

Integration of Artificial Intelligence in Science Teaching in Primary Education: Applications for Teachers

Konstantinos T. Kotsis

Department of Primary Education, University of Ioannina, Greece

Abstract

The purpose of this study is to serve as the central notion that the whole research endeavour revolves around. It provides a framework for examining the potential applications of artificial intelligence (AI) for teachers operating in the field of scientific education. A clear framework for an in-depth analysis that tries to shed light on the opportunities and challenges associated with the use of AI technology in primary scientific education is provided by this thesis statement, which specifies the purpose of the research as well as the scope of the investigation. The project's objective is to broaden the existing body of knowledge and provide insights into the ways in which educators might make use of technologies that are powered by AI to enhance the instructional techniques they use and the outcomes of student learning. In order to do this, a well-prepared thesis statement will ideally be used.

Keywords: Artificial Intelligence, Primary Education, Science Teaching.

Suggested citation: Kotsis, K.T. (2024). Integration of Artificial Intelligence in Science Teaching in Primary Education: Applications for Teachers. *European Journal of Contemporary Education and E-Learning*, 2(3), 27-43. DOI: 10.59324/ejceel.2024.2(3).04

Introduction

Science education at the primary level assumes a pivotal role in moulding young intellects and nurturing an enduring inquisitiveness towards the surrounding world (Obe, 2018). The early introduction of scientific principles and methodologies aids students in establishing a fundamental comprehension of the natural realm (McComas, 2017). It fosters critical thinking abilities and problem-solving aptitude (Hebebcı & Ertuğrul, 2022). Moreover, fostering a love for science from an early age can stimulate interest in STEM disciplines and potential career paths. Proficient science instruction in primary education sets the foundation for a cohort of scientifically literate individuals ready to confront the intricate challenges of the 21st century (Roberts & Bybee, 2014).

The realm of education stands poised for a transformation by integrating AI, offering tailored learning experiences, streamlining teaching methodologies, and enriching student involvement. AI tools like machine learning algorithms (Nozari et al., 2024) and natural language processing (Chowdhary, 2020a) can analyse extensive educational datasets, furnishing educators with invaluable insights. AI facilitates personalised

This work is licensed under a Creative Commons Attribution 4.0 International License. The license permits unrestricted use, distribution, and reproduction in any medium, on the condition that users give exact credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if they made any changes.

instruction by adapting to each student's learning preferences and pace via adaptive learning platforms, enabling customised and efficacious educational encounters (Bhutoria, 2022). Furthermore, AI-driven chatbots can furnish instantaneous feedback and assistance to students, addressing queries and aiding them in navigating assignments (Chen et al., 2023). Incorporating AI in education empowers teachers to cater to the diverse requirements of their students and cultivate captivating and interactive learning settings.

The incorporation of AI in science education has the potential to bring about a significant transformation in the delivery of primary education. Through the utilisation of AI tools like intelligent tutoring systems (Dermeval et al., 2018), virtual reality simulations (Harmon et al., 2021), and personalised learning platforms (Ambele et al., 2022), educators have the opportunity to develop more interactive and captivating instructional sessions tailored to the unique learning requirements of students. These AI applications can deliver immediate feedback, assess student performance data, and adjust educational content to enhance learning outcomes. Moreover, AI technologies can support teachers in pinpointing student misunderstandings, assisting students in navigating through intricate scientific ideas, and promoting a profound comprehension of scientific principles (Kotsis, 2024a). Embracing the integration of AI in science education enables educators to enrich the calibre of teaching, elevate student involvement, and ultimately equip the forthcoming cohort of scientists and trailblazers with the aptitude to excel in a progressively technology-driven society.

Understanding AI in Education

AI involves the emulation of human cognitive processes through the utilisation of computational systems. It includes a computer's ability to perform tasks that traditionally require human intelligence, such as knowledge acquisition, logical reasoning, problem-solving, and understanding natural language. Chowdhary (2020b) delineates AI into various subfields, including machine learning, neural networks, deep learning, and natural language processing. The application of AI in education can bring about significant changes by offering personalised learning experiences (Kabudi et al., 2021), automating administrative tasks (Kuziemski & Misuraca, 2020), and enabling innovative pedagogical methods (Carvalho et al., 2022). Educators can enhance student engagement by incorporating AI into primary scientific education, delivering personalised guidance, and elevating academic accomplishments. A profound grasp of AI terminology and concepts is imperative for educators to leverage its potential in educational settings effectively (Chen et al., 2020).

