of a formula are those that
are not bound by a quantfier. We write Φ(𝑥1,…𝑥𝑘) to denote a formula whose free variables are {𝑥1 ,… , 𝑥𝑘}. An FOL formula with
no free-variables is called a sentence. Hence, a sentence is denoted by a capital Greek letter (e.g. Ψ). The sentences in  are interpreted
over a set of constants called the domain. The set of ground atoms (resp. ground literals) are obtained by replacing all the variables
in the atoms (resp. literals) of  with domain constants. Hence, given a predicate 𝑅∕𝑘, and a domain Δ of size 𝑛, we have 𝑛𝑘 ground
atoms of the form 𝑅(𝑎1,… , 𝑎𝑘), where (𝑎1…𝑎𝑘) ∈ Δ𝑘. An interpretation 𝜔, on a finite domain Δ, is a truth assignment to all the
ground atoms. We assume Herbrand semantics [32], hence 𝜔 is an interpretation or a model of Ψ if 𝜔 ⊧Ψ under Herbrand semantics.
Given a literal (resp. ground literal) 𝑙, we use 𝑝𝑟𝑒𝑑(𝑙) to denote the relational symbol in 𝑙. For a subset Δ′ of the domain Δ, we use
𝜔 ↓Δ′ to denote the partial interpretation induced on Δ′. Hence, 𝜔 ↓Δ′ is an interpretation over the ground atoms containing only
the domain elements in Δ′. Finally, we use 𝜔𝑅 to represent the partial interpretation of 𝜔 restricted to the relation 𝑅. When 𝑅 is
binary, 𝜔𝑅 can be seen as a directed graph in which there is an edge from a domain element 𝑐 to a domain element 𝑑 whenever
𝜔 ⊧ 𝑅(𝑐, 𝑑). We can also restrict 𝜔𝑅 to undirected graphs by axiomatizing 𝑅 to be anti-reflexive and symmetric, by adding the axiom
∀𝑥.¬𝑅(𝑥,𝑥) ∧ ∀𝑥𝑦.𝑅(𝑥, 𝑦)→𝑅(𝑦,𝑥).

Example 1. Let us have a language with only the two relational symbols 𝑅 and 𝐵, both of arity 2. We represent an interpretation 𝜔
as a multi-relational directed graph, where a pair of domain elements (𝑐, 𝑑) has a red (resp. blue) directed edge from 𝑐 to 𝑑 if and
only if 𝑅(𝑐, 𝑑) (resp. 𝐵(𝑐, 𝑑)) is true in 𝜔. (For interpretation of the references to color please refer to the web version of this article.)
Let us take for example the following interpretation 𝜔 on Δ= [4]:

21 3 4

Then, 𝜔′ = 𝜔 ↓ [2] and 𝜔′′ = 𝜔 ↓ [2̄] are given respectively as

21 3 4and

On the other hand, 𝜔𝑅 is obtained by projecting on the predicate 𝑅 and is given as

Artiϧcial Intelligence 342 (2025) 104310

3

S. Malhotra, D. Bizzaro and L. Serafini

21 3 4

We will also exploit the following proposition about purely universally quantfied FOL sentences.

Proposition 1. Let Ψ be a first order logic sentence such that Ψ is of the form ∀𝒙.Φ(𝒙), where 𝒙 = 𝑥1, ..., 𝑥𝑘 represents the free variables in
Φ(𝒙), and Φ(𝒙) is quantifier-free. If 𝜔 is an interpretation over a domain Δ, and 𝜔 ⊧Ψ, then 𝜔 ↓Δ′ ⊧Ψ for all Δ′ ⊆Δ.

Proof. Under Herbrand semantics, 𝜔 ⊧ ∀𝒙.Φ(𝒙) can be equivalently written as 𝜔 ⊧
⋀

𝐜∈Δ𝑘 Φ(𝐜). Hence, 𝜔 ⊧
⋀

𝐜∈Δ′ 𝑘 Φ(𝐜), for any
Δ′ ⊆ Δ. Now, 𝜔 ↓ Δ′ is the truth assignment to all the atoms on the domain Δ′. Hence, 𝜔 ↓ Δ′ ⊧

⋀
𝐜∈Δ′ 𝑘 Φ(𝐜). Therefore, 𝜔 ↓ Δ′ ⊧

∀𝒙.Φ(𝒙). □

Proposition 1 allows us to split an interpretation over disjoint subsets of the domain while preserving satisfaction of a universally
quantfied FOL sentence. We will also deal with expanding interpretations from two disjoint subsets of the domain. Given disjoint
sets of domain constants Δ′ and Δ′′, we use Δ = Δ′ ⊎ Δ′′ to denote the fact that Δ is the union of the two disjoint sets. If 𝜔′ is an
interpretation on Δ′ and 𝜔′′ is an interpretation on Δ′′, then we use 𝜔′ ⊎𝜔′′ to denote the partial interpretation on Δ′ ⊎Δ′′ obtained
by interpreting the ground atoms over Δ′ as they are interpreted in 𝜔′ and the ground atoms over Δ′′ as they are interpreted in 𝜔′′.
The ground atoms involving domain constants from both Δ′ and Δ′′ are left un-interpreted in 𝜔′ ⊎𝜔′′. We illustrate this point in the
following:

Example 2. Let us have an FOL language with only one relational symbol 𝑅, of arity 2. Let Δ= [3], Δ′ = [2] and Δ′′ = [2̄] = {3}. We
represent an interpretation 𝜔 as a directed graph where each pair (𝑐, 𝑑) of domain elements has a red edge from 𝑐 to 𝑑 if and only if
𝑅(𝑐, 𝑑) is true in 𝜔. Let us have the following two interpretations 𝜔′ and 𝜔′′ on the domains [2] and [2̄], respectively:

21 3and

𝜔′ 𝜔′′

We now create a partial interpretation 𝜔′ ⊎ 𝜔′′ as follows:

21 3

The gray dotted lines represent the fact that 𝑅(1,3), 𝑅(3,1), 𝑅(2,3) and 𝑅(3,2) are not interpreted in 𝜔′ ⊎ 𝜔′′. A possible
extension of 𝜔′ ⊎𝜔′′ is given as

21 3

where 𝑅(2,3) is interpreted to be true and 𝑅(1,3), 𝑅(3,1) and 𝑅(3,2) are interpreted to be false. We can see that 𝜔′ ⊎ 𝜔′′ can be
extended in 24 ways.

3.2.1. FO2 and its extensions

FO2 is the fragment of FOL with only two variables. An extension of FO2 is obtained by introducing counting quantfiers of the
form ∃=𝑘 (there exist exactly 𝑘), ∃≥𝑘 (there exist at least 𝑘) and ∃≤𝑘 (there exist at most 𝑘). This extended fragment is denoted by C2

[33]. Cardinality constraints are constraints on the cardinality of predicates in an interpretation [18]. For example, 𝜔 ⊧Φ∧ (|𝑅| ≥ 5)
iff 𝜔 ⊧Φ and the sum of the ground atoms in 𝜔, with the predicate 𝑅, that are interpreted to be true is at least 5.

3.2.2. Types and tables

We will use the notion of 1-types, 2-type, and 2-tables as presented in [9,34]. A 1-type is a maximally consistent conjunction of
literals containing only one variable. For example, in a language with only the relational symbols 𝑈∕1 and 𝑅∕2, both 𝑈 (𝑥) ∧𝑅(𝑥,𝑥)

Artiϧcial Intelligence 342 (2025) 104310

4

S. Malhotra, D. Bizzaro and L. Serafini

and 𝑈 (𝑥) ∧ ¬𝑅(𝑥,𝑥) are examples of 1-types with variable 𝑥. A 2-table is a maximally consistent conjunction of literals containing
exactly two distinct variables. Extending the previous example, both 𝑅(𝑥, 𝑦) ∧ ¬𝑅(𝑦,𝑥) ∧ (𝑥 ≠ 𝑦) and 𝑅(𝑥, 𝑦) ∧ 𝑅(𝑦,𝑥) ∧ (𝑥 ≠ 𝑦) are
instances of 2-tables. We assume an arbitrary order on the 1-types and 2-tables. Hence, we use 𝑖(𝑥) (resp. 𝑖(𝑦)) to denote the 𝑖𝑡ℎ 1-type
with variable 𝑥 (resp. with variable 𝑦), and 𝑙(𝑥, 𝑦) to denote the 𝑙𝑡ℎ 2-table. A 2-type is a formula of the form 𝑖(𝑥) ∧ 𝑗(𝑦) ∧ 𝑙(𝑥, 𝑦), and
we use 𝑖𝑗𝑙(𝑥, 𝑦) to represent it. In a given interpretation 𝜔, we say that a domain constant 𝑐 realizes the 𝑖𝑡ℎ 1-type if 𝜔 ⊧ 𝑖(𝑐), that a
pair of domain constants (𝑐, 𝑑) realizes the 𝑙𝑡ℎ 2-table if 𝜔 ⊧ 𝑙(𝑐, 𝑑) and that (𝑐, 𝑑) realizes the 2-type 𝑖𝑗𝑙(𝑥, 𝑦) if 𝜔 ⊧ 𝑖𝑗𝑙(𝑐, 𝑑). We will
use 𝑢 to denote the number of 1-types and 𝑏 to denote the number of 2-tables in a given FOL language. For instance, in the language
with the relational symbols 𝑈∕1 and 𝑅∕2, we have that 𝑢 = 22 and 𝑏= 22.

Definition 1 (1-type Cardinality Vector). An interpretation 𝜔 is said to have the 1-type cardinality vector 𝒌 = ⟨𝑘1,… , 𝑘𝑢⟩ if for all
𝑖 ∈ [𝑢], it has 𝑘𝑖 domain elements 𝑐 such that 𝜔 ⊧ 𝑖(𝑐), where 𝑖(𝑥) is the 𝑖𝑡ℎ 1-type. If 𝜔 has 1-type cardinality vector 𝒌, then we say
that 𝜔 ⊧ 𝒌.

Notice that in a given interpretation 𝜔 each domain element realizes exactly one 1-type. Hence, given a 1-type cardinality vector
𝒌, |𝒌| is equal to the domain cardinality. Furthermore, for a given 𝒌 and a fixed pair of 1-types 𝑖 and 𝑗, where 𝑖 ≤ 𝑗, there are 𝑘𝑖𝑘𝑗
pairs of domain constants (𝑐, 𝑑) such that 𝜔 ⊧ 𝑖(𝑐) ∧ 𝑗(𝑑). Similarly, for a given 𝒌 and a 1-type 𝑖, there are

(𝑘𝑖
2
)

unordered pairs of
distinct domain constants (𝑐, 𝑑) such that 𝜔 ⊧ 𝑖(𝑐) ∧ 𝑖(𝑑).

3.3. Weighted first order model counting

In WFOMC as dfined in equation (1), we assume that the weight function w does not depend on individual domain constants,
which implies that w assigns the same weight to two interpretations which are isomorphic under a permutation of domain elements.
Hence, for a domain Δ of size 𝑛 we can equivalently use [𝑛] as our domain. Furthermore, as common in literature, we will focus on
a special class of weight functions, namely symmetric weight functions, dfined as follows:

Definition 2 (Symmetric Weight Function). Let  be the set of all ground atoms and  the set of all relational symbols in a given FOL
language. A symmetric weight function associates two real-valued weights, 𝑤 ∶→ℝ and 𝑤̄ ∶→ℝ, to each relational symbol in
the language. The weight of an interpretation 𝜔 is then dfined as follows:

w(𝜔) ∶=
∏
𝜔⊧𝑔
𝑔∈

𝑤(𝑝𝑟𝑒𝑑(𝑔))
∏
𝜔⊧¬𝑔
𝑔∈

𝑤̄(𝑝𝑟𝑒𝑑(𝑔)). (2)

We use (𝑤, 𝑤̄) to denote a symmetric weight function.

Many techniques [5,18,11] for WFOMC of a sentence Φ require WFOMC-preserving reductions. That is, constructing another
sentence Φ′ and a new weight function (𝑤′, 𝑤̄′) such that

wfomc(Φ, (𝑤, 𝑤̄), 𝑛) = wfomc(Φ′, (𝑤′, 𝑤̄′), 𝑛).

A key property desired from a WFOMC-preserving reduction is that adding new formulas to it should not invalidate the reduction.
Reductions satisfying this requirement are called modular. We formalize this in the following definition:

Definition 3. [5] A reduction (Φ,𝑤, 𝑤̄) to (Φ′,𝑤′, 𝑤̄′), where Φ and Φ′ are two sentences and (𝑤, 𝑤̄) and (𝑤′, 𝑤̄′) are two weight
functions, is modular if

wfomc(Φ ∧ Λ, (𝑤, 𝑤̄), 𝑛) = wfomc(Φ′ ∧ Λ, (𝑤′, 𝑤̄′), 𝑛) (3)

for any sentence Λ.

Intuitively, modular reductions are sound under the presence of another sentence Λ, and any new sentence Λ does not invalidate
a modular reduction.

For the rest of the paper, whenever referring to weights, we intend symmetric weights. Hence, we denote wfomc(Φ, (𝑤, 𝑤̄), 𝑛)
without explicitly mentioning the weights, i.e. as wfomc(Φ, 𝑛). We will often compute the WFOMC of interpretations with a fixed
1-type cardinality vector, and with a slight abuse of notation denote it as wfomc(Φ,𝒌). Formally,

wfomc(Φ,𝒌) ∶=
∑

𝜔⊧Φ∧𝒌
w(𝜔) (4)

3.3.1. WFOMC in FO2

We revisit WFOMC for universally quantfied FO2 formulas, i.e. formulas of the form ∀𝑥𝑦.Φ(𝑥, 𝑦), where Φ(𝑥, 𝑦) is quantifier-free.
We dfine Φ({𝑥, 𝑦}) as

Artiϧcial Intelligence 342 (2025) 104310

5

S. Malhotra, D. Bizzaro and L. Serafini

Φ(𝑥,𝑥) ∧ Φ(𝑥, 𝑦) ∧ Φ(𝑦,𝑥) ∧ Φ(𝑦, 𝑦) ∧ (𝑥 ≠ 𝑦)

We also dfine the notion of consistent 2-types as follows:

Definition 4. Given an FO2 sentence ∀𝑥𝑦.Φ(𝑥, 𝑦), where Φ(𝑥, 𝑦) is quantifier-free, we say that a 2-type 𝑖𝑗𝑙(𝑥, 𝑦) is consistent with
∀𝑥𝑦.Φ(𝑥, 𝑦) if

𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}) (5)

Note that the entailment in equation (5) is checked by assuming a propositional language consisting of only the (constant free)
atoms in the FO2 language.

Example 3. Let Φ(𝑥, 𝑦) ∶= (𝐴(𝑥) ∧𝑅(𝑥, 𝑦))→𝐴(𝑦). The following is an example of a consistent 2-type for the sentence ∀𝑥𝑦.Φ(𝑥, 𝑦):

𝜏(𝑥, 𝑦) ∶= ¬𝐴(𝑥) ∧𝑅(𝑥,𝑥) ∧ ¬𝐴(𝑦) ∧𝑅(𝑦, 𝑦) ∧ ¬𝑅(𝑥, 𝑦) ∧𝑅(𝑦,𝑥) ∧ (𝑥 ≠ 𝑦)

A key idea in analyzing domain-liftability of universally quantfied FO2 formula is that a pair of domain constants (𝑐, 𝑑) in an
interpretation 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦) can realize a 2-type 𝑖𝑗𝑙(𝑐, 𝑑) only if the 2-type is consistent with the formula ∀𝑥𝑦.Φ(𝑥, 𝑦), i.e. only if
𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}). We formalize this intuition in the following proposition.

Proposition 2. Let ∀𝑥𝑦.Φ(𝑥, 𝑦) be an FO2 sentence where Φ(𝑥, 𝑦) is quantifier-free. Then, 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦) iff for any pair of distinct domain
constants (𝑐, 𝑑), such that 𝜔 ⊧ 𝑖𝑗𝑙(𝑐, 𝑑), we have that 𝑖𝑗𝑙(𝑥, 𝑦) is consistent with ∀𝑥𝑦.Φ(𝑥, 𝑦), i.e. 𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}).

Proof. If 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦) and 𝜔 ⊧ 𝑖𝑗𝑙(𝑐, 𝑑), then 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦)∧ 𝑖𝑗𝑙(𝑐, 𝑑). Now, 𝑖𝑗𝑙(𝑐, 𝑑) is a complete truth assignment to the ground
atoms containing only the domain constants 𝑐 or 𝑑 or both. Hence, 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝑖𝑗𝑙(𝑐, 𝑑) only if 𝑖𝑗𝑙(𝑐, 𝑑) ⊧Φ({𝑐, 𝑑}), i.e. only if
𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}). On the other hand, let 𝜔 be such that all pair of domain constants realize only the 2-types 𝑖𝑗𝑙(𝑥, 𝑦) consistent
with ∀𝑥𝑦.Φ(𝑥, 𝑦). It means that 𝜔 ⊧Φ({𝑐, 𝑑}) for all the pairs of domain constants (𝑐, 𝑑). Hence, 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦). □

To facilitate the treatment of WFOMC, we will now introduce some weight parameters associated with an FO2 language. Consider
an FO2 language  with symmetric weight function (𝑤, 𝑤̄), and let  denote the set of atoms in  that contain only variables. We
dfine the following weight parameters associated with each 1-type 𝑖(𝑥) and 2-table 𝑙(𝑥, 𝑦):

𝑤𝑖 ∶=
∏
𝑖(𝑥)⊧𝑔
𝑔∈

𝑤(𝑝𝑟𝑒𝑑(𝑔))
∏

𝑖(𝑥)⊧¬𝑔
𝑔∈

𝑤̄(𝑝𝑟𝑒𝑑(𝑔)) (6)

and

𝑣𝑙 ∶=
∏

𝑙(𝑥,𝑦)⊧𝑔
𝑔∈

𝑤(𝑝𝑟𝑒𝑑(𝑔))
∏

𝑙(𝑥,𝑦)⊧¬𝑔
𝑔∈

𝑤̄(𝑝𝑟𝑒𝑑(𝑔)) (7)

We now present an analytical formula for WFOMC of FO2 sentences of the form ∀𝑥𝑦.Φ(𝑥, 𝑦) where Φ(𝑥, 𝑦) is quantifier-free. Our
presentation is based on the treatment proposed in [8].

