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ABSTRACT

Reasoning models enhance performance by tackling problems in a step-by-step
manner, decomposing them into sub-problems and exploring long chains of
thought before producing an answer. However, applying extended reasoning to
every step introduces substantial redundancy, as sub-problems vary widely in dif-
ficulty and complexity: a small number of pivotal steps are genuinely challenging
and decisive for the final answer, while many others only involve straightforward
revisions or simple computations. Therefore, a natural idea is to endow reasoning
models with the ability to adaptively respond to this variation, rather than treating
all steps with the same level of elaboration. To this end, we propose MixRea-
soning, a framework that dynamically adjusts the depth of reasoning within a sin-
gle response. The resulting chain of thought then becomes a mixture of detailed
reasoning on difficult steps and concise inference on simpler ones. Experiments
on GSM8K, MATH-500, and AIME show that MixReasoning shortens reasoning
length and substantially improves efficiency without compromising accuracy.

1 INTRODUCTION

Large Reasoning Models (LRMs) such as DeepSeek-R1 (Guo et al., 2025) and Qwen3 (Yang et al.,
2025a) have achieved state-of-the-art results on a wide range of complex tasks, spanning arithmetic,
commonsense, and scientific reasoning. A key driver of these gains is the use of long chains of
thought (CoTs) (Wei et al., 2022) that externalize intermediate computations before arriving at a
final answer (Jaech et al., 2024). However, uniformly applying elaborate reasoning throughout the
entire solution path induces substantial inference costs since thinking sequences become verbose,
and autoregressive decoding time scales roughly linearly with sequence length. The resulting latency
and compute overhead are prohibitive for interactive applications and degrade user experience (Fu
et al., 2024); in addition, excessively verbose traces hurt readability by inserting coherence fillers
and redundant self-checks that humans typically avoid, significantly degrading user experience (Fu
et al., 2025).

To mitigate these costs, recent work largely follows two lines. The first compresses the entire rea-
soning process via prompting (Han et al., 2024; Ma et al., 2025a), fine-tuning (Aggarwal & Welleck,
2025; Ma et al., 2025b; Chen et al., 2025), token-budget constraints (Sun et al., 2025), or penalizing
thinking tokens (Wang et al., 2025a), thereby making models “think less.” While effective in low-
ering latency, such global compression can inadvertently truncate pivotal reasoning steps, making
it challenging to preserve accuracy and maintain a favorable accuracy–efficiency balance. The sec-
ond line adopts hybrid reasoning (Fang et al., 2025; Yang et al., 2025a), routing between reasoning
and non-reasoning modes based on problem-level difficulty or user’s tolerance. This improves the
trade-off in some regimes, yet it assumes that a problem admits a clean binary partition (thinking vs.
non-thinking) and leaves long-reasoning trajectories rife with redundancy: many tokens still artic-
ulate routine manipulations (mostly complete ongoing linguistic or deterministic structures) (Wang
et al., 2025b) that do not require detailed thought.

Since global length compression and problem-level long/short switching can diminish accuracy, we
pursue a finer-grained alternative that preserves multi-step reasoning while controlling costs. Our
method builds on three key insights of LRMs: (1) Reasoning complexity of different substeps is
heterogeneous within a CoT. A small number of pivotal steps, such as initial analysis, decomposi-
tion, and key derivations, are genuinely challenging and decisive for the final answer, whereas many
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Figure 1: The comparison among Long-to-short compression, Hybrid reasoning, and MixReason-
ing. MixReasoning dynamically adjusts the depth of reasoning within a single response. The re-
sulting chain of thought then becomes a mixture of detailed reasoning on difficult steps and concise
inference on simpler ones.

others (e.g., arithmetic carry-outs, case enumeration, or straightforward transformations) are com-
paratively easy (Pan et al., 2025). Consequently, the goal is not whether to think, but how to allocate
detail-expanding at pivotal parts and remaining concise elsewhere within a CoT. (2) Integrating
thinking and non-thinking modes without degrading the base model. Current methods (Fang
et al., 2025; Yang et al., 2025a) to integrate different modes in one model typically involve retrain-
ing (e.g., via SFT/RL), which can inevitably introduce forgetting and degrade performance. Instead,
we attach lightweight LoRA adapters (Hu et al., 2022) trained to elicit non-thinking behavior while
freezing base weights. Compared to full finetuning, LoRA can perform on par or better than full
FT, as it can both memorize finetuning data and preserve pretraining knowledge (Schulman & Lab,
2025). By on-the-fly scaling strength of the LoRA adapter on a single served base model, we can
easily switch thinking modes during the reasoning process, thereby integrating thinking and non-
thinking ablility without sacrificing the capability of base model. (3) Reasoning tokens are dispro-
portionately consequential for trajectory formation: tokens with the lowest next-token entropy
mostly complete ongoing linguistic or deterministic structures, whereas the highest-entropy tokens
actually faciliate reasoning and steer the model to explore plausible reasoning pathways (Wang et al.,
2025b). In MixReasoning, we therefore treat local peaks in token-level entropy as decision points
to which detail should be allocated: when entropy spikes, we temporarily diminish the strength of
LoRA adapter to expand a short window into long-form reasoning, and then anneal back to the con-
cise mode once uncertainty subsides. This uncertainty-aware allocation of long-reasoning prioritizes
critical decision points, improving accuracy at a reduced token budget.