The development of AI within the educational realm has substantially revolutionised the dynamics of teacher-student interactions in the classroom (Bates et al., 2020). AI can customise learning experiences, offer immediate feedback, and cater to individual student requirements. Through AI integration, educators can accurately pinpoint students' strengths and weaknesses, facilitating more personalised instruction and assistance. Moreover, AI tools can analyse extensive data to forecast student performance and furnish valuable insights for enhancing teaching methodologies. As AI progresses, it harbours immense potential to enrich the educational journey for educators and learners, paving the way for a more efficient and effective learning environment (Bond, 2024).

AI has the potential to revolutionise the field of education by offering a wide range of benefits to educators and students alike. A significant advantage lies in AI systems'

ability to customise learning experiences for individual students (Pratama et al., 2023). By analysing students' performance and learning style data, AI can create personalised lesson plans and offer instant feedback tailored to each student's needs. Such personalised approaches can improve student engagement and motivation, leading to better academic outcomes. Furthermore, AI can assist educators in automating tasks like grading assignments and managing classroom resources (Hooda et al., 2022), allowing them to focus more on delivering high-quality instruction and supporting student learning effectively. Integrating AI in education can enhance classroom efficiency, promote greater student participation, and elevate academic performance across diverse student populations (Sharifuddin & Hashim, 2024).

A major hurdle in incorporating AI into education is the potential lack of personalisation in learning (Chen et al., 2020). AI systems operate on algorithms and data patterns, which may not accurately represent each student's unique learning styles and requirements. This lack of personalisation can lead to a standardised approach to education that may not fully engage all students or address their individual needs. Moreover, the constraints of AI technology in terms of emotional intelligence and contextual comprehension present additional obstacles in educational settings (Singh & Chouhan, 2023). For instance, AI may struggle to interpret non-verbal cues or provide the emotional support that a human teacher can offer. Therefore, educators must carefully evaluate the implications of utilising AI in classrooms to ensure that the advantages outweigh the obstacles and limitations it brings.

Current Landscape of Science Teaching in Primary Education

Teachers play a vital role in scientific education by fostering students' comprehension and inquisitiveness. Educators assume the roles of facilitators, guides, and mentors, aiding students in navigating the intricate realm of scientific knowledge. Educators facilitate the acquisition of information and motivate pupils to engage in critical thinking, inquire, and investigate the marvels of the natural environment. Teachers have a substantial influence on students' acquisition of scientific information and abilities by conducting practical experiments (Hirça, 2013), delivering captivating demonstrations (Zhai & Tan, 2015), and facilitating intellectually stimulating conversations (Chin, 2007). In addition, educators may cultivate a passion for science by establishing a constructive and nurturing educational setting in which students are motivated to articulate their views and concepts openly. Educators play a crucial role in fostering a fervour for scientific pursuits among students and equipping them with the necessary skills and knowledge to thrive in this domain (Butakor, 2023).

The conventional pedagogical approaches used in science have historically been the basis for elementary school instruction. Typically, these instructional approaches include teacher-led lectures that convey knowledge to students in a systematic fashion, subsequently supplemented by textbook readings and assignments aimed at reinforcing comprehension (Lim et al., 2023). Although the efficacy of these strategies in imparting information to pupils has been established, current technology improvements have prompted inquiries about their ability to engage young learners effectively (Haleem et al., 2022). When examining the incorporation of AI in scientific education, it is essential to contemplate the potential synergies between conventional methodologies and novel strategies to foster a more dynamic and engaging educational setting for students (Kotsis, 2024b). By integrating AI technologies into conventional pedagogical approaches, instructors can customise lessons, provide immediate

feedback, and accommodate diverse learning preferences, augmenting the entire educational encounter for elementary school pupils (Ma & Lu, 2023).