Theorem 1 (reformulated from [8]). Given an FO2 sentence ∀𝑥𝑦.Φ(𝑥, 𝑦) where Φ(𝑥, 𝑦) is quantifier-free, let us dfine, for any pair of
1-types (𝑖, 𝑗), the quantity 𝑟𝑖𝑗 ∶=

∑
𝑙∈[𝑏] 𝑛𝑖𝑗𝑙𝑣𝑙 , with 𝑛𝑖𝑗𝑙 being 1 if 𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}) and 0 otherwise. Then, the weighted model count of

∀𝑥𝑦.Φ(𝑥, 𝑦) with 1-types cardinality vector 𝒌 is given as follows:

wfomc(∀𝑥𝑦.Φ(𝑥, 𝑦),𝒌) =
(|𝒌|

𝒌

) ∏
𝑖∈[𝑢]

𝑤
𝑘𝑖
𝑖

∏
𝑖≤𝑗∈[𝑢]

𝑟
𝒌(𝑖,𝑗)
𝑖𝑗

(8)

where 𝒌(𝑖, 𝑗) is dfined as

𝒌(𝑖, 𝑗) ∶=

{
𝑘𝑖(𝑘𝑖−1)

2 if 𝑖 = 𝑗

𝑘𝑖𝑘𝑗 otherwise

Proof. In a 1-type cardinality vector 𝒌, and 𝑘𝑖 represents the number of domain constants that realize the 1-type 𝑖. Since any domain
constant realizes one and only one 1-type in any given interpretation, there are exactly

(|𝒌|
𝒌

)
ways of assigning 1-types to |𝒌| domain

constants. Suppose that a domain constant 𝑐 realizes the 𝑖𝑡ℎ 1-type for an interpretation 𝜔 ⊧ 𝒌; then 𝑖(𝑐) contributes to the weight of
the interpretation with the weight 𝑤𝑖 , multiplicatively. Therefore, the contribution due to 1-type realizations is given by

∏
𝑖∈[𝑢]𝑤

𝑘𝑖
𝑖

for any interpretation 𝜔 ⊧ 𝒌. Summing over all such interpretations gives us the factor of
(|𝒌|
𝒌

)∏
𝑖∈[𝑢]𝑤

𝑘𝑖
𝑖

.

Artiϧcial Intelligence 342 (2025) 104310

6

S. Malhotra, D. Bizzaro and L. Serafini

Now consider an interpretation 𝜔 and a pair of distinct domain constants (𝑐, 𝑑) such that 𝜔 ⊧ 𝑖(𝑐) ∧ 𝑗(𝑑). Using Proposition 2,
we know that (𝑐, 𝑑) realizes the 2-table 𝑙(𝑐, 𝑑) if and only if 𝑖𝑗𝑙(𝑥, 𝑦) ⊧ Φ({𝑥, 𝑦}). Therefore, in an arbitrary interpretation 𝜔, the
multiplicative weight contribution due to the realization of the 𝑙𝑡ℎ 2-table by a pair of constants (𝑐, 𝑑) such that 𝜔 ⊧ 𝑖(𝑐) ∧ 𝑗(𝑑) is
given by 𝑛𝑖𝑗𝑙𝑣𝑙 . Also, each ordered pair of constants can realize exactly one and only one 2-table. Hence, the sum of the weights of the
possible 2-table realizations of a pair of domain constants (𝑐, 𝑑) such that 𝑖(𝑐) and 𝑗(𝑑) are true is given as 𝑟𝑖𝑗 =

∑
𝑙 𝑛𝑖𝑗𝑙𝑣𝑙 . Furthermore,

given the 1-type assignments 𝑖(𝑐) and 𝑗(𝑑), the ordered pair (𝑐, 𝑑) can realize 2-tables independently of all other domain constants.
Since there are 𝒌(𝑖, 𝑗) possible such pairs, the contribution given by the realization of 2-tables over all the interpretations 𝜔 ⊧ 𝒌 is ∏

𝑖≤𝑗∈[𝑢] 𝑟
𝒌(𝑖,𝑗)
𝑖𝑗

. □

Equation (8) can be computed in polynomial time w.r.t. the domain cardinality 𝑛, and there are only polynomially many 𝒌 w.r.t.
𝑛. Hence, wfomc(∀𝑥𝑦.Φ(𝑥, 𝑦), 𝑛), which is equal to ∑

|𝒌|=𝑛wfomc(∀𝑥𝑦.Φ(𝑥, 𝑦),𝒌) (9)

can be computed in polynomial time w.r.t. domain size 𝑛. Furthermore, [5] shows that any FOL formula with existential quantification
can be modularly reduced to a WFOMC preserving universally quantfied FO2 formula, with additional new predicates and negative
weights. Hence, showing that FO2 is domain-liftable.

Remark 1. Note that the number of distinct 𝒌 in equation (9) can be super-exponentially many w.r.t the number of symbols in the
language. However, as common in domain-liftability literature, in this paper we are only concerned with computational complexity
of WFOMC w.r.t. the domain cardinality 𝑛.

3.3.2. WFOMC in C2

[11] and [18] show that WFOMC in C2 can be reduced to WFOMC in FO2 with cardinality constraints. The key result that leads
to domain liftability of C2, is the following:

Theorem 2. ([18], slightly reformulated) Let Φ be a first-order logic sentence and let Γ be an arbitrary cardinality constraint. Then,
wfomc(Φ ∧ Γ,𝒌) can be computed in polynomial time with respect to the domain cardinality, relative to the wfomc(Φ,𝒌) oracle.

In order to prove Theorem 2, the proof in [18] relies on polynomial interpolation. We provide an easier presentation of the proof
using Gauss-elimination based polynomial interpolation in the appendix.

Remark 2. In the proof presented in the appendix (and in [18]), the first-order dfinability of Φ is never invoked. This property has
also been exploited for imposing cardinality constraints with tree axiom in [20].

Theorem 2 extends domain-liftability of any sentence Φ to its domain-liftability with cardinality constraints. We now move to
domain-liftability in C2:

Theorem 3 ([18]). The fragment of first-order logic with two variables and counting quantfiers is domain-liftable.

The key idea behind Theorem 3 is that WFOMC of a C2 sentence Φ can be converted to a problem of WFOMC of an FO2 sentence
Φ′ with cardinality constraints Γ on an extended vocabulary with additional weights for the new predicates (the new predicates are
weighted 1 or -1). We refer the reader to [18] and [11] for the detailed treatment of Theorem 3. However, for our purposes it is
important to note that this transformation is modular. The modularity of the WFOMC procedure, as presented in [18], has also been
exploited to demonstrate domain-liftability of C2 extended with Tree axiom [20] and Linear Order axiom [19].

4. Main approach: counting by splitting

As shown in Example 2, the possible ways of merging two interpretations 𝜔′ and 𝜔′′, on disjoint domains Δ′ and Δ′′, can be
efficiently computed. Moreover, additional constraints can be imposed on the way the interpretations are merged. Such constraints,
for instance, may express statements like ``for the binary predicate 𝑅, there is no 𝑅-edge going from Δ′′ to Δ′''. Formally, we express
this constraint as ∀𝑥 ∈Δ′ ∀𝑦 ∈Δ′′.¬𝑅(𝑦,𝑥).

Example 4. Among the 24 possible extensions of 𝜔′ ⊎ 𝜔′′ in Example 2, the following 22 satisfy the additional constraint
∀𝑥 ∈ [2] ∀𝑦 ∈ [2̄].¬𝑅(𝑦,𝑥):

Artiϧcial Intelligence 342 (2025) 104310

7

S. Malhotra, D. Bizzaro and L. Serafini

21 3 21 3

21 3 21 3

A key insight of the paper is that such merging can also be done for disjoint interpretations of a universally quantfied FO2 formula,
while preserving the satisfaction of such formula. This is formalized in the following lemma.

Lemma 1. Let Φ(𝑥, 𝑦) and Θ(𝑥, 𝑦) be quantifier-free FO2 formulas. Let 𝜔′ and 𝜔′′ be interpretations satisfying ∀𝑥𝑦.Φ(𝑥, 𝑦) on two disjoint
domains Δ′ and Δ′′ (respectively). We dfine 𝑟𝑖𝑗 ∶=

∑
𝑙∈[𝑏] 𝑛𝑖𝑗𝑙𝑣𝑙 , where 𝑛𝑖𝑗𝑙 is 1 if 𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}) ∧ Θ(𝑥, 𝑦) and 0 otherwise, and 𝑣𝑙

is dfined in equation (7). Then, the sum of the weights of the extensions 𝜔 of 𝜔′ ⊎𝜔′′ such that

• 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦)
• 𝜔 ⊧ ∀𝑥 ∈Δ′ ∀𝑦 ∈Δ′′.Θ(𝑥, 𝑦)

is given as

w(𝜔′)w(𝜔′′)
∏

𝑖,𝑗∈[𝑢]
𝑟
𝑘′
𝑖
𝑘′′
𝑗

𝑖𝑗
(10)

where 𝑘′
𝑖

and 𝑘′′
𝑗

are the number of domain constants realizing the 𝑖𝑡ℎ and 𝑗𝑡ℎ 1-types in 𝜔′ and 𝜔′′ respectively.

Proof. In order to obtain an interpretation 𝜔 from 𝜔′ ⊎𝜔′′, we only need to extend 𝜔′ ⊎𝜔′′ with interpretations of the ground-atoms
containing pairs (𝑐, 𝑑) ∈ Δ′ × Δ′′. For a given pair (𝑐, 𝑑) ∈ Δ′ × Δ′′, let 𝑖 and 𝑗 be the 1-types such that 𝜔′ ⊧ 𝑖(𝑐) and 𝜔′′ ⊧ 𝑗(𝑑). Since
we want 𝜔 to be a model of ∀𝑥𝑦.Φ(𝑥, 𝑦), if 𝜔 ⊧ 𝑙(𝑐, 𝑑), then by Proposition 2 we must have that 𝑖𝑗𝑙(𝑐, 𝑑) ⊧Φ({𝑐, 𝑑}). Moreover, since
we want 𝜔 to satisfy the condition ∀𝑥 ∈Δ′ ∀𝑦 ∈Δ′′.Θ(𝑥, 𝑦), we must have that 𝑖𝑗𝑙(𝑐, 𝑑) ⊧Θ(𝑐, 𝑑). Therefore, (𝑐, 𝑑) can realize the 𝑙𝑡ℎ
2-table if and only if 𝑛𝑖𝑗𝑙 = 1. The multiplicative weight contribution to the weight of a given extension 𝜔 of 𝜔′ ⊎ 𝜔′′ due to (𝑐, 𝑑)
realizing the 𝑙𝑡ℎ 2-table is given as 𝑛𝑖𝑗𝑙𝑣𝑙 . Furthermore, (𝑐, 𝑑) realizes the 2-tables mutually-exclusively. Also, the weight contribution
of the 2-table realizations of (𝑐, 𝑑) only depends on the 1-types of 𝑐 and 𝑑 and is independent of all other domain constants. Hence,
𝑟𝑖𝑗 =

∑
𝑙∈[𝑏] 𝑛𝑖𝑗𝑙𝑣𝑙 is the multiplicative weight contribution given by the interpretation of all the possible ground atoms containing a

pair (𝑐, 𝑑) ∈ Δ′ × Δ′′ with 𝑐 realizing the 𝑖𝑡ℎ 1-type in 𝜔′ and 𝑗 realizing the 𝑗𝑡ℎ 1-type in 𝜔′′. Since there are 𝑘′
𝑖

domain elements 𝑐
realizing the 𝑖𝑡ℎ 1-type in 𝜔′, and 𝑘′′

𝑗
domain elements 𝑑 realizing the 𝑗𝑡ℎ 1-type in 𝜔′′, the weight contribution of the interpretation

of all the possible ground atoms containing a pair (𝑐, 𝑑) ∈ Δ′ × Δ′′ is given by
∏

𝑖,𝑗∈[𝑢] 𝑟
𝑘′
𝑖
𝑘′′
𝑗

𝑖𝑗
. Furthermore, since 𝜔′ and 𝜔′′ interpret

two disjoint sets of ground atoms, their weights w(𝜔′) and w(𝜔′′) contribute independently to each w(𝜔). □

Lemma 1 provides us a method to compute the (weighted sum of the) number of ways to merge two FO2 interpretations on two
disjoint domains. We will now use Lemma 1 to compute weighted model count of FO2 formulas, where the models are restricted to
obey additional constraints (potentially inexpressible in FOL) on disjoint subsets of the domain.

Lemma 2 (Counting by Splitting). Let Φ(𝑥, 𝑦) and Θ(𝑥, 𝑦) be quantifier-free FO2 formulas. Let Ψ′ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝑎𝑥𝑖𝑜𝑚′ and Ψ′′ ∶=
∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝑎𝑥𝑖𝑜𝑚′′, where 𝑎𝑥𝑖𝑜𝑚′ and 𝑎𝑥𝑖𝑜𝑚′′ denote arbitrary constraints -- potentially inexpressible in first-order logic. Let [𝑛] be the
domain, and let 𝑚≤ 𝑛 be a natural number. Let Ψ[𝑚] denote the conjunction of the following four conditions on interpretations 𝜔:

C1: 𝜔 ↓ [𝑚] ⊧ 𝑎𝑥𝑖𝑜𝑚′

C2: 𝜔 ↓ [𝑚̄] ⊧ 𝑎𝑥𝑖𝑜𝑚′′

C3: 𝜔 ⊧ ∀𝑥 ∈ [𝑚] ∀𝑦 ∈ [𝑚̄].Θ(𝑥, 𝑦)
C4: 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦)

Then, the weighted model count of the interpretations 𝜔 satisfying both Ψ[𝑚] and the cardinality vector 𝒌 is given as:

wfomc(Ψ[𝑚],𝒌) =
∑

𝒌′+𝒌′′=𝒌|𝒌′|=𝑚
wfomc(Ψ′,𝒌′)wfomc(Ψ′′,𝒌′′)

∏
𝑖,𝑗∈[𝑢]

𝑟
𝑘′
𝑖
𝑘′′
𝑗

𝑖𝑗
(11)

Artiϧcial Intelligence 342 (2025) 104310

8

S. Malhotra, D. Bizzaro and L. Serafini

Table 1
Axioms used for counting by splitting for different constraints.

Constraint 𝑎𝑥𝑖𝑜𝑚′ 𝑎𝑥𝑖𝑜𝑚′′ Θ(𝑥, 𝑦)

𝐷𝐴𝐺(𝑅) ∀𝑥𝑦.¬𝑅(𝑥, 𝑦) 𝐷𝐴𝐺(𝑅) ¬𝑅(𝑦, 𝑥)
𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) ⊤ ¬𝑅(𝑥, 𝑦)
𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) 𝑇 𝑟𝑒𝑒(𝑅) 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) ¬𝑅(𝑥, 𝑦)

where 𝑟𝑖𝑗 ∶=
∑

𝑙∈[𝑏] 𝑛𝑖𝑗𝑙𝑣𝑙 , and 𝑛𝑖𝑗𝑙 is 1 if 𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}) ∧ Θ(𝑥, 𝑦) and 0 otherwise, and 𝑣𝑙 is as dfined in equation (7).

Proof. Let 𝜔 ⊧Ψ[𝑚]. Using condition C4 and Proposition 1, we have that 𝜔 ↓ [𝑚] ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦). Furthermore, using condition C1, we
have that 𝜔 ↓ [𝑚] ⊧ 𝑎𝑥𝑖𝑜𝑚′. Hence, 𝜔 ↓ [𝑚] ⊧Ψ′, and similarly 𝜔 ↓ [𝑚̄] ⊧Ψ′′. The WFOMC of Ψ′ on [𝑚] with 1-type cardinality vector
𝒌′ is wfomc(Ψ′,𝒌′). Similarly, the WFOMC of Ψ′′ on [𝑚̄] with 1-type cardinality vector 𝒌′′ is wfomc(Ψ′′,𝒌′′). For a given pair of
models 𝜔′ and 𝜔′′ counted respectively in wfomc(Ψ′,𝒌′) and wfomc(Ψ,𝒌′′), the weighted sum of extensions 𝜔 ⊧ Ψ[𝑚] is given by
equation (10), due to Lemma 1. Summing over extensions of all such possible pairs of 𝜔′ and 𝜔′′, we get:

wfomc(Ψ′,𝒌′)wfomc(Ψ′′,𝒌′′)
∏

𝑖,𝑗∈[𝑢]
𝑟
𝑘′
𝑖
𝑘′′
𝑗

𝑖𝑗
(12)

Expression (12) gives us the WFOMC of the models 𝜔 such that 𝜔 ⊧Ψ[𝑚], 𝜔 ↓ [𝑚] ⊧ 𝒌′ and 𝜔 ↓ [𝑚̄] ⊧ 𝒌′′. To compute the WFOMC of
the models 𝜔 such that 𝜔 ⊧Ψ[𝑚] ∧𝒌, we have to sum expression (12) over all possible decompositions of the 1-type cardinality vector
𝒌 into 𝒌′ and 𝒌′′, where |𝒌′| =𝑚. □

The techniques developed in this paper will use counting by splitting with different instantiations of 𝑎𝑥𝑖𝑜𝑚′ , 𝑎𝑥𝑖𝑜𝑚′′ and Θ(𝑥, 𝑦).
Table 1 summarizes how we will instantiate them when providing the algorithms for WFOMC with DAG, connected graph and forest
constraints (as given respectively in Definitions 5, 8 and 13, and making use of Remarks 3, 4 and 8).