Motivated by these insights, we propose MixReasoning, an inference-time framework that achieves
a mixture of detailed reasoning on difficult steps and concise inference on simpler ones by switching
between thinking modes. MixReasoning employs a lightweight LoRA-based distillation to obtain
the concise reasoning ability and exposes a single served base model with dynamic adapter strength
based on local uncertainty. The design is memory-friendly (only LoRA weights are added, avoid
loading multiple models), requires no architectural changes, and allows seamless KV-cache reuse,
with only small, bounded prefill overhead when expanding. For inference-time modes switching,
MixReasoning monitors token-level uncertainty to decide when detailed reasoning is warranted.
When the model is highly uncertain at a given point, the method expands a local window of steps into
detailed (long-form) reasoning and then anneals back to the concise (short-form) reasoning for sub-
sequent portions. This yields responses that are both efficient and readable, concise where possible
and detailed where necessary. We evaluate MixReasoning across a wide range of reasoning work-
loads (GSM8K (Cobbe et al., 2021), Math-500 (Lightman et al., 2023) and AIME24 (Veeraboina,
2023)), spanning tasks of varying complexity and find that CoTs consistently contain substantial
redundancy. MixReasoning can compresses reasoning traces without sacrificing accuracy and, in
most cases, improves overall accuracy by avoiding verbosity-induced errors. Figure 1 illustrates the
comparison among Long-to-short compression, Hybrid reasoning and MixReasoning.
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Multi-model speculation vs. MixReasoning. Another acceleration line, multi-model speculative
decoding (Pan et al., 2025; Liao et al., 2025; Xia et al., 2024; Yang et al., 2025c), uses a small draft
model to propose future tokens that a stronger verifier then accepts or refines. While both meth-
ods interleave “modes” during inference, there are key distinctions between the two. Speculative
decoding/reasoning typically loads multiple models and maintains separate KV-caches, primarily
reducing per-token latency by fast-tracking tokens on which the draft and verifier agree; it doesn’t
necessarily shorten the chain of thought and thus does not target redundancy within long-form CoT
reasoning. In contrast, MixReasoning runs a single served base model augmented with lightweight
LoRA adapters and scales adapter strength on-the-fly in response to token-level uncertainty, thereby
switching between thinking and non-thinking modes within one model. This design eliminates
multi-model coordination/memory overhead and, crucially, reduces CoT length where appropriate
by allocating detailed thinking to important segments while keeping easy and routine spans brief,
yielding responses that are both efficient and more human-readable, so even improve accuracy.

In conclusion, we demonstrate that substantial portions of elaborate reasoning are redundant and
inefficient. By switching modes to think based on local uncertainty, MixReasoning can substan-
tially reduce reasoning costs while maintaining capability and, in many cases, improving overall
performance.

2 RELATED WORK

Long-to-short Compression. LRMs introduce a structured problem-solving approach that breaks
down complex problems into multiple simpler reasoning steps, commonly referred to as a long
CoT (Wei et al., 2022; Jaech et al., 2024). This enables the model to generate intermediate rea-
soning steps before producing a final answer, which can significantly scale inference-time compute.
To mitigate this, many works focus on compressing reasoning paths to reduce token generation.
Training-free methods prompt models to “think less” (Renze & Guven, 2024; Ma et al., 2025a),
intervene during decoding (Wang et al., 2025a;c; Tang et al., 2025), early stopping (Yang et al.,
2025b) once answer confidence is high (Yang et al., 2025b), or enforcing hard token budgets to
bound rationale length (Sun et al., 2025). Training-based approaches include SFT on synthetic
concise traces to teach models shorter explanations (Ma et al., 2025b), and RL with length-aware
rewards that penalize long chains (Aggarwal & Welleck, 2025; Luo et al., 2025). While effective
at lowering latency, these methods apply uniform compression across all problems and steps, which
often truncates pivotal reasoning and make it challenging to preserve accuracy and maintain a favor-
able accuracy–efficiency balance.

Hybrid Reasoning. An alternative path to efficient reasoning is hybrid reasoning (Fang et al.,
2025; Zhang et al., 2025; Anthropic, 2025; Yang et al., 2025a), which routes by instance difficulty:
based on problem-wise uncertainty or model confidence, easy cases receive short answers while dif-
ficult ones trigger long-form reasoning. This reduces redundancy when many queries admit straight-
forward solutions and can maintain accuracy on truly hard problems. However, it does not address
redundancy within long chains, models tend to remain verbose even across routine substeps, and
binary instance classification is itself hard, since seemingly simple problems may contain localized
challenging parts.