Historically, primary school education has relied on standard pedagogical techniques often used in the field of science. Usually, these teaching methods include teacher-led lectures that systematically impart information to students, followed by textbook readings and tasks designed to strengthen understanding (Lim et al., 2023). While the effectiveness of these tactics in conveying knowledge to students has been confirmed, recent advancements in technology have raised questions regarding their capacity to properly engage young learners (Haleem et al., 2022). When considering the integration of artificial intelligence (AI) in scientific education, it is crucial to reflect on the possible cooperative effects between traditional approaches and innovative tactics in order to cultivate a more dynamic and captivating teaching environment for students (Kotsis, 2024b). The integration of artificial intelligence (AI) technology with traditional pedagogical methods enables educators to personalize courses, provide prompt feedback, and cater to a wide range of learning preferences, therefore enhancing the overall educational experience for primary school students (Ma & Lu, 2023).

The need to promote innovation in scientific education is crucial in equipping students with the necessary skills to tackle the demands of the modern world. In light of the swiftly changing technology environment that is impacting the future labor force, educators need to adapt their teaching methods to match these advancements (Hernandez-de-Menendez et al., 2020). The use of artificial intelligence (AI) into science education has the potential to revolutionize the way students acquire knowledge and understand scientific ideas. Educators have the ability to use artificial intelligence (AI) technologies such as virtual labs, personalized learning platforms, and chatbots to provide students with more immersive and convincing learning experiences via rapid feedback. The integration of AI in scientific education enhances students' academic performance and provides them with the necessary skills to thrive in a society heavily influenced by technology (Kopala et al., 2023).

Applications of AI in Science Teaching

Personalised learning facilitated by AI enables students to receive tailored instruction based on their unique needs and learning preferences. AI algorithms analyse data concerning a student's strengths, weaknesses, and progress to design a customised learning plan to optimise educational results (Tapalova & Zhiyenbayeva, 2022). This high level of customisation empowers educators to deliver precise support and interventions, ultimately leading to heightened student engagement and academic success. Additionally, AI systems can adjust to the student's learning pace in real-time, ensuring that each student is challenged appropriately and provided with adequate support (Seo et al., 2021). By leveraging the capabilities of AI, educators can transform the learning experience for students, thereby enhancing the effectiveness and impact of education for every learner (Jian, 2023).

Integrating virtual labs and simulations into primary science education can offer students a practical, hands-on learning opportunity that may otherwise be inaccessible due to constraints such as cost, safety, or logistical issues (Kapici et al., 2022). These digital resources enable students to engage in experiments, conduct observations, and analyse data in a virtual setting, enriching their comprehension of intricate scientific principles. Moreover, virtual labs can be tailored to accommodate various learning styles and speeds, presenting them as a versatile and valuable educational tool for

teachers (Groenewald et al., 2024). By incorporating these technologies into the curriculum, educators can design interactive and stimulating learning environments that foster critical thinking and problem-solving skills among students (Zacharia et al., 2015).

Adaptive assessment and feedback play pivotal roles in contemporary education systems (Vie et al., 2017), especially within science education at the primary level (Hardy et al., 2022). AI technology empowers teachers to deliver personalised assessments and feedback that align with each student's unique learning pace and style. Adaptive assessments can pinpoint areas of misunderstanding and offer targeted interventions to improve student learning outcomes. Furthermore, adaptive feedback can provide immediate suggestions and corrections to aid students in grasping scientific concepts more effectively (Barrot, 2023). The incorporation of AI in science education can redefine how educators evaluate and support student learning, thereby enhancing the effectiveness and engagement of education for all learners (Li et al., 2023).