5. WFOMC with DAG axiom

A Directed Acyclic Graph (DAG) is a directed graph such that starting from an arbitrary node 𝑖 and traversing an arbitrary path along
directed edges we would never arrive back at node 𝑖. We present a recursive formula based on the principle of inclusion-exclusion for
WFOMC of an FO2 sentence, say Φ, where a special predicate, say 𝑅, is axiomatized to be a DAG, i.e. we count the models 𝜔 ⊧Φ such
that 𝜔𝑅 represents a DAG. We begin by revisiting the principle of inclusion-exclusion and the recursive formula for counting DAGs
on 𝑛 nodes, as presented in [24]. We identify key observations that lead to the formula for counting DAGs and exploit analogous
ideas for WFOMC with the DAG axiom. We then expand the DAG axiom with source and sink constraints. Our results also shed a new
light on counting phylogenetic networks [29--31] -- a widely investigated problem in combinatorics and mathematical biology.

5.1. Principle of inclusion-exclusion

Given a set of finite sets {𝐴𝑖}𝑖∈[𝑛], let 𝐴𝐽 ∶=
⋂

𝑗∈𝐽 𝐴𝑗 for any subset 𝐽 ⊆ [𝑛]. The principle of inclusion-exclusion (PIE) states that:

|||⋃
𝑖
𝐴𝑖

||| = ∑
∅≠𝐽⊆[𝑛]

(−1)|𝐽 |+1|||𝐴𝐽
||| (13)

If the cardinality of the intersections 𝐴𝐽 only depends on the cardinality of 𝐽 , then the formula can be simplfied. In this case, all
𝐴𝐽 ’s with |𝐽 | = 𝑚 have cardinality equal to |𝐴[𝑚]|. Since for any 𝑚 ∈ [𝑛] there are

(𝑛
𝑚

)
sets 𝐴𝐽 with |𝐽 | = 𝑚, equation (13) reduces

to:

|||⋃
𝑖
𝐴𝑖

||| = 𝑛 ∑
𝑚=1

(−1)𝑚+1
(
𝑛
𝑚

)|||𝐴[𝑚]
||| (14)

The principle of inclusion-exclusion can be easily extended to the case when the sets 𝐴𝑖 contain weighted FOL interpretations and
we want the weighted sum of all the interpretations in

⋃
𝑖 𝐴𝑖. Indeed, if w(𝐴𝑖) denotes the weighted sum of all the interpretations in

𝐴𝑖, then the PIE reduces to:

w
(⋃

𝑖
𝐴𝑖

)
=

∑
∅≠𝐽⊆[𝑛]

(−1)|𝐽 |+1w(𝐴𝐽) (15)

Analogously, when w(𝐴𝐽) = w(𝐴𝐽 ′) for all 𝐽,𝐽 ′ with the same cardinality, then:

w
(⋃

𝑖
𝐴𝑖

)
=

𝑛 ∑
𝑚=1

(−1)𝑚+1
(
𝑛
𝑚

)
w(𝐴[𝑚]) (16)

Artiϧcial Intelligence 342 (2025) 104310

9

S. Malhotra, D. Bizzaro and L. Serafini

Algorithm 1 Number of DAG on 𝑛 nodes.
1: Input: 𝑛
2: Output: 𝑎𝑛
3: 𝐴[0]← 1
4: for 𝑖 = 1 to 𝑛 do

5: 𝐴[𝑖]←
∑𝑖−1

𝑙=0(−1)
𝑖−𝑙+1(𝑖

𝑙

)
2𝑙(𝑖−𝑙)𝐴[𝑙]

6: end for

7: return 𝐴[𝑛]

5.2. Counting directed acyclic graphs

We now derive the formula for counting DAGs as presented in [24]. Without loss of generality, we assume the set of nodes to be
[𝑛]. For each 𝑖 ∈ [𝑛], let 𝐴𝑖 be the set of DAGs on [𝑛] for which the node 𝑖 has indegree zero. Since every DAG has at least one node
with indegree zero, we have that the total number of DAGs 𝑎𝑛 is equal to |⋃𝑖∈[𝑛]𝐴𝑖|. The set of DAGs such that all nodes in 𝐽 ⊆ [𝑛]
have indegree zero is given by 𝐴𝐽 ∶=

⋂
𝑗∈𝐽 𝐴𝑗 . The cardinality of 𝐴𝐽 depends only on the cardinality of 𝐽 , and not on the individual

elements in 𝐽 . Hence, we can assume w.l.o.g that 𝐽 = [𝑚], where 𝑚 = |𝐽 |. We now derive a method for computing |||𝐴[𝑚]
|||. We make

the following key observations:

• Observation 1. If 𝜔 ∈ 𝐴[𝑚], then there are no edges between the nodes in [𝑚], as otherwise a node in [𝑚] will have a non-zero
indegree. In other words, only directed edges from [𝑚] to [𝑚̄] or within [𝑚̄] are allowed.

• Observation 2. If 𝜔 ∈ 𝐴[𝑚], then the subgraph of 𝜔 restricted to [𝑚̄], i.e. 𝜔 ↓ [𝑚̄], is a DAG. And the subgraph of 𝜔 restricted to
[𝑚] is just an empty graph, i.e. the set of isolated nodes [𝑚] with no edges between them.

• Observation 3. Any DAG on [𝑚̄] can be extended to 2𝑚(𝑛−𝑚) DAGs in 𝐴[𝑚]. This is because DAGs in 𝐴[𝑚] have no edges between
the nodes in [𝑚]; they only have outgoing edges from [𝑚] to [𝑚̄]. For extending a given DAG on [𝑚̄] to a DAG in 𝐴[𝑚], we have
two choices for each pair of nodes in [𝑚] × [𝑚̄]: we can either draw an out-going edge from [𝑚] to [𝑚̄] or not. Hence, there are
2|[𝑚]×[𝑚̄]| = 2𝑚(𝑛−𝑚) ways to extend a given DAG on [𝑚̄] to a DAG in 𝐴[𝑚].

The number of possible DAGs on [𝑚̄] is 𝑎𝑛−𝑚. Due to Observation 3, we have that 𝐴[𝑚] has 2𝑚(𝑛−𝑚)𝑎𝑛−𝑚 DAGs obtained by extending
the DAGs on [𝑚̄]. Furthermore, due to Observation 1 and Observation 2, these are all the possible DAGs in 𝐴[𝑚]. Hence, |𝐴[𝑚]| =
2𝑚(𝑛−𝑚)𝑎𝑛−𝑚. Now we can repeat this argument for any 𝑚-sized subset of [𝑛]: if |𝐽 | = |𝐽 ′| =𝑚, then |𝐴𝐽 | = |𝐴𝐽 ′ | = 2𝑚(𝑛−𝑚)𝑎𝑛−𝑚. Using
the principle of inclusion-exclusion as given in equation (14), we have that:

𝑎𝑛 =
𝑛 ∑

𝑚=1
(−1)𝑚+1

(
𝑛
𝑚

)
2𝑚(𝑛−𝑚)𝑎𝑛−𝑚 (17)

Notice that, after replacing 𝑛−𝑚 with 𝑙, the equation becomes:

𝑎𝑛 =
𝑛−1 ∑
𝑙=0

(−1)𝑛−𝑙+1
(
𝑛

𝑙

)
2𝑙(𝑛−𝑙)𝑎𝑙 (18)

The change of variable allows us to write a bottom-up algorithm for counting DAGs, given in Algorithm 1. Based on this algorithm, it
can be seen that 𝑎𝑛 can be computed in polynomial time w.r.t 𝑛. Indeed, the 𝐟𝐨𝐫 loop in line 4 runs 𝑛 times, and in line 5 we compute
𝑎𝑖 (and store it as 𝐴[𝑖]) using equation (18), which requires only polynomially many operations in 𝑛.

5.3. WFOMC with DAG axiom

Definition 5. Let 𝑅 be a binary predicate. We say that an interpretation 𝜔 is a model of 𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅), and write 𝜔 ⊧ 𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅), if 𝜔𝑅

forms a DAG.

Remark 3. Our goal is to compute the WFOMC of Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula. By
definition, this entails that 𝜔𝑅 forms an antirflexive relation of 𝑅. Hence, we can assume without loss of generality that ∀𝑥𝑦.Φ(𝑥, 𝑦) ⊧
∀𝑥.¬𝑅(𝑥,𝑥).

W.l.o.g., we assume that the domain is [𝑛]. We will now redfine Ψ[𝑚] for the purposes of WFOMC with DAG axiom.

Definition 6. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula such that ∀𝑥𝑦.Φ(𝑥, 𝑦) ⊧ ∀𝑥.¬𝑅(𝑥,𝑥).
For any 𝑚 ≤ 𝑛, we say that an interpretation 𝜔 is a model of Ψ[𝑚], and write 𝜔 ⊧ Ψ[𝑚], if 𝜔 is a model of Ψ on [𝑛] and the domain
elements [𝑚] have indegree zero in 𝜔𝑅.

It can be shown that Ψ[𝑚] in Definition 6 corresponds to an instantiation of Ψ[𝑚] in Lemma 2, where we instantiate 𝑎𝑥𝑖𝑜𝑚′ , 𝑎𝑥𝑖𝑜𝑚′′

and Θ(𝑥, 𝑦) as follows:

Artiϧcial Intelligence 342 (2025) 104310

10

S. Malhotra, D. Bizzaro and L. Serafini

• 𝑎𝑥𝑖𝑜𝑚′ ∶= ∀𝑥𝑦.¬𝑅(𝑥, 𝑦)
• 𝑎𝑥𝑖𝑜𝑚′′ ∶=𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅)
• Θ(𝑥, 𝑦) ∶= ¬𝑅(𝑦,𝑥)

A formal proof of this correspondence is in the appendix (Lemma 3). With this specific instantiation of Ψ[𝑚] , we can use Lemma 2
and get the following proposition.

Proposition 3. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅) and Ψ′ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧¬𝑅(𝑥, 𝑦), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula, such
that ∀𝑥𝑦.Φ(𝑥, 𝑦) ⊧ ∀𝑥.¬𝑅(𝑥,𝑥). Then:

wfomc(Ψ[𝑚],𝒌) =
∑

𝒌′+𝒌′′=𝒌|𝒌′|=𝑚
wfomc(Ψ′,𝒌′)wfomc(Ψ,𝒌′′)

∏
𝑖,𝑗∈[𝑢]

𝑟
𝑘′
𝑖
𝑘′′
𝑗

𝑖𝑗
(19)

where 𝑟𝑖𝑗 ∶=
∑

𝑙 𝑛𝑖𝑗𝑙𝑣𝑙 , and 𝑛𝑖𝑗𝑙 is 1 if 𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}) ∧ ¬𝑅(𝑦,𝑥) and 0 otherwise.

Similarly to equation (17), we can use wfomc(Ψ[𝑚],𝒌) and the principle of inclusion-exclusion for computing the WFOMC for
Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅).

Proposition 4. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula, such that ∀𝑥𝑦.Φ(𝑥, 𝑦) ⊧ ∀𝑥.¬𝑅(𝑥,𝑥).
Then:

wfomc(Ψ,𝒌) =
|𝒌| ∑
𝑚=1

(−1)𝑚+1
(|𝒌|
𝑚

)
wfomc(Ψ[𝑚],𝒌) (20)

Proof. The proof idea is very similar to the case for counting DAGs as given in equation (17). W.l.o.g., we are assuming the domain
to be [𝑛], so |𝒌| = 𝑛. Let 𝐴𝑖 be the set of models 𝜔 of Ψ, such that 𝜔 has 1-type cardinality 𝒌 and the domain element 𝑖 has zero
𝑅-indegree in 𝜔𝑅. Since every DAG has at least one node with zero 𝑅-indegree, our goal is to compute w(∪𝑖∈[𝑛]𝐴𝑖). For any 𝐽 ⊆ [𝑛],
let 𝐴𝐽 ∶=

⋂
𝑗∈𝐽 𝐴𝑗 . For any 𝐽 and 𝐽 ′ such that |𝐽 | = |𝐽 ′|, we always have that |𝐴𝐽 | = |𝐴𝐽 ′ |. Hence, using the principle of inclusion

exclusion as given in equation (16), we have that:

wfomc(Ψ,𝒌) =
|𝒌| ∑
𝑚=1

(−1)𝑚+1
(
𝑛
𝑚

)
w(𝐴[𝑚]) (21)

Now, 𝐴[𝑚] is the set of models such that domain elements in [𝑚] have zero 𝑅-indegree. Hence, w(𝐴[𝑚]) = wfomc(Ψ[𝑚],𝒌). □

We make a change of variable in equation (20) �- similar to the one from (17) to (18) �- by replacing 𝑚 with |𝒌|− 𝑙. We obtain
the following equation:

wfomc(Ψ,𝒌) =
|𝒌|−1∑
𝑙=0

(−1)|𝒌|−𝑙+1
(|𝒌|

𝑙

)
wfomc(Ψ[|𝒌|−𝑙],𝒌) (22)

We provide pseudocode for evaluating equation (22) in Algorithm 2, namely WFOMC-DAG. We now analyze how WFOMC-DAG
works, and show that it runs in polynomial time with respect to domain cardinality |𝒌| = 𝑛.

WFOMC-DAG takes as input Ψ= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅) and 𝒌 and it returns wfomc(Ψ,𝒌). In line 3, an array 𝐴 with 𝑢 indices
is initiated, and 𝐴[𝟎] is assigned the value 1, where 𝟎 corresponds to the 𝑢-dimensional zero vector. The for loop in lines 5 − 7 incre
mentally computes wfomc(Ψ,𝒑), where the loop runs over all 𝑢-dimensional integer vectors 𝒑, such that 𝑝𝑖 ≤ 𝑘𝑖, in lexicographical
order. The number of possible 𝒑 vectors is bounded by 𝑛𝑢. Hence, the for loop in line 5 runs at most 𝑛𝑢 iterations. In line 6, we
compute wfomc(Ψ,𝒑) as given in equation (22). Also in line 6, the function wfomc(Ψ[𝑚],𝒑) �- that computes wfomc(Ψ[𝑚],𝒑) �-
is called at most |𝒑| − 1 times, which is bounded above by 𝑛. 𝐴[𝒑] stores the value wfomc(Ψ,𝒑). In the function wfomc(Ψ[𝑚],𝒔),
the number of iterations in the for loop (line 12) is bounded above by 𝑛2𝑢. And wfomc(Ψ′,𝒔′) is an FO2 WFOMC problem, again
computable in polynomial time. Hence, the algorithm WFOMC-DAG runs in polynomial time w.r.t domain cardinality. Notice that
since loop 5-7 runs in lexicographical order, the 𝐴[𝒔′′] required in the function wfomc(Ψ[𝑚],𝒔) are always already stored in 𝐴.

There are only polynomially many 𝒌 w.r.t domain cardinality. Hence, computing wfomc(Ψ,𝒌) over all possible 𝒌 values, we can
compute wfomc(Ψ, 𝑛) in polynomial time w.r.t domain cardinality. Using the modular WFOMC-preserving Skolemization process as
provided in [5], we can extend this result to prove the domain liftability of the entire FO2 fragment, with DAG axiom.

Using Theorem 2 and Remark 2, we can also extend domain-liftability of FO2, with DAG axiom and cardinality constraints. Finally,
since WFOMC of any C2 formula can be modularly reduced to WFOMC of an FO2 formula with cardinality constraints [18], we have
the following theorem:

Theorem 4. Let Ψ ∶= Φ ∧ 𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅), where Φ is a C2 sentence. wfomc(Ψ, 𝑛) can be computed in polynomial time with respect to the
domain cardinality.

Artiϧcial Intelligence 342 (2025) 104310

11

S. Malhotra, D. Bizzaro and L. Serafini

Algorithm 2 WFOMC-DAG.
1: Input: Ψ,𝒌
2: Output: wfomc(Ψ,𝒌)
3: 𝐴[𝟎]← 1 ⊳ 𝐴 has 𝑢 indices
4: ⊳ 𝟎 = ⟨0, ...,0⟩
5: for 𝟎 < 𝒑 ≤ 𝒌 where 𝒑∈ ℕ𝑢

0 do ⊳ Lexical order

6: 𝐴[𝒑]←
∑|𝒑|−1

𝑙=0 (−1)|𝒑|−𝑙+1 ⋅ (|𝒑|
𝑙

)
⋅ wfomc(Ψ[|𝒑|−𝑙],𝒑)

7: end for

8: return 𝐴[𝒌]
9:

10: function wfomc(Ψ[𝑚] , 𝒔) ⊳ Equation (19)
11: 𝑆 = 0
12: for 𝒔′ + 𝒔′′ = 𝒔 and |𝒔′| =𝑚 do

13: 𝑆 ← 𝑆 +wfomc(Ψ′ ,𝒔′) ⋅𝐴[𝒔′′] ⋅
∏

𝑖,𝑗∈[𝑢] 𝑟
𝑠′
𝑖
𝑠′′
𝑗

𝑖𝑗

14: end for

15: return 𝑆

16: end function

Our results expand and cover previously investigated problems in combinatorics literature, such as counting the number of DAGs
with a fixed number of edges and nodes [35]. Such results in the combinatorics literature provide a simple benchmark and sanity
check for our methodology. Hence, we will often check if model-counts for constraints axiomatized using our methodology align
with the counts reported in the On-Line Encyclopedia of Integer Sequences (OEIS) [36] �- an open-source collection of sequences,
enumerating solutions to various counting problems. We illustrate this in the following example.