Speculative Decoding and Reasoning. Due to the memory-bound nature of LLM decoding, re-
cent work has also leveraged the technique of speculation to accelerate model reasoning (Pan et al.,
2025; Liao et al., 2025; Xia et al., 2024; Yang et al., 2025c). Speculation interleaves a fast drafting
step with verification by a larger target model, enforcing token-level or semantic-level agreement
between a lightweight draft model and the base model. These methods reduce latency per output
token without necessarily shortening the CoT itself, and typically require co-serving both models,
increasing memory footprint and operational complexity; consequently, rationales may remain ver-
bose. This line of work is orthogonal to ours: MixReason shortens rationales via intra-CoT adaptive
detail selection and can be combined with speculative decoding for additional speedups.
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Figure 2: MixReasoning use a single base model served together with a concise LoRA; during
decoding we modulate the adapter strength to switch between short-form and long-form reasoning.
When token-level uncertainty exceeds a threshold, we expand a local uncertain window and regener-
ate it in long-form mode; once confidence recovers, adapter strength is annealed back and decoding
proceeds in the concise mode.

3 METHOD

In this section, we present our method in detail. Section 3.1 introduces a simple yet effective ap-
proach that enables the reasoning model to generate concise responses, and then can be seamlessly
used to switch thinking modes during inference. Section 3.2 then describes how we dynamically
select the switching point based on token uncertainty. Finally, Section 3.3 shows that our method is
hardware-friendly with only a single model served.

3.1 LORA-BASED CONTROL OF THINKING MODES

To dynamically vary thinking ability during inference, we need a flexible and reliable control that
elicits concise responses without sacrificing accuracy or consistency. Following (Ma et al., 2025b),
we obtain such a control via lightweight LoRA SFT that distills a concise-reasoning or non-thinking
behavior into the base model. Formally, let θ denote model parameters. For a question q with latent
thoughts t1:n = {ti}ni=1 and final answer a, the original response by the reasoning model t1:n may
contain errors or unnecessary details. Given short (synthesized or human-annotated) explanations
t1:m with m < n, we fine-tune to prefer short yet accurate and consistent chains:

max
∆θ

E(q,a,t1:m)∼D

[
log pθ+∆θ(a | t1:m, q) +

m∑
i=1

log pθ+∆θ(ti | t<i, q)
]
, (1)

where ∆θ is a small LoRA update. Because multiple reasoning paths of different lengths can yield
the same a, ∆θ acts like a task vector that controls CoT length (Ilharco et al., 2022).

At inference (illustrated in Figure 2 (a)), we scale the LoRA adapter strength α to interpolate
between the base model’s longer-chain reasoning and the non-thinking mode, enabling on-the-fly
switching within a single served model.

3.2 TOKEN UNCERTAINTY-BASED MODE SWITCHING.

To decide when to expand detailed thinking, we monitor token-level uncertainty during decoding
and switch modes only at locally pivotal steps. Prior work shows that the quality of a reasoning
trace can be estimated from metrics derived from a model’s internal token distributions, providing
intrinsic signals to separate high-quality trajectories from erroneous ones without external supervi-
sion (Kang et al., 2025). Moreover, our token entropy insights suggest that reasoning complexity is
heterogeneous within a CoT: most tokens are routine low-entropy completions, whereas occasional
high-entropy tokens act as decision forks that steer the trajectory among plausible pathways (Wang
et al., 2025b). As suggested by Figure 2 (b), we therefore use next-token probability distribution
to detect these forks and allocate long-form reasoning locally. Let x1:t be the partial output and
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pt(v) = pθ(v | x1:t) the next-token distribution; the normalized uncertainty score is

Ht = −
∑
v∈V

pt(v) log pt(v) / log |V|. (2)

When local uncertainty is high (Ht ≥ τ↑), we open an uncertainty window
Wt = [ t−B, t+F ],

roll back to its left boundary t−B, and re-decode all tokens in Wt under thinking mode by setting
the LoRA strength to a lower value αlow. Outside windows we default to non-thinking (concise)
mode with a higher adapter strength αhigh. To avoid oscillations, we employ a hysteresis schedule
with τ↓ < τ↑: after finishing a window, we keep thinking as long as uncertainty remains above the
lower threshold, and only anneal back to non-thinking mode (Concise reasoning) when Ht ≤ τ↓.

Formally, We maintain St ∈ {αlow, αhigh} (αlow: thinking; αhigh: concise). The mode follows a
hysteresis rule:

St+1 =

{
αlow, (St = αhigh ∧Ht ≥ τ↑) ∨ (St = αlow ∧Ht > τ↓),

αhigh, otherwise.
(3)

When the first branch applies with St = αhigh (i.e., we enter thinking), we perform windowed
regeneration: set Wt = [t−B, t+F ], roll back to t−B, and decode all u ∈ Wt with Su = αlow;
outside Wt, decoding proceeds under the current S.

This single–model, windowed regeneration concentrates long–form reasoning on high–uncertainty
forks while keeping low–uncertainty spans brief. Crucially, the balance between modes, and thus
the overall response length, can be explicitly controlled by window size and the trigger threshold τ↑:
larger window or more sensitive trigger yields more thinking tokens (longer, more detailed outputs),
whereas tighter window or stricter trigger favors conciseness. Moreover, it remedies a key limitation
of long-to-short compression, which applies a uniform shortening policy across problems and steps
and thus often truncates decision-critical reasoning by allocating detail only when uncertainty is
high; as a result, routine spans are compressed while pivotal tokens are preserved, yielding superior
accuracy–efficiency trade-offs.