AI-driven tutoring systems are becoming more popular and are one of the most promising uses of artificial intelligence in education (Alam, 2023). These systems make use of machine learning algorithms to analyse the data of individual students and provide them with individualised feedback and direction in order to improve the outcomes of their learning initiatives. Artificial intelligence-driven tutoring systems have the potential to revolutionise the way students engage with and grasp complex disciplines such as science (Srinivasa et al., 2022). Customising courses accomplishes this by meeting each learner's specific needs and preferences. In addition, these systems can offer immediate feedback, track progress over time, and make immediate adjustments to the curriculum to guarantee that students get the required assistance to achieve their full potential. The use of artificial intelligence in tutoring not only makes education more accessible to more people, but it also increases the efficiency of education in fostering student accomplishment (Rizvi, 2023).

Enhancing Teacher Competence Through AI Integration

Professional development opportunities are crucial for educators to stay updated on the latest field trends and continually enhance their teaching skills (Smith & Gillespie, 2023). Teachers can benefit from workshops, seminars, conferences, and online courses focusing on integrating AI into science teaching, which can offer innovative strategies to engage students and improve learning outcomes. By participating in these professional development activities, educators can expand their knowledge base, network with colleagues, and gain valuable insights that can positively impact their teaching practices (Appleman, 2022).

AI tools for lesson planning and delivery offer significant benefits to teachers in primary education (Smith & Gillespie, 2023). These tools can analyse student data to personalise lesson plans, identify areas of difficulty, and suggest appropriate interventions. By incorporating AI tools into their teaching practices, educators can ensure that each student receives individualised support based on their unique learning needs and preferences (Luckin et al., 2022). Additionally, AI tools can help teachers track student progress more effectively and make real-time adjustments to lesson plans as needed. Integrating AI in lesson planning and delivery can enhance teaching

effectiveness and student learning outcomes in primary education settings (Felix & Webb, 2024).

Data-driven insights for Instructional Improvement play a crucial role in enhancing teaching practices and student learning outcomes (Schildkamp, 2019). By analysing student performance data, teachers can identify areas of weakness, track progress over time, and tailor instructional strategies to meet students' individual needs. Additionally, data-driven insights can provide valuable feedback on the effectiveness of teaching methods (Ahmad et al., 2020), allowing educators to make informed decisions about curriculum design and instructional delivery. Overall, leveraging data analytics in education can lead to more personalised and effective student learning experiences (Betul Aktas, 2024).

Collaboration and knowledge-sharing platforms have become essential tools in modern education (Fischer et al., 2020), allowing teachers to connect and share resources with colleagues globally. These platforms allow educators to collaborate on lesson plans, share strategies for incorporating technology into the classroom, and discuss best practices for teaching science. By fostering a sense of community among teachers, these platforms can help improve student outcomes by enhancing the quality of instruction and promoting professional development. Additionally, collaboration and knowledge-sharing platforms can support the integration of AI in science teaching, providing teachers with access to AI-powered tools and resources that can enhance student learning experiences (Castaneda & Cuellar, 2020).

Addressing Misconceptions in Science Education with AI

It is difficult to teach science to primary school kids because of the misconceptions that students have about scientific principles (Kotsis, 2024c). On the other hand, teachers may benefit significantly from the use of misconceptions as a resource (Kotsis, 2023a). The scientific community has a widespread misunderstanding about the assumption that the Earth is flat (Özsoy, 2012). Despite abundant data dating back hundreds of years indicating the sphericity of the Earth, this myth continues to exist among some segments of society. It is often driven by false information that is spread on social media and internet platforms. To provide pupils with factual information on the shape of the Earth, it is the responsibility of educators to dispel this myth in the classroom. Creating a solid base of scientific knowledge and critical thinking abilities is essential for navigating an increasingly complex environment (Kotsis, 2023b). Educators may aid students in creating this foundation via the use of this practice.

Implementing AI-based remediation techniques in education has exhibited encouraging outcomes and enhanced student learning achievements. Educators can efficiently pinpoint students' learning deficiencies using AI algorithms and deliver customised interventions tailored to their specific requirements (Kharbat et al., 2021). This approach has proven particularly successful in mathematics and science, where AI can adjust learning materials based on individual student performance and advancement (Colchester et al., 2017). Furthermore, AI-driven virtual tutors can provide immediate feedback and assistance to students, enriching their comprehension of intricate concepts. Integrating AI-based remediation methods in education significantly contributes to providing students with personalised and captivating learning experiences.