Example 5. Suppose we want to count the number of DAGs with 𝑛 labeled nodes and 𝑑 edges, as can be done through [35]. Clearly,
this can be encoded in FOL with DAG constraint as follows

fomc(𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅) ∧ |𝑅| = 𝑑, 𝑛) (23)

for an FOL language with only the binary relation 𝑅. Indeed, with our implementation of Algorithm 1, the FOMC in (23), for different
values of 𝑑 and 𝑛, leads to the same sequence as A081064 of the OEIS [36].

This (and later examples) show that our implementation provides a simple method to enumerate structures respecting interesting
combinatorial constraints directly from their logical encoding �- without the need to explicitly derive a different formula for each
constraint.

5.4. Source and sink

In the following, we show that extending C2 with a DAG axiom allows us to easily express sources and sinks. We then provide
some examples from combinatorics where this is useful.

Definition 7. Let Φ be a first order sentence, possibly containing a binary relation 𝑅, a unary relation 𝑆𝑜𝑢𝑟𝑐𝑒 and a unary relation
𝑆𝑖𝑛𝑘. We say that an interpretation 𝜔 is a model of Φ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅,𝑆𝑜𝑢𝑟𝑐𝑒,𝑆𝑖𝑛𝑘) if:

• 𝜔 is a model of Φ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅),
• the sources of the DAG represented by 𝜔𝑅 are interpreted to be true in 𝜔𝑆𝑜𝑢𝑟𝑐𝑒,
• the sinks of the DAG represented by 𝜔𝑅 are interpreted to be true in 𝜔𝑆𝑖𝑛𝑘.

The 𝑆𝑜𝑢𝑟𝑐𝑒 and the 𝑆𝑖𝑛𝑘 predicates can allow us to encode constraints like ∃=𝑘𝑥.𝑆𝑜𝑢𝑟𝑐𝑒(𝑥) or ∃=𝑘𝑥.𝑆𝑖𝑛𝑘(𝑥). See the example
below.

Theorem 5. Let Ψ ∶= Φ ∧ 𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅,𝑆𝑜𝑢𝑟𝑐𝑒,𝑆𝑖𝑛𝑘), where Φ is a C2 sentence. wfomc(Ψ, 𝑛) can be computed in polynomial time with
respect to the domain cardinality.

Proof. The sentence Ψ can be equivalently written as:

Φ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅)

∧ ∀𝑥.𝑆𝑜𝑢𝑟𝑐𝑒(𝑥)↔ ¬∃𝑦.𝑅(𝑦,𝑥)

∧ ∀𝑥.𝑆𝑖𝑛𝑘(𝑥)↔ ¬∃𝑦.𝑅(𝑥, 𝑦)

(24)

which is a C2 sentence with a DAG constraint, for which Theorem 4 applies. □

Artiϧcial Intelligence 342 (2025) 104310

12

S. Malhotra, D. Bizzaro and L. Serafini

Example 6. For an FOL language made only of the binary relation 𝑅,

fomc(𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅,𝑆𝑜𝑢𝑟𝑐𝑒,𝑆𝑖𝑛𝑘) ∧ |𝑅| = 𝑑 ∧ |𝑆𝑜𝑢𝑟𝑐𝑒| = 1, 𝑛) (25)

counts the number of DAGs with 𝑛 labeled nodes, 𝑑 edges and a unique source. Similarly,

fomc(𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅,𝑆𝑜𝑢𝑟𝑐𝑒,𝑆𝑖𝑛𝑘) ∧ |𝑆𝑜𝑢𝑟𝑐𝑒| = 𝑠, 𝑛) (26)

counts the number of DAGs with 𝑛 labeled nodes and 𝑠 sources, while

fomc(𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅,𝑆𝑜𝑢𝑟𝑐𝑒,𝑆𝑖𝑛𝑘) ∧ |𝑆𝑜𝑢𝑟𝑐𝑒| = 𝑠 ∧ |𝑆𝑖𝑛𝑘| = 𝑠′, 𝑛) (27)

counts the number of DAGs with 𝑛 labeled nodes, 𝑠 sources and 𝑠′ sinks. Indeed, with our axiomatization and implementation, we
were able to compute the following sequences from OEIS:

• A350487 (DAGs with 𝑛 labeled nodes, 𝑑 edges and 1 source);
• A361718 (DAGs with 𝑛 labeled nodes and 𝑠 sources), A003025 (DAGs with 𝑛 labeled nodes and 1 source), A003026 (DAGs with
𝑛 labeled nodes and 2 sources);

• A165950 (DAGs with 𝑛 labeled nodes, 1 source and 1 sink).

These counting problems were also investigated in [23,37].

Example 7. Binary phylogenetic networks [38--41,30] are dfined as DAGs consisting only of the following types of nodes:

• one and only one source, which must have outdegree 2;
• leaves, which are sinks with indegree 1;
• tree nodes, which are nodes with indegree 1 and outdegree 2;
• reticulation nodes, which are nodes with indegree 2 and outdegree 1.

Along with their many subclasses, they are commonly used for representing the evolutionary relationships among a group of taxa,
taking into account reticulate events like hybridization, horizontal gene transfer and recombination [42]. Counting binary phyloge
netic networks is an interesting open problem in combinatorics [38]. Indeed, many recent studies are devoted to providing asymptotic
estimates [41,38], or the exact counting when the number of reticulation nodes is limited [38], or estimates and exact counting for
related networks, like tree-child and normal networks [43,41,40,31,44,29,39,45,30,46].

Notice that the definition of binary phylogenetic networks is expressible in C2 with the acyclicity axiom:

∀𝑥.[(𝑆𝑜𝑢𝑟𝑐𝑒(𝑥) ∧ ∃=2𝑦.𝑅(𝑥, 𝑦))

∨(𝑆𝑖𝑛𝑘(𝑥) ∧ ∃=1𝑦.𝑅(𝑦,𝑥))

∨(∃=1𝑦.𝑅(𝑦,𝑥) ∧ ∃=2𝑦.𝑅(𝑥, 𝑦))

∨(∃=2𝑦.𝑅(𝑦,𝑥) ∧ ∃=1𝑦.𝑅(𝑥, 𝑦))]

∧|𝑆𝑜𝑢𝑟𝑐𝑒| = 1 ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅,𝑆𝑜𝑢𝑟𝑐𝑒,𝑆𝑖𝑛𝑘)

(28)

Hence, FOMC with acyclicity axiom can provide a way to count binary phylogenetic networks with a fixed number of nodes in
polynomial time. Moreover, this approach is flexible enough to allow to count also other related classes like tree-child networks,
and to count binary phylogenetic networks with any constraint expressible in C2 . However, enumerating constraints with counting
quantfiers requires an FOMC-preserving reduction to FO2 with cardinality constraints, with many additional predicates (see [18,11]),
and the computational complexity scales super-exponentially with respect to the number of predicates. The number of additional
predicates required in this case poses significant scalability issues.

6. WFOMC with connectivity axiom

A connected graph is an undirected graph such that for any pair of nodes 𝑖 and 𝑗 there exists a path connecting the two nodes. We
present a recursive formula for WFOMC of an FO2 sentence, say Φ, where a special predicate, say 𝑅, is axiomatized to be a connected
graph, i.e. we count the models 𝜔 ⊧Φ such that 𝜔𝑅 represents a connected graph. We begin by revisiting the recursive formula for
counting connected graphs on 𝑛 nodes. Much in the spirit of the previous section, we make observations that allow efficient counting
of connected graphs and exploit them for WFOMC with connectivity axiom.

6.1. Counting connected graphs

In a given undirected graph, a connected component is a subgraph that is not part of any larger connected subgraph. In a rooted
graph, one node is labeled in a special way, and called the root of the graph. Given a rooted graph, we call its connected component

Artiϧcial Intelligence 342 (2025) 104310

13

S. Malhotra, D. Bizzaro and L. Serafini

containing the root as the rooted-connected component. We now present a recursive way to count the number 𝑐𝑛 of connected graphs
on 𝑛 nodes, as done in [28]. The base case is 𝑐1 = 1.

Proposition 5. The number of rooted graphs on [𝑛] with an 𝑚-sized rooted-connected component is given as:(
𝑛
𝑚

)
⋅𝑚 ⋅ 𝑐𝑚 ⋅ 2(

𝑛−𝑚
2) (29)

where 𝑐𝑚 is the number of connected graphs on 𝑚 nodes.

Proof. Let 𝜔 be a rooted graph such that 𝜔 ↓ [𝑚] forms a rooted-connected component. Since 𝜔 ↓ [𝑚] is a connected component,
there can be no edges between [𝑚] and [𝑚̄]. The number of possible connected graphs on [𝑚] is given by 𝑐𝑚. Also, in 𝜔 any node in
[𝑚] can be chosen to be the root. Hence, the number of ways in which 𝜔 ↓ [𝑚] can be a rooted-connected component is 𝑚 ⋅ 𝑐𝑚. Since
𝜔 ↓ [𝑚] is a connected-component, there can be no edges between [𝑚] and [𝑚̄], and 𝜔 ↓ [𝑚̄] can be any 𝑛 − 𝑚 sized graph. Hence,
2(

𝑛−𝑚
2) subgraphs can be realized on [𝑚̄]. Since subgraphs on [𝑚] and [𝑚̄] are realized independently, the total number of graphs on

[𝑛] such that [𝑚] is a rooted-connected component is given by 𝑚 ⋅ 𝑐𝑚 ⋅ 2(
𝑛−𝑚
2). These arguments can be repeated for any rooted graph

on [𝑛] with a rooted-connected component of size 𝑚. Since there are
(𝑛
𝑚

)
ways of choosing such subsets, we get formula (29). □

Summing up equation (29) over all 𝑚, for 1≤𝑚 ≤ 𝑛, we get the total number of rooted graphs. This is the base of the proof of the
following proposition, which gives us a way to recursively count the number of connected graphs on 𝑛 nodes.

Proposition 6 ([28]). For any 𝑚, let 𝑐𝑚 be the number of connected graphs on 𝑚 nodes. Then, the following holds:

𝑐𝑛 = 2(
𝑛
2) − 1

𝑛

𝑛−1 ∑
𝑚=1

(
𝑛
𝑚

)
⋅𝑚 ⋅ 𝑐𝑚 ⋅ 2(

𝑛−𝑚
2) (30)

Proof. Any rooted graph on [𝑛] has a rooted-connected component of some size 𝑚, where 1 ≤𝑚 ≤ 𝑛. Hence,

𝑛 ∑
𝑚=1

(
𝑛
𝑚

)
⋅𝑚 ⋅ 𝑐𝑚 ⋅ 2(

𝑛−𝑚
2) (31)

is counting all the rooted graphs on [𝑛], whose number is 𝑛 ⋅2(
𝑛
2). This gives us the following equation, where we have simply rewritten

the summation in a different way:

𝑛 ⋅ 2(
𝑛
2) = 𝑛 ⋅ 𝑐𝑛 +

𝑛−1 ∑
𝑚=1

(
𝑛
𝑚

)
⋅𝑚 ⋅ 𝑐𝑚 ⋅ 2(

𝑛−𝑚
2) (32)

Clearly, this equation can be equivalently rewritten as equation (30). □

6.2. WFOMC with connectivity axiom

Definition 8. Let 𝑅 be a binary predicate. An interpretation 𝜔 is a model of 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) if

• 𝜔𝑅 forms a symmetric and antirflexive relation of 𝑅, and
• 𝜔𝑅 forms a connected graph.

Remark 4. Our goal is to compute WFOMC of Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula
interpreted on the domain [𝑛]. By definition, this entails that 𝜔𝑅 forms a symmetric and antirflexive relation of 𝑅. Hence, we can
assume without loss of generality that:

∀𝑥𝑦.Φ(𝑥, 𝑦) ⊧ ∀𝑥.¬𝑅(𝑥,𝑥) ∧ ∀𝑥𝑦.𝑅(𝑥, 𝑦)→𝑅(𝑦,𝑥) (33)

Definition 9. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula interpreted on the domain [𝑛],
such that (33) holds. For any 𝑚 ≤ 𝑛, we say that an interpretation 𝜔 is a model of Ψ[𝑚], and write 𝜔 ⊧Ψ[𝑚], if 𝜔 is a model of Ψ on
[𝑛] and 𝜔𝑅 ↓ [𝑚] is a connected component in 𝜔𝑅.

It can be shown that Definition 9 corresponds to an instantiation of Ψ[𝑚] as introduced in Lemma 2 (see appendix Lemma 4 for a
formal proof), where

• 𝑎𝑥𝑖𝑜𝑚′ ∶= 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅)
• 𝑎𝑥𝑖𝑜𝑚′′ ∶= ⊤

Artiϧcial Intelligence 342 (2025) 104310

14

S. Malhotra, D. Bizzaro and L. Serafini

• Θ(𝑥, 𝑦) ∶= ¬𝑅(𝑥, 𝑦)

Using this instantiation of Ψ[𝑚] and Lemma 2, we have the following proposition.

Proposition 7. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) and Ψ′′ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula such that
(33) holds. Then:

wfomc(Ψ[𝑚],𝒌) =
∑

𝒌′+𝒌′′=𝒌|𝒌′|=𝑚
wfomc(Ψ,𝒌′)wfomc(Ψ′′,𝒌′′)

∏
𝑖,𝑗∈[𝑢]

𝑟
𝑘′
𝑖
𝑘′′
𝑗

𝑖𝑗
(34)

where 𝑟𝑖𝑗 ∶=
∑

𝑙 𝑛𝑖𝑗𝑙𝑣𝑙 , and 𝑛𝑖𝑗𝑙 is 1 if 𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}) ∧ ¬𝑅(𝑥, 𝑦) and 0 otherwise.

Similar to Proposition 5, we will now compute the WFOMC for interpretations with rooted connected-components of size 𝑚.

Proposition 8. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) be a sentence interpreted over [𝑛], where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula
such that (33) holds. Then the WFOMC of all the models 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦) with a rooted-connected component of size 𝑚 is given as:(

𝑛
𝑚

)
⋅𝑚 ⋅wfomc(Ψ[𝑚],𝒌) (35)

Proof. The proof idea is similar to the one of Proposition 5. There are
(𝑛
𝑚

)
ways of choosing an 𝑚-sized subset 𝐶 in [𝑛]. Given such

a set 𝐶 , the number of models 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦) with 𝐶 as a connected component w.r.t 𝑅 is wfomc(Ψ[𝑚],𝒌). Finally, if we also allow
a node in 𝐶 to be distinguished as a root, then we have 𝑚 ways of choosing the root. □

Summing up equation (35) over all 𝑚, for 1 ≤ 𝑚 ≤ 𝑛, we get the total number of interpretations 𝜔 ⊧ ∀𝑥𝑦.Φ(𝑥, 𝑦), where 𝜔𝑅 is a
rooted graph. This is the base of the proof of the following proposition, which gives us a way to recursively compute the WFOMC of
Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅).

Proposition 9. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) and Ψ′′ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula such that
(33) holds. Then:

wfomc(Ψ,𝒌) = wfomc(Ψ′′,𝒌) − 1
𝑛

𝑛−1 ∑
𝑚=1

(
𝑛
𝑚

)
⋅𝑚 ⋅wfomc(Ψ[𝑚],𝒌) (36)

Proof. The proof idea is similar to the one of Proposition 6. We notice that

𝑛 ∑
𝑚=1

(
𝑛
𝑚

)
⋅𝑚 ⋅wfomc(Ψ[𝑚],𝒌) (37)

sums the WFOMC of all the models 𝜔 of ∀𝑥𝑦.Φ(𝑥, 𝑦) for which 𝜔𝑅 is a simple graph with an 𝑅-rooted-connected component of size
𝑚, where 1 ≤ 𝑚 ≤ 𝑛. But any rooted graph has a rooted-connected component of some size 𝑚, where 1 ≤ 𝑚 ≤ 𝑛. Hence, equation
(37) computes the weighted sum of all models of ∀𝑥𝑦.Φ(𝑥, 𝑦) where 𝜔𝑅 is a rooted graph. This is equal to 𝑛 times the WFOMC of
∀𝑥𝑦.Φ(𝑥, 𝑦), because we have 𝑛 choices for assigning a root in each model. Thus, we get the following equation

𝑛 ⋅wfomc(∀𝑥𝑦.Φ(𝑥, 𝑦),𝒌) =

𝑛 ⋅wfomc(Ψ[𝑛],𝒌) +
𝑛−1 ∑
𝑚=1

(
𝑛
𝑚

)
⋅𝑚 ⋅wfomc(Ψ[𝑚],𝒌)

(38)

and since Ψ[𝑛] is equivalent to Ψ, it can be rewritten as equation (36). □

Using Proposition 7 and Proposition 9 we can derive a recursive algorithm, very similar to Algorithm 2, for computing
wfomc(Ψ,𝒌). This can be achieved by replacing line 6 and line 13 of Algorithm 2 with the formulas coming from equations (34) and
(36). That is, replacing line 6 and line 13, with the following operations:

6: 𝐴[𝒑]← wfomc(Ψ′′,𝒑) − 1 |𝒑| ∑|𝒑|−1
𝑚=1

(|𝒑|
𝑚
)
⋅𝑚 ⋅wfomc(Ψ[𝑚],𝒑)

and

13: 𝑆 ← 𝑆 +𝐴[𝒔′] ⋅wfomc(Ψ′′,𝒔′′) ⋅
∏

𝑖,𝑗∈[𝑢] 𝑟
𝑠′
𝑖
𝑠′′
𝑗

𝑖𝑗

The analysis of the modfied algorithm for WFOMC with a connectivity constraint (see Algorithm 3) is provided in the appendix.
Almost all of the tractability analysis for Algorithm 2 transfers identically to Algorithm 3, showing that the algorithm is tractable.
Hence giving us the following theorem:

Artiϧcial Intelligence 342 (2025) 104310

15

S. Malhotra, D. Bizzaro and L. Serafini

Theorem 6. Let Ψ ∶= Φ ∧ 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅), where Φ is a C2 formula. Then wfomc(Ψ, 𝑛) can be computed in polynomial time with respect
to the domain cardinality.