3.3 KV-CACHE REUSE AND PREFILL OVERHEAD.

A practical advantage of our approach is that it serves a single model and toggles a lightweight
LoRA adapter at inference time, instead of coordinating multiple models as in multi-model specu-
lation (Pan et al., 2025; Liao et al., 2025; Yang et al., 2025c). We maintain a scalar LoRA; the base
model weights stay fixed and only the adapter strength is switched, so memory footprint and schedul-
ing remain comparable to standard single-model decoding. When switching from non-thinking to
thinking, we perform a one-time prefill over the existing prefix to seed the thinking KV states, then
continue decoding. When switching back, we reuse the concise KV states built before the switch
and prefill only the new tokens produced in the thinking segment. This avoids recomputing atten-
tion on already processed tokens, so switching cost scales only with the switched span prefilling
and remains a small fraction of end-to-end latency. In practice, prefilling is highly efficient, being
parallelizable and memory-bound, so a long prefilling often takes roughly the wall-clock time of
generating only 1–2 tokens in auto-regressive manner (Pan et al., 2025).

As a further optimization, placing LoRA only on MLP layers while leaving attention k/v untouched
would allow full KV-cache reuse across mode switches, making runtime behavior essentially iden-
tical to a single fixed-α decoding. For the analysis that motivates this choice, refer to Section 4.4.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Models. We test our method across multiple model families and scales. In addition to QwQ-32B-
Preview (Team, 2024), a common baseline in prior work, we evaluate two recent state-of-the-art
open-source models, Qwen-3-14B and Qwen-3-8B (Alibaba, 2025), to examine generality across
parameter counts and architectures.
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Benchmarks. We evaluate on widely used reasoning benchmarks: GSM8K (Cobbe et al., 2021)
(Grade School Math; test split with 1,319 word problems), AIME24 (Veeraboina, 2023) (30 prob-
lems from the 2024 American Invitational Mathematics Examination), and Math-500 (Lightman
et al., 2023) (a 500-problem subset of the MATH benchmark). This suite spans a broad difficulty
range, from elementary word problems to competition-level mathematics, providing a comprehen-
sive assessment of both accuracy and efficiency.

Baselines. We compare against the original CoT reasoning (no efficiency controls) and five rep-
resentative methods that uniformly shorten reasoning chains: (1) Prompting (Han et al., 2024),
which improves conciseness via instruction templates; (2) CoT-Valve (Ma et al., 2025b), which
applies LoRA-based SFT to synthetic concise traces with length modulated by adapter strength;
(3) DEER (Yang et al., 2025b), which performs dynamic early stopping during reasoning based
on model confidence; (4) NoWait (Wang et al., 2025a), which prohibits “thinking” tokens at infer-
ence to obtain more efficient self-reflections; and (5) ConciseHint (Tang et al., 2025), which uses
inference-time interventions to encourage conciseness.

Table 1: Results of MixReasoning and Long-to-short compression methods on GSM8K, AIME24,
and Math500 with QwQ-32B-Preview, Qwen3-14B and Qwen3-8B. Ori. denotes the original rea-
soning process without extra prompt, training or our method. We report the average accuracy and
token usage.

Models Methods GSM8K Math-500 AIME 2024

Pass@1 #Tokens Pass@1 #Tokens Pass@1 #Tokens

QwQ-32B-Preview

Ori. 0.9512 750.3 0.8937 2230 0.4333 6827
Prompt 0.9365 378.2 0.8734 1703 0.4000 6102
DEER – – – – – –
NoWait – – – – – –
CoT-Valve 0.9421 352.8 0.8633 1756 0.4000 5975
ConciseHint – – – – – –
MixReasoning 0.9613 400.5 0.8986 1646 0.4483 5277

Qwen3-14B

Ori. 0.9593 1745 0.9360 4516 0.6444 11478
Prompt 0.9510 1248 0.9233 4071 0.6500 10693
DEER 0.9530 957 0.9400 3074 0.6834 7894
NoWait 0.9598 1076 0.9340 3332 0.6881 8786
CoT-Valve 0.9573 1401 0.9133 3933 0.5998 10692
ConciseHint 0.9601 1493 0.9248 3654 0.6533 10184
MixReasoning 0.9621 1196 0.9410 3476 0.6789 9431

Qwen3-8B

Ori. 0.9583 2239 0.9320 5192 0.6333 12205
Prompt 0.9382 1619 0.9205 4391 0.5897 11481
DEER 0.9520 1071 0.9260 3032 0.6100 9017
CoT-Valve 0.9482 1622 0.9275 4591 0.5967 11281
NoWait 0.9538 1406 0.9240 3232 0.6181 10786
ConciseHint 0.9553 1593 0.9198 3143 0.6417 11228
MixReasoning 0.9562 1217 0.9313 3531 0.6433 10738

4.2 MAIN RESULTS ON MIXREASONING

Finding 1. MixReasoning improves the accuracy–efficiency Pareto frontier.

Table 1 shows the main quantitative results of our experiments. Across GSM8K, MATH-500, and
AIME24 , MixReasoning yields shorter traces at equal or higher accuracy by allocating detailed
thinking only at high-uncertainty steps. Compared to the original reasoning, it reduces token us-
age substantially at matched or higher accuracy. For example, on QwQ-32B-Preview and GSM8K
benchmark, MixReasoning reduces 47% tokens from 750.3 to 400.5, with an accuracy improvement
of 1.01%. On Qwen3-8B and Math500, it reduces 32% tokens from 5192 to 3531 with comparable
accuracy. Besides, compared to other 5 five representative baselines, MixReasoning can exceeds the
accuracy at matched or lower token budgets. For example, on AIME24 with QwQ-32B-Preview,
MixReasoning uses 5,277 tokens versus 5,975 for CoT-Valve, while improving accuracy by 4.83%.
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In Figure 3, we further compare MixReasoning against long-to-short compression baselines (includ-
ing Prompting (Han et al., 2024) and fine-tuning via CoT-Valve (Ma et al., 2025b)) across varying
token budgets. MixReasoning achieves a superior accuracy–efficiency trade-off: it attains higher
accuracy with fewer tokens by preserving pivotal reasoning steps while compressing low-value seg-
ments. By contrast, global compression baselines show a pronounced, monotonic accuracy drop
as the budget shrinks. Notably, MixReasoning exhibits a shallow U-shaped trend: as tokens de-
crease, accuracy initially improves before eventually declining. This pattern indicates that overly
long chains can degrade performance, e.g., verbosity-induced errors and redundant self-checks, and
helps explain why our approach can boost accuracy while saving thinking tokens.

GSM8K, QWQ-32B-Preview GSM8K, Qwen3-14B GSM8K, Qwen3-8B

Figure 3: MixReasoning and Long-to-short reasoning(prompting (Han et al., 2024), finetuning(CoT-
Valve (Ma et al., 2025b))) results on GSM8K dataset with QwQ-32B-Preview, Qwen3-14B and
Qwen3-8B at varing token budgets. MixReasoning can achieve a better trade-off bwteen efficiency
and accuracy.

Finding 2. Window size and uncertainty threshold can control the mix of modes and thus the
total token budget.

MixReasoning exposes two runtime knobs that deterministically set the mix between detailed think-
ing and concise spans during decoding: (1) an uncertainty threshold τ↑ that triggers thinking mode,
and (2) a window size W = [B,F ] that determines how long thinking persists once triggered.
Increasing sensitivity (larger τ↑ or a stricter confidence cutoff) or enlarging W raises the cover-
age of thinking tokens; decreasing them yields more concise traces. With fixed (αlow, αhigh) for
the two modes, this controller offers per-request control of response length without retraining or
model swaps. As shown in Figure 3, sweeping (τ↑,W ) moves points smoothly along the accu-
racy–efficiency frontier: higher coverage predictably improves accuracy at a token cost, while lower
coverage favors brevity with minimal loss. Unlike long-to-short compression, which applies a uni-
form shortening policy across problems and steps, our uncertainty-gated windows preserve decision-
critical segments and compress routine spans, yielding strictly better trade-offs at matched budgets.
In practice, a service can expose a single ”budget slider” to meet different usage scenarios and
readability preferences. A qualitative illustration is given in Figure 4: a small window produces a
short, readable response with low thinking mode coverage, whereas a larger window yields a longer
answer with more detailed reasoning.

4.3 QUALITATIVE EXAMPLE: THINKING WHERE IT MATTERS

We contrast Long CoT with two MixReasoning settings on a representative GSM8K instance: a
small uncertainty window and a large uncertainty window. Long CoT meanders through step-by-
step musings and repeated sanity checks, inflating sequence length and risking off-by-one or inter-
pretation slips. In both MixReasoning variants, the model detects the high-uncertainty fork, opens
a local window to reason in detail, resolves the ambiguity, and then anneals back to concise mode
for routine arithmetic. Additional examples generated by Qwen3-8B and Qwen3-14B (Yang et al.,
2025a) can be seen in Appendix A.3.