The following examples show possible applications of our results in the realm of combinatorics.

Example 8. For a FOL language made only of the binary relation 𝑅,

fomc(𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) ∧ |𝑅| = 2𝑑, 𝑛) (39)

counts the number of connected graphs with 𝑛 labeled nodes and 𝑑 edges. For it to be non-zero, 𝑑 must be between 𝑛− 1 (trees) and (𝑛
2

)
(complete graph). Such counting problem is studied in chapter 6.3 of [47]. With our implementation, we were able to get the

array A062734 of OEIS, which is also equivalent to A123527 and A343088. Its diagonals also give the following sequences: A000272
(number of trees on 𝑛 nodes), A057500 (number of connected unicyclic graphs on 𝑛 nodes), A061540, A061541, A061542, A061543,
A096117, A061544 A096150, A096224, A182294, A182295, A182371.

Example 9. Suppose we want to count the number of connected graphs with 𝑛 labeled nodes, each one colored by one of three colors,
with the condition that adjacent nodes must have different colors. This problem was already studied and solved in [48], where such
number is denoted by 𝑚𝑛(3). We consider a FOL language with a relational symbol 𝑅∕2 for representing the connected graph, and
three relational symbols 𝐴∕1,𝐵∕1,𝐶∕1 representing the colors. The fact that one and only one color is assigned to each node can be
encoded with the sentence

Ψ1 ∶= ∀𝑥.(𝐴(𝑥) ∨𝐵(𝑥) ∨𝐶(𝑥))

∧¬(𝐴(𝑥) ∧𝐵(𝑥)) ∧ ¬(𝐴(𝑥) ∧𝐶(𝑥)) ∧ ¬(𝐵(𝑥) ∧𝐶(𝑥))
(40)

while the fact that adjacent nodes must have different colors can be encoded with the sentence

Ψ2 ∶= ∀𝑥𝑦.(𝐴(𝑥) ∧𝑅(𝑥, 𝑦)→ ¬𝐴(𝑦))

∧(𝐵(𝑥) ∧𝑅(𝑥, 𝑦)→ ¬𝐵(𝑦))

∧(𝐶(𝑥) ∧𝑅(𝑥, 𝑦)→ ¬𝐶(𝑦))

(41)

Hence, the number of colored graphs that we want can be computed as

fomc(Ψ1 ∧ Ψ2 ∧𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅), 𝑛) (42)

and with our implementation we were able to compute sequence A002028 of OEIS.

7. Trees and forests

In this section, we investigate the domain liftability of C2 where one of the relational symbols is axiomatized to be a tree or a
forest. Tree axioms have been previously investigated in [20]. However, we provide a completely different method of WFOMC for
both directed and undirected tree axioms. Furthermore, we also demonstrate domain liftability of both directed and undirected forest
axioms �- an open problem raised in the conclusion of [20].

7.1. WFOMC with directed tree and directed forest axioms

Directed trees are DAGs with exactly one node with indegree zero and with all the other nodes having indegree 1. Similarly, directed
forests are DAGs such that every node has indegree at most 1. (Equivalently, directed forests are DAGs such that each connected
component is a directed tree.)

Definition 10. An interpretation 𝜔 is a model of 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑇 𝑟𝑒𝑒(𝑅,𝑅𝑜𝑜𝑡) if 𝜔𝑅 forms a directed tree whose root (i.e. the node with
no 𝑅-parent) is the unique domain element interpreted to be true in 𝜔𝑅𝑜𝑜𝑡.

Definition 11. An interpretation 𝜔 is a model of 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) if 𝜔𝑅 forms a directed forest.

Using the definition of directed trees, as DAGs with exactly one root and with all the other nodes having indegree 1, we get the
following proposition.

Proposition 10. Φ∧𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑇 𝑟𝑒𝑒(𝑅,𝑅𝑜𝑜𝑡) is equivalent to

Φ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅) ∧ |𝑅𝑜𝑜𝑡| = 1 ∧ ∀𝑥.¬𝑅𝑜𝑜𝑡(𝑥)→ ∃=1𝑦.𝑅(𝑦,𝑥) (43)

for any sentence Φ. Hence, WFOMC with directed tree axiom can be modularly reduced to WFOMC with DAG axiom.

Artiϧcial Intelligence 342 (2025) 104310

16

S. Malhotra, D. Bizzaro and L. Serafini

Proof. Let 𝜔 be a model of formula (43), so that 𝜔𝑅 is a DAG. Since 𝜔 ⊧ ∀𝑥.¬𝑅𝑜𝑜𝑡(𝑥)→ ∃=1𝑦.𝑅(𝑦,𝑥), we have that any element 𝑐
such that 𝜔 ⊧ ¬𝑅𝑜𝑜𝑡(𝑐), has exactly one 𝑅-parent. Since 𝜔 ⊧ (|𝑅𝑜𝑜𝑡| = 1), we have that 𝜔𝑅 is a DAG with only one node, say 𝑟, such
that 𝑟 does not have exactly one 𝑅-parent, and all other nodes have exactly one 𝑅-parent. But 𝜔𝑅 is a DAG, hence it necessarily has
one node with no parent, which hast to be 𝑟. Hence, 𝜔𝑅 is a directed rooted tree. It can also be checked that any 𝜔 ⊧Φ such that 𝜔𝑅

is directed rooted tree is a model of formula (43). □

Analogously, using the definition of directed forests, as DAGs where each node has indegree at most 1, we get the following
proposition:

Proposition 11. Φ∧𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) is equivalent to

Φ∧𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅) ∧ ∀𝑥.∃<=1𝑦.𝑅(𝑦,𝑥)

for any sentence Φ. Hence, WFOMC with directed forest axiom can be modularly reduced to WFOMC with DAG axiom.

Since both 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑇 𝑟𝑒𝑒(𝑅,𝑅𝑜𝑜𝑡) and 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) can be modularly reduced to WFOMC with DAG axiom and additional
C2 constraints, the domain liftability results for the DAG axiom �- such as Theorem 4 �- also transfer to 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑇 𝑟𝑒𝑒(𝑅,𝑅𝑜𝑜𝑡) and
𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) axioms.

Remark 5. In the definition above we used the predicate 𝑅𝑜𝑜𝑡 only for directed trees. Notice, however, that we could dfine it also
for directed forests, by imposing the satisfaction of the following sentence

∀𝑥.𝑅𝑜𝑜𝑡(𝑥)↔ ¬∃𝑦.𝑅(𝑦,𝑥)

In a similar way, one could dfine a unary predicate 𝐿𝑒𝑎𝑓 for representing leaves, both for directed trees and for directed forests,
using the following sentence:

∀𝑥.𝐿𝑒𝑎𝑓 (𝑥)↔ ¬∃𝑦.𝑅(𝑥, 𝑦)

7.2. WFOMC with tree axiom

We will now focus on the undirected tree axiom.

Definition 12. Let 𝑅 be a binary predicate, an interpretation 𝜔 is a model of 𝑇 𝑟𝑒𝑒(𝑅) if

• 𝜔𝑅 forms a symmetric and antirflexive relation of 𝑅, and
• 𝜔𝑅 forms a Tree

Remark 6. Notice that one could also dfine a unary predicate 𝐿𝑒𝑎𝑓 for representing leaves by imposing the satisfaction of the
following sentence:

∀𝑥.𝐿𝑒𝑎𝑓 (𝑥)↔ ∃=1𝑦.𝑅(𝑥, 𝑦)

This applies also to the case of undirected forests, which will be introduced later.

Note that a connected graph on 𝑛 nodes is a tree if and only if it has 𝑛 − 1 edges [49, Theorem 2.1]. This gives us the following
proposition:

Proposition 12. For any sentence Φ on a domain of cardinality 𝑛, we have that Φ∧ 𝑇 𝑟𝑒𝑒(𝑅) is equivalent to

Φ∧𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) ∧ |𝑅| = 2𝑛− 2

Hence, WFOMC with tree axiom can be modularly reduced to WFOMC with connectivity axiom.

Remark 7. Since 𝑇 𝑟𝑒𝑒(𝑅) can be modularly reduced to WFOMC with connectivity axiom and additional cardinality constraints, the
domain liftability results for the connectivity axiom �- such as Theorem 6 �- also transfer to the 𝑇 𝑟𝑒𝑒(𝑅) axiom. These results were
already established in [20], but we are providing a different way to arrive at them.

7.3. WFOMC with forest axiom

We now present an algorithm for extending domain liftability of C2 with an undirected forest axiom. We first prove the formula
for counting undirected forests as presented in [25]. This will then form the basis of our algorithm for WFOMC with forest axiom,
which is subsequently presented.

Artiϧcial Intelligence 342 (2025) 104310

17

S. Malhotra, D. Bizzaro and L. Serafini

Proposition 13. Let 𝑡𝑚 denote the number of trees on 𝑚 labeled nodes, and let 𝑓𝑛 be the number of forests on 𝑛 labeled nodes. Then,

𝑓𝑛 =
𝑛 ∑

𝑚=1

(
𝑛− 1
𝑚− 1

)
𝑡𝑚𝑓𝑛−𝑚 (44)

Proof. Without loss of generality, we can assume the 𝑛 labeled nodes to be the set [𝑛]. We will prove the proposition by observing
that any forest on such nodes can be viewed as a tree containing the node 1 plus a forest made up of the remaining connected
components. Consider an arbitrary forest on [𝑛], and let 𝑚 denote the number of nodes of the connected component containing the
node 1. Clearly, for an arbitrary forest, 𝑚 can be any number from 1 to 𝑛. Now, fixing 𝑚, the number of different trees containing
node 1 and 𝑚− 1 other nodes is given by

(𝑛−1
𝑚−1

)
𝑡𝑚, where

(𝑛−1
𝑚−1

)
represents the number of ways to choose 𝑚 − 1 nodes from [1̄], and

𝑡𝑚 denotes the number of different trees on the 𝑚 selected nodes (1 included). On the other hand, there are 𝑓𝑛−𝑚 different forests
on the remaining 𝑛 −𝑚 nodes, independently of the tree containing 1. It follows that the number of forests such that the connected
component containing 1 has 𝑚− 1 other nodes is

(𝑛−1
𝑚−1

)
𝑡𝑚𝑓𝑛−𝑚. To count all possible forests on 𝑛 nodes, we only need to sum up the

contributions from each 𝑚, and this gives us the desired recursive formula. □

Note that the number 𝑡𝑚 of trees on 𝑚 nodes is given by 𝑚𝑚−2 (Cayley’s formula [25]). However, this is irrelevant for what follows.

Definition 13. Let 𝑅 be a binary predicate. An interpretation 𝜔 is a model of 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) if 𝜔𝑅 forms a forest.

Remark 8. As done before for connectivity, since ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) assumes that 𝜔𝑅 forms a symmetric and anti-reflexive
relation, we can assume without loss of generality that

∀𝑥𝑦.Φ(𝑥, 𝑦) ⊧ ∀𝑥.¬𝑅(𝑥,𝑥) ∧ ∀𝑥𝑦.𝑅(𝑥, 𝑦)→𝑅(𝑦,𝑥) (45)

Definition 14. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅), where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula interpreted on the domain [𝑛], such
that (45) holds. For any 𝑚 ≤ 𝑛, we say that an interpretation 𝜔 is a model of Ψ[𝑚], and write 𝜔 ⊧Ψ[𝑚], if 𝜔 is a model of Ψ on [𝑛] and
𝜔𝑅 ↓ [𝑚] forms a connected component of 𝜔𝑅 (and hence a tree).

It is easy to check that Ψ[𝑚] in Definition 14 is the same as Ψ[𝑚] in Lemma 2, where we instantiate 𝑎𝑥𝑖𝑜𝑚′, 𝑎𝑥𝑖𝑜𝑚′′ and Θ(𝑥, 𝑦) as
follows:

• 𝑎𝑥𝑖𝑜𝑚′ ∶= 𝑇 𝑟𝑒𝑒(𝑅)
• 𝑎𝑥𝑖𝑜𝑚′′ ∶= 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅)
• Θ(𝑥, 𝑦) ∶= ¬𝑅(𝑥, 𝑦)

A formal proof can be found in the appendix, as Lemma 5. Using this characterization and Lemma 2, we have the following proposition.

Proposition 14. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅), and Ψ′ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝑇 𝑟𝑒𝑒(𝑅), where Φ(𝑥, 𝑦) is a quantfier free FO2 formula
satisfying the condition in Remark 8. Then:

wfomc(Ψ[𝑚],𝒌) =
∑

𝒌=𝒌′+𝒌′′|𝒌′|=𝑚
∏
𝑖,𝑗

𝑟
𝒌′
𝑖
𝒌′′
𝑗

𝑖𝑗
wfomc(Ψ′,𝒌′)wfomc(Ψ,𝒌′′) (46)

where 𝑟𝑖𝑗 ∶=
∑

𝑙 𝑛𝑖𝑗𝑙𝑣𝑙 , and 𝑛𝑖𝑗𝑙 is 1 if 𝑖𝑗𝑙(𝑥, 𝑦) ⊧Φ({𝑥, 𝑦}) ∧ ¬𝑅(𝑥, 𝑦) and 0 otherwise.

Proposition 15. Let Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅) be interpreted over [𝑛], where Φ(𝑥, 𝑦) is a quantfier free FO2 formula satisfying the
condition in Remark 8. Then:

wfomc(Ψ,𝒌) =
𝑛 ∑

𝑚=1

(
𝑛− 1
𝑚− 1

)
wfomc(Ψ[𝑚],𝒌) (47)

Proof. The proof idea is essentially the same as the one for Proposition 13. Let Ψ𝐶 be the generalization of Ψ[𝑚] to a generic subset
𝐶 ⊆ [𝑛]. Clearly, 𝜔 is a model of Ψ if and only if 𝜔 is a model of Ψ𝐶 for a subset 𝐶 containing the node 1. Notice also that for any 𝜔
there can be only one subset 𝐶 such that 𝜔𝑅 ↓ 𝐶 is the connected component of 𝜔𝑅 containing the node 1. Hence,

wfomc(Ψ,𝒌) =
∑
𝐶⊆[𝑛]
1∈𝐶

wfomc(Ψ𝐶 ,𝒌) (48)

Now, wfomc(Ψ[𝑚],𝒌) is the same as wfomc(Ψ𝐶 ,𝒌) for any 𝐶 ⊆ [𝑛] with |𝐶| =𝑚. Furthermore, there are
(𝑛−1
𝑚−1

)
ways of choosing

a subset 𝐶 of [𝑛] in such a way that it contains 1. This gives us equation (47). □

Artiϧcial Intelligence 342 (2025) 104310

18

S. Malhotra, D. Bizzaro and L. Serafini

Fig. 1. Run-times of all experiments as function of the domain cardinality 𝑛. For the WFOMC encoding see the referred examples. The number of active 1-types for
each formula, and if cardinality constraints on binary predicates were used, is reported in Table 2 of the appendix.

We provide the pseudocode for computing wfomc(Ψ,𝒌) as Algorithm 4 in the appendix. The only changes w.r.t Algorithm 2 are
that line 6 is substituted with

6: 𝐴[𝒑]←
∑|𝒑|

𝑚=1
(|𝒑|−1
𝑚−1

)
wfomc(Ψ[𝑚],𝒑)

and that wfomc(Ψ′,𝒌′) in line 13 is using WFOMC with tree axiom, whose liftability is ensured by Remark 7. With this in mind, it
can be proved that the algorithm runs in polynomial time w.r.t domain cardinality in the same way of Algorithm 2. Thus, we can
derive the domain liftability of C2 with the forest axiom by using the modular reductions from [5] and [18] (in the same way as we
did for DAG and connected axioms).

Theorem 7. Let Ψ ∶=Φ∧𝐹𝑜𝑟𝑒𝑠𝑡(𝑅), where Φ is a C2 formula. Then wfomc(Ψ, 𝑛) can be computed in polynomial time with respect to the
domain cardinality.

Again, we provide an example to show that our results can be useful in enumerative combinatorics.