This example illustrates three takeaways aligned with our goal of “thinking where it matters”: (1)
Switching modes to think: detailed reasoning is reserved for genuinely hard, decision-critical steps,
while routine spans stay concise, avoiding the uniform elaboration of Long CoT; (2) Controllable
budget: the window size W directly tunes the mix of modes, small W makes non-thinking dominate
(shorter, highly readable traces), whereas large W increases thinking coverage when more rationale
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Let's see what Josh did here.  <Omitted> Hmm, so I need to understand what that means. A 150% increase on the original 
value? Let me think carefully <Omitted> Wait, no. A 150% increase means the value increases by 150% of the original 
value, so if the original value is $80,000, the increase is $120,000, making the new value $200,000. <Omitted> But 
according to this, the repairs cost $50,000, but the value increased by $120,000, which seems high. <Omitted> 
Alternatively, perhaps the increase is based on the cost of repairs. <Omitted> But that doesn't make sense in this context.I 
think the first interpretation is correct. So, Josh made a profit of $25,000.
**Final Answer**: \[ \boxed{25000} \] (Wrong answer)

Long CoT (QwQ-32B-Preview)

So Josh bought a house for $80,000 and then spent $50,000 on repairs. That means his total investment is $80,000 + 
$50,000 = $130,000. The repairs increased the value of the house by 150%. So, the increase in value is 150% of the 
original price, which is 150% of $80,000. First, I need to calculate 150% of $80,000. 150% is the same as 1.5 in decimal 
form. So, 1.5 * $80,000 = $120,000. That means the value of the house increased by $120,000. So, the new value of the 
house is the original price plus the increase: $80,000 + $120,000 = $200,000. Profit = new value - total investment = 
$200,000 - $130,000 = $70,000.  Wait a minute, does that make sense? New value is $80,000 + $120,000 = $200,000. 
Profit is $200,000 - $130,000 = $70,000. I think that's correct.
**Final Answer**  \[ \boxed{70000} \] (Right answer)

#Token: 247

Question: Josh decides to try flipping a house.  He buys a house for $80,000 and then puts in $50,000 in repairs.  
This increased the value of the house by 150%.  How much profit did he make?

MixReasoning (small uncertain window)

Let’s see. Josh bought a house for $80,000 and then spent $50,000 on repairs. That means his total investment is $80,000 
+ $50,000 = $130,000. The repairs increased the value of the house by 150%. So, the increase in value is 150% of the 
original price, which is 1.5 * $80,000 = $120,000. Therefore, the new value of the house is the original price plus the 
increase, which is $80,000 + $120,000 = $200,000. To find the profit, we subtract the total investment from the new 
value: $200,000 - $130,000 = $70,000. So, Josh made a profit of $70,000.
**Final Answer**  \[ \boxed{70000} \] (Right answer)

MixReasoning (large uncertain window)

#Token: 2157

#Token: 410

Figure 4: Qualitative comparison: Long CoT produces a verbose trace with coherence fillers and
redundant self-checks. MixReasoning (small window) expands only at the high-uncertainty fork and
then anneals back to concise mode, reaching the correct answer with a substantially shorter trace.
MixReasoning (large window) allocates more detailed reasoning across adjacent steps, trading a
larger budget for additional rationale while staying focused around the pivotal region. In MixRea-
soning responses, thinking mode tokens are highlight in red and non-thinking mode tokens are
highlight in blue .

is desired thus controlling total tokens within a single served model; (3) Readability: by eliminating
filler and redundant self-checks by non-thinking mode, MixReasoning yields human-like explana-
tions that emphasize the pivotal inference and suppress distracting verbosity.

Together with the quantitative results (Figure 3), this case study shows that adjusting W lets us dial
the level of elaboration to the task and user preference, achieving shorter, more readable traces than
Long CoT at matched or better accuracy.

4.4 DETAILS OF CONCISE MODE LORA FINETUNING.

To distill the non-thinking mode from LRMs, we train a lightweight LoRA adapter (Hu et al.,
2022) on the GSM8K train split (7.47k problems; no test data are used). GSM8K’s supervision
naturally provides very short ground-truth solutions often answer-only or minimal one–two step
rationales which makes it well-suited for learning a brevity preference without degrading correct-
ness. Concretely, we freeze the backbone and fine-tune only the LoRA parameters using short-
rationale/answer supervision, biasing the model toward brief, accurate traces. In practice, this sim-
ple recipe is highly effective: training converges quickly (Figure 5 b), and the distilled adapter con-
sistently reduces thinking length on GSM8K, MATH-500, and AIME (Figure 5 a). The resulting
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(a) Token length under different LoRA targets. (b) Training loss curves: all converge similarly.

Figure 5: Layerwise LoRA ablation for reasoning-chain compression. Fine-tuning only MLP layers
achieves token-length compression comparable to fine-tuning all layers, despite similar training con-
vergence across configurations. In contrast, attention K/V–only adapters provide little compression,
suggesting that knowledge governing reasoning-path length resides primarily in MLPs.

concise adapter is then used as the runtime control in MixReasoning to modulate reasoning depth
during inference.

Finding 3. Reasoning length and structure are governed by MLPs rather than attention K/V.

Layerwise contributions to reasoning-chain length. We isolate the effect of layer types by ap-
plying LoRA fine-tuning to specific components of LRMs: (1) MLP-only, (2) attention-only (K/V
projections), and (3) all layers. As shown in Figure 5b, all settings converge in teacher-forced
training on GSM8K solutions (short CoT supervision). However, their downstream behavior dif-
fers markedly (Figure 5a): MLP-only fine-tuning achieves nearly the same compression efficiency
(token reduction at matched accuracy) as fine-tuning all layers, whereas attention-only (K/V) fine-
tuning yields little or no compression. This indicates that the knowledge governing the length and
structure of the reasoning path is concentrated in MLPs rather than in attention K/V, echoing prior
findings that factual/associative content is stored predominantly in feed-forward pathways while
attention chiefly routes or transforms information (Geva et al., 2020; Meng et al., 2022).