Example 10. The number of forests without isolated vertices on 𝑛 labeled nodes can be computed as

fomc(∀𝑥.∃𝑦.𝑅(𝑥, 𝑦) ∧ 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅), 𝑛) (49)

for a FOL language made only of the binary relation 𝑅. Using the procedure in [5], this is reduced to a form to which Algorithm 4
can be directly applied:

wfomc(∀𝑥𝑦.𝑆(𝑥) ∨ ¬𝑅(𝑥, 𝑦) ∧ 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅), 𝑛) (50)

for a FOL language made only of 𝑅∕2 and 𝑆∕1, with 𝑆 having weights 𝑤(𝑆) = 1 and 𝑤̄(𝑆) = −1, and 𝑅 having weights 𝑤(𝑅) =
𝑤̄(𝑅) = 1. In fact, with our implementation, we were able to compute sequence A105784 of OEIS.

8. Experiments

In this section we provide an empirical analysis of the practical efficiency and expressivity of the constraints introduced in this
paper. We implemented our WFOMC algorithms (Algorithms 2, 3, and 4) in Python,1 and the experiments on an Apple M3 Pro
computer. The implementation of the cardinality constraints on unary predicates was done by filtering the 1-type cardinality vectors
𝒌, as in [11]; while for binary predicates we used symbolic weights,2 as in [13].

8.1. Combinatorial examples

We experiment with the combinatorial examples provided in the previous sections, and run-times are reported in Fig. 1. Although
our approach provides a general language for easily formulating complex combinatorial problems, and our WFOMC algorithms run in
polynomial time w.r.t domain cardinality, our experiments show that they are far from optimal. This is especially pronounced in the
run-time for computing the number of trees, which admits the simple closed-form formula 𝑛𝑛−2 . In our observation, the number of

1 Code is available at https://github.com/dbizzaro/WFOMC-beyond-FOL.
2 The use of symbolic weights is equivalent to the procedure in the proof of Theorem 2, as explained in the appendix (to Section 3).

Artiϧcial Intelligence 342 (2025) 104310

19

https://github.com/dbizzaro/WFOMC-beyond-FOL

S. Malhotra, D. Bizzaro and L. Serafini

(active) 1-types3 and the presence of cardinality constraints on binary predicates constitute key sources of intractability (see Appendix
Table 2). As the former leads to more and larger operations, the latter leads to a complex polynomial interpolation task. Hence, the
generality of our proposed framework comes potentially at the cost of lower efficiency, in comparison to results obtained by more
fine-grained combinatorics. These results show that more work needs to be done on better practical implementation of the proposed
WFOMC results, potentially integrating solutions like [50,51].

8.2. Markov logic networks

A Markov Logic Network (MLN) [3] is a set of weighted formulas Φ ∶= {𝑤𝑖 ∶ 𝜙𝑖}𝑖, where each 𝜙𝑖 is a quantfier free FOL formula
with weight 𝑤𝑖 ∈ℝ ∪ {∞}. The formulas with weight ∞ are hard constraints, i.e., any world that does not follow those constraints
has probability 0. Let Φℝ be the subset of real-valued weighted formulas in Φ, and let Φ∞ be the hard constraints. Given a domain
Δ, an MLN Φ dfines a probability distribution over the set of possible interpretations:

𝑃Δ
Φ (𝜔) =

1𝜔⊧Φ∞

𝑍Δ
Φ

exp

(∑
𝑤𝑖∶𝜙𝑖∈Φℝ

𝑤𝑖 ⋅ 𝑛(𝜙𝑖,𝜔)

)
(51)

where

• 𝑛(𝜙𝑖,𝜔) represents the number of true groundings of 𝜙𝑖 in 𝜔;
• 1𝜔⊧Φ∞

is 1 when 𝜔 ⊧Φ∞ and 0 otherwise;

• 𝑍Δ
Φ is a normalization constant (ensuring that 𝑃Δ

Φ is a probability distribution) called partition function.

One of the applications of WFOMC is probabilistic inference in MLNs [5]. For every finitely-weighted formula 𝑤𝑖 ∶ 𝜙𝑖 in an MLN
Φ, we introduce a fresh predicate 𝑃𝑖∕𝑎𝑖, whose arity 𝑎𝑖 is the number of free variables in 𝜙𝑖. We dfine a weight function (𝑤, 𝑤̄)
such that 𝑤(𝑃𝑖) = exp(𝑤𝑖) and 𝑤̄(𝑃𝑖) = 1 for each 𝑖, while 𝑤(𝑅) = 𝑤̄(𝑅) = 1 for every other predicate 𝑅. Moreover, let Ψ denote the
conjunction of Φ∞ with all the formulas

∀𝑥1…𝑥𝑎𝑖
. 𝑃𝑖(𝑥1,… , 𝑥𝑎𝑖

)↔ 𝜙(𝑥1,… , 𝑥𝑎𝑖
) (52)

Then, for any query sentence 𝜙, probabilistic inference can be computed in the following way:

𝑃Δ
Φ (𝜙) = wfomc(Ψ ∧ 𝜙, |Δ|)

wfomc(Ψ, |Δ|) (53)

This means that inference can be performed in polynomial time (w.r.t domain cardinality) whenever Ψ and 𝜙 are domain-liftable.
The constrains introduced in this paper, i.e., 𝐷𝐴𝐺(𝑅), 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) and 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅), can also be used as hard constraints (Ψ) or as

queries (𝜙), while admitting polynomial time inference in MLNs. The experiments below demonstrate that the probability distributions
that can be obtained by incorporating these constraints in an MLN can be difficult to achieve otherwise. Such distributions may result
in a better model whenever we have reasons to believe that the graph formed by a particular binary relation should be a DAG, a
connected graph or a forest. All the distributions in the experiments below are computed (exactly) using the algorithms introduced
in the paper.

8.3. Graph statistics

Let us begin by examining the simplest scenario: an MLN that models only a directed (resp. undirected) graph. When restricting
the MLN to consider only graphs that are DAGs (resp. connected, or forests), then all the statistics about the graphs can be different.
An example of this is shown in Fig. 2. In this experiment, we show that MLNs with our constraints lead to different edge distributions
compared to the unconstrained cases. For this analysis, we considered a fixed prior on the distribution of edges given by the weighted
formula −1 ∶ 𝑅(𝑥, 𝑦) (which encodes a preference for sparse graphs), and plotted the distributions of the number of edges. We
compared the distributions when the graph constraints are imposed (blue curves), against what are arguably their best approximations
in FO2 (orange curves). For connectivity and forests, we compared also the distribution produced by the corresponding FO2 formula
together with the cardinality constraint that matches the support of the number of edges for the two cases4 (green curves). The actual
distributions of the edge count for domain size 𝑛 = 20 is available in the appendix (Fig. 5). As expected, the DAG and forest constraints
favor more sparsity, while the opposite is true for connectivity. The next example will show that even when this particular effect
is not very pronounced, the overall effect of a global constraint like connectivity can be significant (even compared to cardinality
constraints).

3 Active 1-types for a formula are the 1-types that are consistent with the formula.
4 Connected graphs can have any number of edges between 𝑛− 1 and (𝑛

2

)
, while forests can have any number of edges between 0 and 𝑛− 1.

Artiϧcial Intelligence 342 (2025) 104310

20

S. Malhotra, D. Bizzaro and L. Serafini

Fig. 2. Expected values of the number of edges of the directed/undirected graphs produced by MLNs with only the predicate 𝑅∕2. The legends report the hard
constraints, while the soft constraint is always −1 ∶𝑅(𝑥, 𝑦).

8.4. Smokers & friends with connectivity constraint

We will now analyze the widely investigated social network example of ``smokers and friends'' in the sparse regime. The example
is encoded with the following soft constraints:

𝑤𝑆 ∶ 𝑆(𝑥) (54)

𝑤𝐹 ∶ 𝐹 (𝑥, 𝑦) (55)

𝑤𝑃 ∶ 𝑆(𝑥) ∧ 𝐹 (𝑥, 𝑦)→ 𝑆(𝑦) (56)

where 𝑆∕1 is the predicate for smokers and 𝐹∕2 for friendship. If the weight 𝑤𝑃 is positive, then the MLN models the fact that friends
of smokers are more likely to be smokers. The network can be made sparse by setting the weight 𝑤𝐹 to be negative �- larger negative
weight leads to more sparsity.

The partition function for this MLN can be computed (in polynomial time) as the WFOMC of the following formula:

∀𝑥𝑦. 𝑃 (𝑥, 𝑦)↔ (𝑆(𝑥) ∧ 𝐹 (𝑥, 𝑦)→ 𝑆(𝑦)) (57)

with the following weight function:

𝑤(𝑆) = exp(𝑤𝑆), 𝑤̄(𝑆) = 1 (58)

𝑤(𝐹) = exp(𝑤𝐹), 𝑤̄(𝐹) = 1 (59)

𝑤(𝑃) = exp(𝑤𝑃), 𝑤̄(𝑃) = 1 (60)

Fig. 3 compares the distributions of the number of smokers for the following three cases5:

• the graph realized by 𝐹 must be a connected undirected graph (blue);
• the graph realized by 𝐹 can be any undirected graph (orange);
• the graph realized by 𝐹 must be an undirected graph with at least as many edges as the number of nodes minus one (which is

the minimum number of edges for connected graphs; green).

5 Each of the three cases is modeled by adding the corresponding hard constraint to the WFOMC of equation (57). The hard constraints are formally expressed in
the legends of Fig. 3.

Artiϧcial Intelligence 342 (2025) 104310

21

S. Malhotra, D. Bizzaro and L. Serafini

Fig. 3. Distributions of smokers for different weights. The legends report the hard constraints, while the titles report the weights of the soft constraints. The domain
size is fixed to 𝑛= 20.

In this experiment (Fig. 3), we analyze four different values of weight combinations for 𝑤𝐹 and 𝑤𝑃 , while 𝑤𝑆 is fixed to be zero.
We can see that the distribution becomes more concentrated at the extremes (either all smokers or none) when: (𝑖) increasing the
bias towards the satisfaction of the ``smoker and friends'' formula (i.e. increasing 𝑤𝑃), or (𝑖𝑖) decreasing the sparsity of the friendship
network (i.e. increasing 𝑤𝐹). This aligns with our intuition: (𝑖) as 𝑤𝑃 increases, any connected component of the friendship network
is more likely to have either all smokers or none; (𝑖𝑖) the less sparsity (i.e., the larger 𝑤𝐹), the more likely to have one large connected
component comprising most of the nodes �- and all the nodes of such component tend to become homogeneously smokers or non
smokers, modulated by the weight 𝑤𝑃 . The interplay of 𝑤𝐹 and 𝑤𝑃 controls the connectivity and smoking-homogeneity of the
networks modeled by the MLN.

Given that connectivity controls the ``spreading'' of homogeneity of smoking, adding connectivity constraints allow us to further
modulate the global distribution of smokers in the network �- as rflected in the blue histograms in Fig. 3. Note that the connected
networks still maintain high sparsity, as evidenced in Fig. 2, and shown more precisely in the appendix (Fig. 6, top-right). Importantly,
connectivity is forcing the graph to have only one connected component, so smoking behavior can ``spread'' across the entire graph,
making most of the nodes either smokers or non-smokers. As expected, the distribution of smokers under the connectivity constraint
is consistently more concentrated at the extremes than in the other two cases.

Analogous experiments with DAG and forest constraints instead of connectivity are reported in the appendix (Figs. 7 and 8).
In these cases, the differences are mainly driven by the corresponding increase in sparsity. Although these constraints demonstrate
different artifacts than FOL and connectivity, we leave there qualitative analysis to future work for more relevant examples. For
instance, citation networks for DAGs, and genealogy networks for forests.

Finally, Fig. 4 shows the run-times of computing the partition function of the ``smokers and friends'' MLNs, i.e. the run-times of the
WFOMC of each of the expressions in the legend, together with formula (57). To avoid numerical issues, the weights were represented
as fractions, and exact calculations were performed.

9. Conclusion

We investigate the domain-liftability of the first order logic fragment with two variables and counting quantfiers (C2), with
additional graph theoretical constraints. We show that the domain liftability of C2 is preserved when one of the relations in the
language is restricted to represent an acyclic graph, a connected graph, a forest (resp. a directed forest), or a tree (resp. a directed
tree). A key novel idea used consistently throughout our work is counting by splitting. The generality of this principle can potentially
aid the lifting of many other novel constraints. Besides their application in statistical relational learning, our results provide a uniform
framework for combinatorics on different types of multi-relational graphs. In fact, our work covers and extends a vast array of results
in combinatorics, such as counting phylogenetic networks and enumerating acyclic graphs/forests with different constraints. Our

Artiϧcial Intelligence 342 (2025) 104310

22

S. Malhotra, D. Bizzaro and L. Serafini

Fig. 4. Run-times of computing the partition function of the ``smokers and friends'' MLNs.

work (along with [20]) can be seen as extending the relational language for constraints that admit lifted inference beyond first order
logic. Hence, these results motivate the following open problem:

Is there a formal language that captures all tractable counting problems for labeled relational structures?

Our experimental analysis shows that the new tractable constrains lead to potentially useful differences in distributions expressed
by Markov Logic Networks. However, we observe that our algorithms, though polynomial in time, have scalability issues, and of
ten do not lead to the optimal computational complexity. This motivates further research into designing more efficient practical
implementations, and in understanding the gap between domain lifted and optimal inference.

CRediT authorship contribution statement

Sagar Malhotra: Writing -- review & editing, Writing -- original draft, Visualization, Supervision, Project administration, Method
ology, Formal analysis, Conceptualization. Davide Bizzaro: Writing -- review & editing, Writing -- original draft, Visualization,
Validation, Software, Methodology, Investigation, Formal analysis, Conceptualization. Luciano Serafini: Writing -- review & edit
ing, Supervision, Project administration, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
ifluence the work reported in this paper.

Appendix A. Appendix to Section 3

Theorem 2. ([18], slightly reformulated) Let Φ be a first-order logic sentence and let Γ be an arbitrary cardinality constraint. Then,
wfomc(Φ ∧ Γ,𝒌) can be computed in polynomial time with respect to the domain cardinality, relative to the wfomc(Φ,𝒌) oracle.

Proof. Let us consider an FOL language  that contains 𝑟 relational symbols denoted by {𝑅𝑖∕𝑎𝑖}𝑖∈[𝑟]. Let 𝜔 be an interpretation and
let 𝝁 = ⟨|𝑅1|,… , |𝑅𝑟|⟩ be the vector comprising the cardinality of each predicate 𝑅𝑖 in 𝜔. Now, w(𝜔) can be evaluated using the
definition of symmetric weight functions (Definition 2). Any two interpretations that have the same predicate cardinalities 𝝁 as 𝜔
have the same weight w(𝜔). Therefore, we use w𝝁 to indicate the weight w(𝜔), where 𝜔 ⊧ 𝝁. Given an FOL formula Φ, let 𝐴𝝁 be the
number of interpretations 𝜔 ⊧Φ∧ 𝝁, then the following holds:

wfomc(Φ,𝒌) =
∑
𝝁

𝐴𝜇w𝝁 (61)

For each predicate 𝑅𝑖∕𝑎𝑖 in the FOL language , there exist 𝑛𝑎𝑖 ground atoms. Therefore, there are 𝑛
∑

𝑖∈[𝑟] 𝑎𝑖 potential values of 𝝁,
which means that there are polynomially many vectors 𝝁 with respect to 𝑛. By evaluating wfomc(Φ,𝒌) for 𝑛

∑
𝑖∈[𝑟] 𝑎𝑖 distinct weight

function pairs (𝑤, 𝑤̄), we can obtain a non-singular linear system of 𝑛
∑

𝑖∈[𝑟] 𝑎𝑖 equations on the 𝑛
∑

𝑖∈[𝑟] 𝑎𝑖 variables 𝐴𝝁. This system can
be solved using Gauss-elimination algorithm in 𝑂(𝑛3

∑
𝑖∈[𝑟] 𝑎𝑖) time. Then, having found the numbers 𝐴𝝁 , we can compute the value

of any cardinality constraint as follows:

wfomc(Φ ∧ Γ,𝒌) =
∑
𝝁⊧𝚪

𝐴𝜇w𝝁 (62)

where 𝝁 ⊧ 𝚪 represents the fact that the predicate cardinalities 𝝁 satisfy the cardinality constraint Γ. Since, there is only a polynomial
number of vectors 𝝁, equation (62) can be computed in polynomial time. □

Artiϧcial Intelligence 342 (2025) 104310

23

S. Malhotra, D. Bizzaro and L. Serafini

Remark 9. In equation (62) we assume that 𝝁 ⊧ Γ can be checked in polynomial time w.r.t. 𝑛. This is a reasonable assumption for all
our purposes.

A.1. Practical implementation of cardinality constraints

Note that the proof of Theorem 2 assumes only a black-box access to the wfomc(Φ,𝒌) oracle. However, for all the algorithms
introduced in the paper we can treat wfomc(Φ,𝒌) as a polynomial with symbolic weights for each predicate as variables. For example,
let Φ ∶= ∀𝑥𝑦.¬𝑅(𝑥,𝑥) ∧ (𝑅(𝑥, 𝑦)→𝑅(𝑦,𝑥)) (encoding for an undirected graph without self-loops). Then, equation (8) becomes:

wfomc(Φ, (𝑤, 𝑤̄), 𝑛) = (𝑤(𝑅)2 + 𝑤̄(𝑅)2)(
𝑛
2) =

(𝑛 2)∑
𝑘=1

((𝑛
2

)
𝑘

)
𝑤(𝑅)2𝑘𝑤̄(𝑅)2((

𝑛
2)−𝑘)

which is a polynomial in the variables 𝑤(𝑅) and 𝑤̄(𝑅). Similarly to equation (61), we have that this polynomial can be written as ∑
𝝁𝐴𝝁w𝝁. The monomial

((𝑛 2)
𝑘
)
𝑤(𝑅)2𝑘𝑤̄(𝑅)2((

𝑛
2)−𝑘) is equal to 𝐴𝝁w𝝁, where 𝝁 is such that |𝑅| = 2𝑘, w𝝁 = 𝑤(𝑅)2𝑘𝑤̄(𝑅)2((

𝑛
2)−𝑘) and

hence 𝐴𝝁 =
((𝑛 2)
𝑘
)
. This procedure of inferring 𝝁 from monomials is trivially implied from Theorem 1. All WFOMC algorithms presented

in this paper and in literature [18,10,11] only add simple arithmetic operations over the polynomials obtained in Theorem 1. Hence,
inferring 𝝁 from monomials in the WFOMC polynomials is always possible. Keeping only the monomials satisfying the condition
𝝁 ⊧ Γ can then be used to impose any cardinality constraint Γ as done in Equation (62). For instance, for a cardinality constraint Γ,
one can simply eliminate the terms

((𝑛 2)
𝑘
)
𝑤(𝑅)2𝑘𝑤̄(𝑅)2((

𝑛
2)−𝑘) =𝐴𝝁w𝝁 such that 𝝁 ̸⊧ Γ. Leaving us with

∑
𝝁⊧Γ𝐴𝝁w𝝁.

In general, one can always consider the predicate weights as variables, and the WFOMC algorithms will produce a polynomial
on such weights. Once simplfied, this polynomial can be expressed as in the RHS of equation (61), with the difference that now the
coefficients 𝐴𝝁 are known (since they are produced by the WFOMC algorithms and the polynomial simplfication), while the weights
w𝝁 are symbolic. Thus, in our implementation, instead of computing the coefficients 𝐴𝝁 as in the proof of Theorem 2, we proceed in
the following manner: with sympy Python library, we represent symbolically the predicate weights, and then perform the WFOMC
operations as operations between polynomials on such variables. This produces a polynomial that when simplfied gives us directly
the coefficients 𝐴𝝁 and hence a simple way to impose any cardinality constraint as done in Equation (62).

Appendix B. Appendix to Section 5

Lemma 3. An interpretation 𝜔 is a model of Ψ[𝑚] according to Definition 6 if and only if 𝜔 satifies conditions C1-C4 in Lemma 2, where
we instantiate 𝑎𝑥𝑖𝑜𝑚′, 𝑎𝑥𝑖𝑜𝑚′′ and Θ(𝑥, 𝑦) as follows:

• 𝑎𝑥𝑖𝑜𝑚′ ∶= ∀𝑥𝑦.¬𝑅(𝑥, 𝑦)
• 𝑎𝑥𝑖𝑜𝑚′′ ∶=𝐴𝑐𝑦𝑐𝑙𝑖𝑐(𝑅)
• Θ(𝑥, 𝑦) ∶= ¬𝑅(𝑦,𝑥)

Proof. If 𝜔 ⊧ Ψ[𝑚] according to Definition 6, since nodes in [𝑚] have zero indegree, we have that 𝜔 ↓ [𝑚] ⊧ 𝑎𝑥𝑖𝑜𝑚′ (C1). Since any
subgraph of an acyclic graph is acyclic, we also have that 𝜔 ↓ [𝑚̄] ⊧ 𝑎𝑥𝑖𝑜𝑚′′ (C2). And since nodes in [𝑚] have indegree zero, there
can be no arrow from [𝑚̄] to [𝑚], i.e., 𝜔 ⊧ ∀𝑥 ∈ [𝑚] ∀𝑦 ∈ [𝑚̄].Θ(𝑥, 𝑦) (C3). Finally, C4 is satified by construction. On the other hand,
if 𝜔 satifies C1 and C3 with the previous instantiations, then the nodes in [𝑚] cannot have incoming arrows. And the graph obtained
from a DAG by adding 𝑚 nodes without incoming arrows is still a DAG. □

Appendix C. Appendix to Section 6

Lemma 4. An interpretation 𝜔 is a model of Ψ[𝑚] according to Definition 9 if and only if 𝜔 satifies conditions C1-C4 in Lemma 2, where
we instantiate 𝑎𝑥𝑖𝑜𝑚′, 𝑎𝑥𝑖𝑜𝑚′′ and Θ(𝑥, 𝑦) as follows:

• 𝑎𝑥𝑖𝑜𝑚′ ∶= 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅)
• 𝑎𝑥𝑖𝑜𝑚′′ ∶= ⊤

• Θ(𝑥, 𝑦) ∶= ¬𝑅(𝑥, 𝑦)

Proof. If 𝜔 ⊧ Ψ[𝑚] according to Definition 9, since [𝑚] is a connected component, we have that 𝜔 ↓ [𝑚] ⊧ 𝑎𝑥𝑖𝑜𝑚′. Also, 𝑎𝑥𝑖𝑜𝑚′′ is
vacuously satified. Since [𝑚] is a connected component of 𝜔𝑅, there can not be an 𝑅-edge between [𝑚] and [𝑚̄] -- as that would make
[𝑚] part of a larger connected subgraph, leading to a contradiction. Hence, 𝜔 ⊧ ∀𝑥 ∈ [𝑚] ∀𝑦 ∈ [𝑚̄].Θ(𝑥, 𝑦). Finally, C4 is satified by
construction. On the other hand, if 𝜔 satifies C4, then it satifies the condition in Remark 4 for 𝑅 to be a symmetric and antirflexive
relation. So, by satisfying also C1 and C3, the nodes in [𝑚] must be connected and there cannot be edges between them and the other
𝑛−𝑚 nodes. This means that precisely that 𝜔𝑅 ↓ [𝑚] forms a connected component of 𝜔𝑅. □

Artiϧcial Intelligence 342 (2025) 104310

24

S. Malhotra, D. Bizzaro and L. Serafini

C.1. Analysis of the algorithm and proof of Theorem 6

We provide Algorithm 3 that takes as input Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦)∧𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅) and 𝒌 -- where Φ(𝑥, 𝑦) is a quantifier-free FO2 formula
and 𝒌 is a 1-type cardinality vector with |𝒌| = 𝑛 -- and returns wfomc(Ψ,𝒌). It can be seen that the algorithm runs in polynomial
time using much of the same analysis that was used for Algorithm 2. The key ideas being that: the 𝐟𝐨𝐫 loops in line 5-8 and line
12-14 run both polynomially many iterations w.r.t 𝑛; the lexicographical order in the 𝐟𝐨𝐫 loop on line 5 ensures that the values 𝐴[𝒔′]
required in the function wfomc(Ψ[𝑚],𝒔) are always already stored in 𝐴; and wfomc(∀𝑥𝑦.Φ(𝑥, 𝑦),𝒔′′) is an FO2 WFOMC problem,
again computable in polynomial time.

Algorithm 3 WFOMC-Connected.
1: Input: Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑(𝑅),𝒌
2: Output: wfomc(Ψ,𝒌)
3: 𝐴[𝟎]← 0 ⊳ 𝐴 has 𝑢 indices
4: ⊳ 𝟎 = ⟨0, ...,0⟩
5: for 𝟎 < 𝒑 ≤ 𝒌 where 𝒑∈ ℕ𝑢

0 do ⊳ ≤ is Lexical order

6: 𝐴[𝒑]← wfomc(Ψ′′,𝒑) − 1 |𝒑| ∑|𝒑|−1
𝑚=1

(|𝒑|
𝑚
)
⋅𝑚 ⋅wfomc(Ψ[𝑚],𝒑)

7: end for

8: return 𝐴[𝒌]
9:

10: function wfomc(Ψ[𝑚] , 𝒔) ⊳ Equation (34)
11: 𝑆 = 0
12: for 𝒔′ + 𝒔′′ = 𝒔 and |𝒔′| =𝑚 do

13: 𝑆 ← 𝑆 +𝐴[𝒔′] ⋅ wfomc(Ψ′′ ,𝒔′′) ⋅
∏

𝑖,𝑗∈[𝑢] 𝑟
𝑠′
𝑖
𝑠′′
𝑗

𝑖𝑗

14: end for

15: return 𝑆

16: end function

In line 3, an array 𝐴 with 𝑢 indices is initiated and 𝐴[𝟎] is assigned the value 0, where 𝟎 corresponds to the 𝑢-dimensional
zero vector. The for loop in lines 5 − 7 incrementally computes wfomc(Ψ,𝒑), using equation (36), where the loop runs over all
𝑢-dimensional integer vectors 𝒑, such that 𝒑 ≤ 𝒌, where ≤ is the lexicographical order. The number of possible 𝒑 vectors is at most
𝑛𝑢. Hence, the for loop runs at most 𝑛𝑢 iterations. In line 6, we compute wfomc(Ψ,𝒑) as given in equation (36). Also in line 6, the
function wfomc(Ψ[𝑚],𝒑) �- that computes wfomc(Ψ[𝑚],𝒑) �-is called at most |𝒑| − 1 times, which is bounded above by 𝑛. 𝐴[𝒑]
stores the value wfomc(Ψ,𝒑). In the function wfomc(Ψ[𝑚],𝒔), the number of iterations in the for loop is bounded above by 𝑛2𝑢. And
wfomc(Φ,𝒔′′) is an FO2 WFOMC problem, again computable in polynomial time. Hence, the algorithm WFOMC-Connected runs in
polynomial time w.r.t domain cardinality. Notice that since loop 5-7 runs in lexicographical order, the 𝐴[𝒔′] required in the function
wfomc(Ψ[𝑚],𝒔) are always already stored in 𝐴.

Summing wfomc(Ψ,𝒌) over all possible 𝒌 such that |𝒌| = 𝑛, we can compute wfomc(Ψ, 𝑛) in polynomial time w.r.t domain
cardinality 𝑛. Moreover, due to the modularity of the skolemization process for WFOMC [5], we can extend this result to prove the
domain liftability of the entire FO2 fragment, with connectivity axiom. Using Theorem 2 and Remark 2, we can also extend domain
liftability of FO2, with connectivity axiom and cardinality constraints. Finally, since WFOMC of any C2 formula can be modularly
reduced to WFOMC of an FO2 formula with cardinality constraints [18], we have Theorem 6.

Appendix D. Appendix to Section 7

Lemma 5. An interpretation 𝜔 is a model of Ψ[𝑚] according to Definition 14 if and only if 𝜔 satifies conditions C1-C4 in Lemma 2, where
we instantiate 𝑎𝑥𝑖𝑜𝑚′, 𝑎𝑥𝑖𝑜𝑚′′ and Θ(𝑥, 𝑦) as follows:

• 𝑎𝑥𝑖𝑜𝑚′ ∶= 𝑇 𝑟𝑒𝑒(𝑅)
• 𝑎𝑥𝑖𝑜𝑚′′ ∶= 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅)
• Θ(𝑥, 𝑦) ∶= ¬𝑅(𝑥, 𝑦)

Proof. If 𝜔 ⊧Ψ[𝑚] according to Definition 14, since 𝜔𝑅 ↓ [𝑚] is a tree, we have that 𝜔 ↓ [𝑚] ⊧ 𝑎𝑥𝑖𝑜𝑚′. Also, any subgraph of a forest
is still a forest, so 𝜔 ↓ [𝑚̄] ⊧ 𝑎𝑥𝑖𝑜𝑚′′. Since [𝑚] is a connected component of 𝜔𝑅, there can not be an 𝑅-edge between [𝑚] and [𝑚̄].
Hence, 𝜔 ⊧ ∀𝑥 ∈ [𝑚] ∀𝑦 ∈ [𝑚̄].Θ(𝑥, 𝑦). Finally, C4 is satified by construction. On the other hand, if 𝜔 satifies C4, then it satifies the
condition in Remark 8 for 𝑅 to be a symmetric and antirflexive relation. Hence, by satisfying also C1, C2 and C3, the nodes in [𝑚]
form a tree (C1), those in [𝑚̄] form a forest (C2), and the two subgraphs are disconnected (C3). This implies that 𝜔 ⊧Ψ[𝑚] according
to Definition 14. □

Artiϧcial Intelligence 342 (2025) 104310

25

S. Malhotra, D. Bizzaro and L. Serafini

Algorithm 4 WFOMC-Forest.
1: Input: Ψ ∶= ∀𝑥𝑦.Φ(𝑥, 𝑦) ∧ 𝐹𝑜𝑟𝑒𝑠𝑡(𝑅),𝒌
2: Output: wfomc(Ψ,𝒌)
3: 𝐴[𝟎]← 1 ⊳ 𝐴 has 𝑢 indices
4: ⊳ 𝟎 = ⟨0, ...,0⟩
5: for 𝟎 < 𝒑 ≤ 𝒌 where 𝒑∈ ℕ𝑢

0 do ⊳ Lexical order

6: 𝐴[𝒑]←
∑|𝒑|

𝑚=1

(|𝒑|−1
𝑚−1

)
wfomc(Ψ[𝑚],𝒑)

7: end for

8: return 𝐴[𝒌]
9:

10: function wfomc(Ψ[𝑚] , 𝒔) ⊳ Equation (46)
11: 𝑆 = 0
12: for 𝒔′ + 𝒔′′ = 𝒔 and |𝒔′| =𝑚 do

13: 𝑆 ← 𝑆 +wfomc(Ψ′ ,𝒔′) ⋅𝐴[𝒔′′] ⋅
∏

𝑖,𝑗∈[𝑢] 𝑟
𝑠′
𝑖
𝑠′′
𝑗

𝑖𝑗

14: end for

15: return 𝑆

16: end function

Appendix E. Appendix to Section 8

Table 2
Number of active 1-types (# 1-types) and presence of cardinality constrains on binary
predicates (cardinality 𝑅∕2) for each combinatorial experiment, after modular reduc
tion to FO2 with cardinality constraints and WFOMC-preserving skolemization. A clear
negative correlation between them and the maximum domain size having FOMC run
time within 100 seconds (max 𝑛) can be observed.

Combinatorial problem # 1-types cardinality 𝑅∕2 max 𝑛

DAGs w/ 2𝑛 edges (23) 1 yes 65
DAGs w/ 2𝑛 edges and one source (25) 3 yes 29
DAGs w/ one source (26) 3 no 122
DAGs w/ one source and one sink (27) 9 no 20
trees (39) 1 yes 79
3-colored connected graphs (42) 3 no 60
forests w/o isolated nodes (50) 2 yes 36

Fig. 5. Probability distributions of the number of edges of the directed/undirected graphs produced by MLNs with only the predicate 𝑅∕2. The legends report the
hard constraints, while the soft constraint is always −1 ∶𝑅(𝑥, 𝑦). The domain size is fixed to 𝑛= 20.

Artiϧcial Intelligence 342 (2025) 104310

26

S. Malhotra, D. Bizzaro and L. Serafini

Fig. 6. Probability distributions of the number of edges of the graphs produced by predicate 𝐹 with ``smokers and friends'' MLNs. The legends report the hard
constraints, while the soft constraints are always 0 ∶ 𝑆(𝑥), −1 ∶ 𝐹 (𝑥, 𝑦) and 3 ∶ 𝑃 (𝑥, 𝑦). The domain size is fixed to 𝑛= 20.

Fig. 7. Distributions of smokers for different weight values. The legends report the hard constraints, while the titles report the weights of the soft constraints. The
domain size is fixed to 𝑛= 20.

Data availability

The code for the paper is online.

Artiϧcial Intelligence 342 (2025) 104310

27

S. Malhotra, D. Bizzaro and L. Serafini

Fig. 8. Distributions of smokers for different weight values. The legends report the hard constraints, while the titles report the weights of the soft constraints. The
domain size is fixed to 𝑛= 20.

References

[1] L. Getoor, B. Taskar, Introduction to Statistical Relational Learning (Adaptive Computation and Machine Learning), The MIT Press, 2007.
[2] L.D. Raedt, K. Kersting, S. Natarajan, D. Poole, Statistical Relational Artficial Intelligence: Logic, Probability, and Computation, Synthesis Lectures on Artficial

Intelligence and Machine Learning, Morgan & Claypool Publishers, 2016.
[3] M. Richardson, P. Domingos, Markov logic networks, Mach. Learn. 62 (1--2) (2006) 107--136.
[4] D. firens, G. Van Den Broeck, J. Renkens, D. Shterionov, B. Gutmann, I. Thon, G. Janssens, L. De Raedt, Inference and learning in probabilistic logic programs

using weighted Boolean formulas, Theory Pract. Log. Program. 15 (3) (2015) 358--401, https://doi.org/10.1017/S1471068414000076.
[5] G.V. den Broeck, W. Meert, A. Darwiche, Skolemization for weighted first-order model counting, in: C. Baral, G.D. Giacomo, T. Eiter (Eds.), Principles of Knowledge

Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vienna, Austria, July 20-24, 2014, AAAI Press, 2014, http://
www.aaai.org/ocs/index.php/KR/KR14/paper/view/8012.

[6] V. Gogate, P.M. Domingos, Probabilistic theorem proving, in: F.G. Cozman, A. Pfeffer (Eds.), UAI 2011, Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artficial Intelligence, Barcelona, Spain, July 14--17, 2011, AUAI Press, 2011, pp. 256--265.

[7] G.V. den Broeck, On the completeness of first-order knowledge compilation for lifted probabilistic inference, in: J. Shawe-Taylor, R.S. Zemel, P.L. Bartlett, F.C.N.
Pereira, K.Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems
2011. Proceedings of a Meeting Held 12-14 December 2011, Granada, Spain, vol. 24, Curran Associates, Inc., 2011, pp. 1386--1394, https://proceedings.neurips.
cc/paper/2011/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html.