Beyond offering a clearer mechanism for reasoning-chain compression, this result suggests a prac-
tical design for low inference-overhead mode switching. In our MixReasoning implementation, we
fine-tune all layers. Compared with multi-model speculation, MixReasoning is already much more
efficient because switching between adapters only incurs occasional reprefill overhead, which is mi-
nor in practice. Nevertheless, if adapters are restricted to MLP-only while keeping attention K/V
unchanged, the KV-cache can be fully reused across modes (MoE-style), so the end-to-end inference
cost would be essentially indistinguishable from running a single model. This provides a promis-
ing direction to further reduce inference overhead. In this paper, our primary focus is to compress
the reasoning length without sacrificing accuracy, achieving balance between concise and detailed
reasoning.

5 CONCLUSION

In this work, we show that substantial portions of lengthy CoT reasoning are redundant and global
compression can diminish accuracy, as sub-steps vary widely in difficulty and complexity. There-
fore, a better way is to endow reasoning models with the ability to adaptively respond to this vari-
ation, rather than treating all steps with the same level of elaboration. To this end, we proposed
MixReasoning, a framework that dynamically adjusts the depth of reasoning within a single re-
sponse. The resulting chain of thought then becomes a mixture of detailed reasoning on difficult
steps and concise inference on simpler ones. MixReasoning uses a lightweight LoRA to switch
thinking modes based on token-level uncertainty, while an uncertain window and an uncertainty
threshold control the mode mixture and the overall token budget. Across GSM8K, MATH-500,
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and AIME, MixReasoning shortens reasoning length and substantially improves efficiency without
sacrificing accuracy. The core principle is simple: think where it matters.

LLM DISCLAIMER

In this work, large language models (LLMs) were used solely for non-technical purposes, specifi-
cally to assist with literature review and to refine the readability of the manuscript. Their use was
limited to phrasing and presentation. No technical contributions, including methodological design,
model implementation, or experimental analysis, involved LLMs.
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A APPENDIX

A.1 LIMITATIONS AND FUTURE WORKS

MixReasoning relies on local uncertainty signals (token-level entropy) to trigger expansion; while
training-free, this controller does not learn end-to-end where within a CoT to be long vs. short and
can be sensitive to calibration and non-local dependencies. Future work will replace or augment it
with a learned policy (e.g., imitation learning or RL with length–accuracy rewards) and combine
MixReasoning with complementary methods, problem-level hybrid routing, long-to-short compres-
sion, and speculative decoding, to jointly reduce redundancy in long chains while preserving accu-
racy and controllability.

A.2 IMPLEMENTATION DETAILS

Evaluation Metrics For all models, we generate responses on 4 A100 80G GPUs. We report
results using the flexible-match metric. Specifically, we first extract the value enclosed within
\boxed{}. If no such boxed answer is found, we default to using the last digit in the response
as the final answer. All results in Table 1 are the mean over 5 independent runs. Following prior
work (Ma et al., 2025b), we set the maximum tokens for QwQ-32B-Preview (Team, 2024) to 4192
on the GSM8K dataset, and 8192 on the MATH-500 and AIME24 datasets at inference time. For
the recent state-of-the-art open-source models Qwen3-8B and Qwen3-14B (Alibaba, 2025), we set
the maximum tokens to 16384 for all three benchmarks.

Training Setting We use LoRA (Hu et al., 2022) fine-tuning to distill the non-thinking mode. The
dataset is the GSM8K training split (7.47k problems; no test data are used). We use the GSM8K
ground truth (very short solutions, often answer-only or with a minimal one–two-step rationale) as
the target, without regenerating answers or rationales. All models are trained on 4 A100 80 GB
GPUs. We set the batch size to 64 and train for up to ten epochs. The learning rate is 1× 10−5, with
a weight decay of 0.01. For LoRA, the rank is set to 2, and the adapter strength α is set to 8.

A.3 ADDITIONAL QUALITATIVE EXAMPLES

To verify that the behavior in Section 4.3 is not backbone-specific, we also conduct case study on
Qwen3-8B and Qwen3-14B (Figure 6 and Figire 7). In both models, MixReasoning triggers thinking
expansion only when next-token uncertainty crosses the upper threshold, opens a bounded window
W around the high-entropy fork (red spans), regenerates the local segment in the thinking mode, and
then anneals back to the concise (non-thinking) mode once uncertainty subsides. Qualitatively, the
detailed spans align with decision-critical operations (e.g., choosing the arithmetic step, selecting
a case/branch, or performing a delicate algebraic rearrangement), while routine low-entropy steps
remain terse. This pattern traces that are shorter and easier to follow than Long CoT, yet faithfully
preserve the pivotal reasoning that decisive for the final answer.
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<think>
Okay, let's try to figure out how old Jackson is. <Omitted> Wait, let me check the original problem again:<Omitted> 
"Emily has 4 kids named Amy, Jackson, Corey, and James.<Omitted>   Amy is 5 years older than Jackson and 2 years 
younger than Corey. <Omitted>  If James is 10 and is 1 year younger than Corey, how old is Jackson?" <Omitted> 
<Omitted>  Check if all conditions are satisfied:<Omitted> To determine Jackson's age,  <Omitted> Amy is 2 years 
younger than Corey: $$ \text{Amy} = \text{Corey} - 2 = 11 - 2 = 9 $$So, **Amy is 9 years old.**
**Final Answer**: \[ \boxed{9} \] (Wrong answer)

Long CoT (Qwen3-8B)

#Token: 79

Question: Emily has 4 kids named Amy, Jackson, Gorey, and James. Amy is 5 years older than 
Jackson and 2 years younger than Gorey. If James if 10 and is 1 year younger than Gorey, how 
old is Jackson?

MixReasoning

Okay, let's try to figure out this problem. 
Corey is 10 + 1 = <<10+1=11>>11 years old.
Amy is 11 - 2 = <<11-2=9>>9 years old.
Jackson is 9 - 5 = <<9-5=4>>4 years old
—
**Final Answer**  \[ \boxed{4} \] (Right answer)

#Token: 1297

Figure 6: Additional qualitative comparison using Qwen3-8B model.In MixReasoning responses,
we highlight thinking mode generated tokens with red background and non-thinking mode gener-
ated tokens with blue background.

Okay, let's see. So Jeremy saw 12 birds in the backyard. Then he threw a stone, which scared away 1/3 of that number. Hmm, so first I need to 
figure out how many birds were scared away.  Alright, <Omitted>  Wait, let me check my steps again to make sure I didn't make a mistake. First, 
starting with 12 birds. Scaring away 1/3, which is 4, leaving 8. Then adding 20, which gives 28. Seems straightforward. 
Is there a chance I misread the problem? Let me check again. <Omitted> The problem says "scaring away 1/3 of that number." "That number" 
refers to the original 12, right? So yes, 1/3 of 12 is 4. Then 20 more birds joined the "fearless birds." The term "fearless birds" probably means the 
ones that were left after the stone was thrown, which is 8. So adding 20 to 8 gives 28.  Hmm, seems correct. I don't think I missed anything here. 
Maybe another way to look at it: if 1/3 were scared away, then 2/3 remained. So 2/3 of 12 is (2/3)*12 = 8. Then adding 20 gives 28. Yep, same 
answer. Okay, confident that the answer is 28. </think> <Omitted> $$ \frac{1}{3} \times 12 = 4 $$ This means $ 12 - 4 = 8 $ birds remained after 
the stone was thrown. A few minutes later, 20 more birds joined the remaining 8 birds. Adding these together: $$ 8 + 20 = 28 $$
**Final Answer**: \[ \boxed{28} \] (Right answer)

Long CoT (Qwen3-14B)

#Token: 499

Jeremy saw 12 birds in their backyard and threw a stone at them, scaring away 1/3 of that number. A few 
minutes later, 20 more birds joined the fearless birds. How many birds are now in the backyard?

MixReasoning
Okay, let's see. Jeremy saw 12 birds in the backyard. Then he threw a stone, and scared away 1/3 of that number. Hmm, so first I need to figure 
out how many birds were scared away. So, 1/3 of 12. Let me calculate that. 12 divided by 3 is 4. So, 4 birds were scared away. That means the 
number of birds left after the stone was thrown would be the original 12 minus 4. Let me write that down: 12 - 4 = 8. So, there are 8 birds 
remaining in the backyard after Jeremy threw the stone. Then, a few minutes later, 20 more birds joined the fearless ones. Wait, the problem says 
"the fearless birds." So, does that mean the ones that weren't scared away? Yeah, probably. So, the 8 birds that were left are now joined by 20 
more. So, adding those together: 8 + 20. Let me do that math. 8 + 20 is 28. So, the total number of birds now in the backyard should be 28. Let 
me just check my steps again to make sure I didn't make a mistake. Original number: 12. Scared away 1/3, which is 4. 12 - 4 = 8. Then 20 more 
join, so 8 + 20 = 28. Yeah, that seems right. I don't think I missed anything here. The problem didn't mention any other birds leaving or anything 
else happening. So, I think the answer is 28. </think> Jeremy initially saw **12 birds** in the backyard. When he threw a stone, **1/3** of the 
birds were scared away. 1. **Birds scared away**: $ \frac{1}{3} \times 12 = 4 $ Remaining birds: $ 12 - 4 = 8 $ 2. **Additional birds 
joining**: $ 20 $ more birds joined the remaining $ 8 $ birds. Total birds now: $ 8 + 20 = 28 $ 
**Final Answer**  \[ \boxed{28} \] (Right answer)

#Token: 867

Figure 7: Additional qualitative comparison using Qwen3-14B model.In MixReasoning responses,
we highlight thinking mode generated tokens with red background and non-thinking mode gener-
ated tokens with blue background.
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