[8] P. Beame, G.V. den Broeck, E. Gribkoff, D. Suciu, Symmetric weighted first-order model counting, in: T. Milo, D. Calvanese (Eds.), Proceedings of the 34th ACM
Symposium on Principles of Database Systems, PODS 2015, Melbourne, Victoria, Australia, May 31 - June 4, 2015, ACM, 2015, pp. 313--328.

[9] A. Kuusisto, C. Lutz, Weighted model counting beyond two-variable logic, in: A. Dawar, E. Grädel (Eds.), Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, ACM, 2018, pp. 619--628.

[10] S. Malhotra, L. Serafini, A combinatorial approach to weighted model counting in the two-variable fragment with cardinality constraints, in: AIxIA 2021 --
Advances in Artficial Intelligence: 20th International Conference of the Italian Association for Artficial Intelligence, Virtual Event, December 1--3, 2021, Revised
Selected Papers, Springer-Verlag, Berlin, Heidelberg, 2021, pp. 137--152.

[11] S. Malhotra, L. Serafini, Weighted model counting in fo2 with cardinality constraints and counting quantfiers: a closed form formula, Proc. AAAI Conf. Artif.
Intell. 36 (5) (2022) 5817--5824, https://doi.org/10.1609/aaai.v36i5.20525, https://ojs.aaai.org/index.php/AAAI/article/view/20525.

[12] J. Barvínek, T. van Bremen, Y. Wang, F. Železný, O. Kuželka, Automatic conjecturing of p-recursions using lifted inference, in: N. Katzouris, A. Artikis (Eds.),
Inductive Logic Programming, Springer International Publishing, Cham, 2022, pp. 17--25.

[13] M. Svatoš, P. Jung, J. Tóth, Y. Wang, O. Kuželka, On discovering interesting combinatorial integer sequences, in: Proceedings of the Thirty-Second International
Joint Conference on Artficial Intelligence, IJCAI ’23, 2023.

[14] G.V. den Broeck, N. Taghipour, W. Meert, J. Davis, L.D. Raedt, Lifted probabilistic inference by first-order knowledge compilation, in: T. Walsh (Ed.), IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artficial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, AAAI Press/International
Joint Conferences on Artficial Intelligence, IJCAI/AAAI, 2011, pp. 2178--2185.

[15] S.M. Kazemi, A. Kimmig, G.V. den Broeck, D. Poole, Domain recursion for lifted inference with existential quantfiers, CoRR, arXiv:1707.07763, 2017,
pp. 1386--1394, http://arxiv.org/abs/1707.07763.

[16] S.M. Kazemi, A. Kimmig, G.V. den Broeck, D. Poole, New liftable classes for first-order probabilistic inference, in: D.D. Lee, M. Sugiyama, U. von Luxburg, I.
Guyon, R. Garnett (Eds.), Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December
5-10, 2016, Barcelona, Spain, 2016, pp. 3117--3125, https://proceedings.neurips.cc/paper/2016/hash/c88d8d0a6097754525e02c2246d8d27f-Abstract.html.

[17] M. Jaeger, G. Van den Broeck, Liftability of probabilistic inference: Upper and lower bounds, 2012-08-18.
[18] O. Kuzelka, Weighted first-order model counting in the two-variable fragment with counting quantfiers, J. Artif. Intell. Res. 70 (2021) 1281--1307, https://

doi.org/10.1613/jair.1.12320.
[19] J. Tóth, O. Kuzelka, Lifted inference with linear order axiom, in: B. Williams, Y. Chen, J. Neville (Eds.), Thirty-Seventh AAAI Conference on Artficial Intelligence,

AAAI 2023, Thirty-Fifth Conference on Innovative Applications of Artficial Intelligence, IAAI 2023, Thirteenth Symposium on Educational Advances in Artficial
Intelligence, EAAI 2023, Washington, DC, USA, February 7-14, 2023, AAAI Press, 2023, pp. 12295--12304.

Artiϧcial Intelligence 342 (2025) 104310

28

http://refhub.elsevier.com/S0004-3702(25)00029-3/bib13FE5E3DEE1AF1B9CED46D0D40505524s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibC14809681439CAA21DFB756D8A7C4D1Bs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibC14809681439CAA21DFB756D8A7C4D1Bs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib81D5A6B3CAA96D2DFD52454595B11DF4s1
https://doi.org/10.1017/S1471068414000076
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8012
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8012
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib36F49BCD2BCE96926339081953FDB1EFs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib36F49BCD2BCE96926339081953FDB1EFs1
https://proceedings.neurips.cc/paper/2011/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/846c260d715e5b854ffad5f70a516c88-Abstract.html
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibC62A73C16FF2BB9D5B37E3FE479B8527s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibC62A73C16FF2BB9D5B37E3FE479B8527s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibFCE87BB5F53DE68C55894A63E4929EBFs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibFCE87BB5F53DE68C55894A63E4929EBFs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibDD56A11F69F3EE8EAAB9FBBAE3DD32E0s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibDD56A11F69F3EE8EAAB9FBBAE3DD32E0s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibDD56A11F69F3EE8EAAB9FBBAE3DD32E0s1
https://doi.org/10.1609/aaai.v36i5.20525
https://ojs.aaai.org/index.php/AAAI/article/view/20525
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib35B3EFE904FD19B8CD5CDCC2D3A86BD4s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib35B3EFE904FD19B8CD5CDCC2D3A86BD4s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib4CB69512942AE71CC58837F950BAC318s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib4CB69512942AE71CC58837F950BAC318s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib022918044592210CAE10645B3587BA6Ds1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib022918044592210CAE10645B3587BA6Ds1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib022918044592210CAE10645B3587BA6Ds1
http://arxiv.org/abs/1707.07763
https://proceedings.neurips.cc/paper/2016/hash/c88d8d0a6097754525e02c2246d8d27f-Abstract.html
https://doi.org/10.1613/jair.1.12320
https://doi.org/10.1613/jair.1.12320
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib6DDCD5CBF31ECAD6E5AD6085F725FB04s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib6DDCD5CBF31ECAD6E5AD6085F725FB04s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib6DDCD5CBF31ECAD6E5AD6085F725FB04s1

S. Malhotra, D. Bizzaro and L. Serafini

[20] T. van Bremen, O. Kuželka, Lifted inference with tree axioms, in: Proceedings of the 18th International Conference on Principles of Knowledge Representation
and Reasoning, 2021, pp. 599--608.

[21] J.R. Clough, J. Gollings, T.V. Loach, T.S. Evans, Transitive reduction of citation networks, J. Complex Netw. 3 (2) (2014) 189--203, https://doi.org/10.1093/
comnet/cnu039, https://academic.oup.com/comnet/article-pdf/3/2/189/1071092/cnu039.pdf.

[22] J. Ugander, B. Karrer, L. Backstrom, C.A. Marlow, The anatomy of the Facebook social graph, arXiv:1111.4503, 2011.
[23] I.M. Gessel, Counting acyclic digraphs by sources and sinks, Discrete Math. 160 (1996) 253--258.
[24] R.W. Robinson, Counting labeled acyclic digraphs, in: New Directions in the Theory of Graphs, 1973, pp. 239--273.
[25] L. Takács, On Cayley’s formula for counting forests, J. Comb. Theory, Ser. A 53 (2) (1990) 321--323, https://doi.org/10.1016/0097-3165(90)90064-4.
[26] N. Immerman, Descriptive Complexity, Springer Science & Business Media, 2012.
[27] H.S. Wilf, Generatingfunctionology, A. K. Peters, Ltd., USA, 2006.
[28] F. Harary, E.M. Palmer, Graphical Enumeration, Addison-Wesley, 1973.
[29] F. Bienvenu, A. Lambert, M. Steel, Combinatorial and stochastic properties of ranked tree-child networks, Random Struct. Algorithms 60 (4) (2022) 653--689,

https://doi.org/10.1002/rsa.21048, arXiv:2007.09701 [math, q-bio], http://arxiv.org/abs/2007.09701.
[30] G. Cardona, L. Zhang, Counting and enumerating tree-child networks and their subclasses, J. Comput. Syst. Sci. 114 (2020) 84--104, https://doi.org/10.1016/j.

jcss.2020.06.001, https://linkinghub.elsevier.com/retrieve/pii/S0022000020300611.
[31] M. Fuchs, H. Liu, G.-R. Yu, A short note on the exact counting of tree-child networks, arXiv:2110.03842 [math, q-bio], Oct. 2021, http://arxiv.org/abs/2110.

03842.
[32] T. Hinrichs, M. Genesereth, Herbrand logic, LG-2006-02, Stanford Reports, 2009, https://www.cs.uic.edu/~hinrichs/papers/hinrichs2006herbrand.pdf.
[33] E. Gradel, M. Otto, E. Rosen, Two-variable logic with counting is decidable, in: Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science,

IEEE, 1997, pp. 306--317.
[34] S. Malhotra, L. Serafini, On projectivity in Markov logic networks, in: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML

PKDD 2022, Grenoble, France, September 19--23, 2022, Proceedings, Part V, Springer-Verlag, Berlin, Heidelberg, 2023, pp. 223--238.
[35] V. Rodionov, On the number of labeled acyclic digraphs, Discrete Math. 105 (1) (1992) 319--321, https://doi.org/10.1016/0012-365X(92)90155-9, https://

www.sciencedirect.com/science/article/pii/0012365X92901559.
[36] OEIS Foundation Inc., The on-line encyclopedia of integer sequences, published electronically at http://oeis.org, 2023.
[37] M. https://mathoverflow.net/users/282217/marcel, Is there a formula for the number of st-dags (dag with 1 source and 1 sink) with n vertices? MathOveflow,

https://mathoverflow.net/q/395095, version: 2021-06-11.
[38] M. Mansouri, Counting general phylogenetic networks, Australas. J. Comb. (2022).
[39] M. Fuchs, B. Gittenberger, M. Mansouri, Counting phylogenetic networks with few reticulation vertices: exact enumeration and corrections, arXiv:2006.15784

[math], Mar. 2021, http://arxiv.org/abs/2006.15784.
[40] M. Pons, J. Batle, Combinatorial characterization of a certain class of words and a conjectured connection with general subclasses of phylogenetic tree-child

networks, Sci. Rep. 11 (1) (2021) 1--14.
[41] C. McDiarmid, C. Semple, D. Welsh, Counting phylogenetic networks, Ann. Comb. 19 (1) (2015) 205--224, https://doi.org/10.1007/s00026-015-0260-2, http://

link.springer.com/10.1007/s00026-015-0260-2.
[42] D.H. Huson, R. Rupp, C. Scornavacca, Phylogenetic Networks: Concepts, Algorithms and Applications, Cambridge University Press, 2010.
[43] M. Fuchs, E.-Y. Huang, G.-R. Yu, Counting phylogenetic networks with few reticulation vertices: a second approach, Discrete Appl. Math. 320 (2022) 140--149.
[44] Y.-S. Chang, M. Fuchs, H. Liu, M. Wallner, G.-R. Yu, Enumeration of d-combining tree-child networks, in: M.D. Ward (Ed.), 33rd International Conference on

Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022), in: Leibniz International Proceedings in Informatics (LIPIcs),
vol. 225, Schloss Dagstuhl -- Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2022, pp. 5:1--5:13, https://drops.dagstuhl.de/opus/volltexte/2022/16091.

[45] M. Fuchs, G.-R. Yu, L. Zhang, On the asymptotic growth of the number of tree-child networks, Eur. J. Comb. 93 (2021) 103278.
[46] M. Bouvel, P. Gambette, M. Mansouri, Counting phylogenetic networks of level 1 and 2, J. Math. Biol. 81 (6--7) (2020) 1357--1395.
[47] M. Bona, Handbook of Enumerative Combinatorics, Discrete Mathematics and Its Applications, CRC Press, 2015, https://books.google.it/books?id=

j3kZBwAAQBAJ.
[48] R.C. Read, E.M. Wright, Coloured graphs: a correction and extension, Can. J. Math. 22 (3) (1970) 594--596, https://doi.org/10.4153/CJM-1970-066-1.
[49] J.-C. Fournier, Graph Theory and Applications: With Exercises and Problems, John Wiley & Sons, 2013.
[50] J. Tóth, O. Kuželka, Complexity of weighted first-order model counting in the two-variable fragment with counting quantfiers: a bound to beat, in: Proceedings

of the 21st International Conference on Principles of Knowledge Representation and Reasoning, 2024, pp. 676--686.
[51] T. van Bremen, O. Kuželka, Faster lifting for two-variable logic using cell graphs, in: C. de Campos, M.H. Maathuis (Eds.), Proceedings of the Thirty-Seventh

Conference on Uncertainty in Artficial Intelligence, in: Proceedings of Machine Learning Research, vol. 161, PMLR, 2021, pp. 1393--1402, https://proceedings.
mlr.press/v161/bremen21a.html.

Artiϧcial Intelligence 342 (2025) 104310

29

http://refhub.elsevier.com/S0004-3702(25)00029-3/bib3B0C14770E6BD663518496DA60F524DAs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib3B0C14770E6BD663518496DA60F524DAs1
https://doi.org/10.1093/comnet/cnu039
https://doi.org/10.1093/comnet/cnu039
https://academic.oup.com/comnet/article-pdf/3/2/189/1071092/cnu039.pdf
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib1EDA2EC8C982259EE9FB1ADBC2D1A0D5s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib62B6972629332F9A9FD0E275C5FA9D63s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib7EAAFFDAAF16A41D94D4DD98CB0B98E6s1
https://doi.org/10.1016/0097-3165(90)90064-4
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibDA68C445269741C928E7BE3CDC4E7C1Fs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib4C6C6A4E73FA5A33ED7E7B53EBD4A9B7s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib5E58E92DB0F5E285D816802A0E43B65Ds1
https://doi.org/10.1002/rsa.21048
http://arxiv.org/abs/2007.09701
https://doi.org/10.1016/j.jcss.2020.06.001
https://doi.org/10.1016/j.jcss.2020.06.001
https://linkinghub.elsevier.com/retrieve/pii/S0022000020300611
http://arxiv.org/abs/2110.03842
http://arxiv.org/abs/2110.03842
https://www.cs.uic.edu/~hinrichs/papers/hinrichs2006herbrand.pdf
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib9D49A2BC2EF912DEB6741D6DDAE3EBCDs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib9D49A2BC2EF912DEB6741D6DDAE3EBCDs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibCE82965B8A4C2DAA9DBAC50CA954D0C5s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibCE82965B8A4C2DAA9DBAC50CA954D0C5s1
https://doi.org/10.1016/0012-365X(92)90155-9
https://www.sciencedirect.com/science/article/pii/0012365X92901559
https://www.sciencedirect.com/science/article/pii/0012365X92901559
http://oeis.org
https://mathoverflow.net/users/282217/marcel
https://mathoverflow.net/q/395095
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibE5545BEAB1C89D9BEF3E56B8E912ED9Es1
http://arxiv.org/abs/2006.15784
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib081476EB68042C19ABFCC3686F42D24Fs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib081476EB68042C19ABFCC3686F42D24Fs1
https://doi.org/10.1007/s00026-015-0260-2
http://link.springer.com/10.1007/s00026-015-0260-2
http://link.springer.com/10.1007/s00026-015-0260-2
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibB0E13311FC2060029D37561FC76F4A9Fs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibF8AA811771B7512051D27755F8C33908s1
https://drops.dagstuhl.de/opus/volltexte/2022/16091
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib8B2FCBDEF1F586FEED231B72F377DFA0s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibBB1EC91FED6E05AAB3EE5A2AAEE55FDDs1
https://books.google.it/books?id=j3kZBwAAQBAJ
https://books.google.it/books?id=j3kZBwAAQBAJ
https://doi.org/10.4153/CJM-1970-066-1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bibF381732DF2A59E8E35D7811BA3C2868Cs1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib4B1C89D2D191FCED8EEDE82B92F46179s1
http://refhub.elsevier.com/S0004-3702(25)00029-3/bib4B1C89D2D191FCED8EEDE82B92F46179s1
https://proceedings.mlr.press/v161/bremen21a.html
https://proceedings.mlr.press/v161/bremen21a.html

	Lifted inference beyond first-order logic
	1 Introduction
	2 Related work
	3 Background
	3.1 Basic notation
	3.2 First-order logic
	3.2.1 FO2 and its extensions
	3.2.2 Types and tables

	3.3 Weighted first order model counting
	3.3.1 WFOMC in FO2
	3.3.2 WFOMC in C2

	4 Main approach: counting by splitting
	5 WFOMC with DAG axiom
	5.1 Principle of inclusion-exclusion
	5.2 Counting directed acyclic graphs
	5.3 WFOMC with DAG axiom
	5.4 Source and sink

	6 WFOMC with connectivity axiom
	6.1 Counting connected graphs
	6.2 WFOMC with connectivity axiom

	7 Trees and forests
	7.1 WFOMC with directed tree and directed forest axioms
	7.2 WFOMC with tree axiom
	7.3 WFOMC with forest axiom

	8 Experiments
	8.1 Combinatorial examples
	8.2 Markov logic networks
	8.3 Graph statistics
	8.4 Smokers & friends with connectivity constraint

	9 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Appendix to Section 3
	A.1 Practical implementation of cardinality constraints

	Appendix B Appendix to Section 5
	Appendix C Appendix to Section 6
	C.1 Analysis of the algorithm and proof of Theorem 6

	Appendix D Appendix to Section 7
	Appendix E Appendix to Section 8
	Data availability
	References