Instances of rectifying misconceptions have underscored the effectiveness of utilising targeted interventions to tackle students' misunderstandings in science education. By scrutinising the fundamental causes of misconceptions and employing specific instructional approaches, educators can aid students in overcoming these hindrances to learning. Offering students hands-on experiments and practical illustrations can effectively challenge and rectify their misconceptions regarding scientific concepts (Kotsis, 2024d). It has also been demonstrated that integrating formative assessments and immediate feedback can assist students in promptly identifying and rectifying their misconceptions. These instances underscore the significance of proactive methodologies in addressing misconceptions in science education, underscoring the necessity for personalised and targeted interventions customised to individual student's needs (Winarni & Syahrial, 2023).

The enduring impact of incorporating AI into science education on student learning is a subject of escalating interest and significance. Studies propose that AI can personalise learning experiences, provide precise feedback, and create opportunities for collaborative issue resolution, which can amplify student engagement and comprehension (Graesser et al., 2018). By leveraging AI tools, educators can effectively individualise instruction and aid students in cultivating 21st-century competencies like critical thinking, innovation, and digital literacy. Additionally, AI can help pinpoint learning gaps, forecast student performance, and enhance learning outcomes over time (Ouyang et al., 2023), resulting in sustained enhancements in student accomplishments and success in STEM disciplines. As educators explore the potential applications of AI in science education, it is imperative to contemplate its immediate advantages and enduring influence on student learning and academic advancement (Sakib et al., 2023).

Ethical and Social Implications of AI Integration in Science Teaching

Data privacy and security concerns have risen to prominence in the contemporary digital era (Quach et al., 2022), particularly with the growing dependence on technology across various domains, including education. Educators' integration of AI tools in their science teaching methodologies necessitates carefully considering the potential hazards linked to data gathering and retention (Jo & Gebru, 2020). Protecting sensitive student data against unauthorised access and possible data breaches is essential in preserving trust and confidentiality within the academic environment. Educators must enforce robust security protocols and comply with data privacy statutes to safeguard their students' personal information. By prioritising data privacy and security, teachers can establish a safe and protected learning atmosphere conducive to leveraging the advantages of AI within science education (Kuleto et al., 2021).

Bias and fairness issues in AI algorithms play a pivotal role in our present technological landscape. AI systems frequently undergo training on biased datasets, leading to inequitable outcomes for specific demographic groups (Varona & Suárez, 2022). This dilemma is notably rampant in domains like the criminal justice system, where AI algorithms are utilised in decision-making processes related to bail, sentencing, and parole. Studies have indicated that these algorithms may manifest racial and gender biases, resulting in unjust treatment (McKay, 2020). Developers and policymakers must confront these biases and ensure that AI algorithms are structured to foster fairness and impartiality for all individuals (Giovanola & Tiribelli, 2023).

Digital equity and accessibility concerns significantly influence the efficacy of integrating AI into science education at the elementary level (Holstein & Doroudi, 2021). The absence of access to essential technology and digital resources can exacerbate the educational achievement gap among students, particularly those in marginalised communities. Furthermore, variances in digital literacy competencies can impede students' capacity to reap the benefits of AI integration in the educational setting. To tackle these obstacles, educators must strive to offer equal opportunities for all students to access digital tools and resources to enrich their learning journeys and equip them for success in the digital era (Kai, 2022).

The responsible utilisation of AI in education is paramount in ensuring that students receive a superior learning experience while upholding ethical standards. AI has the potential to furnish personalised learning experiences, aid in assessment processes, and identify patterns in student conduct that may signal academic challenges. Nevertheless, educators and policymakers must approach the integration of AI in education with prudence and ethical considerations (Miao et al., 2021). Adequate measures must be instituted to safeguard student data privacy and guarantee the absence of biases in AI algorithms. Additionally, educators need to undergo training in effectively utilising AI tools and comprehend the limitations of such technologies. By advocating for the responsible deployment of AI in education, we can harness the capabilities of this technology to enhance learning outcomes for students while mitigating potential risks (Mhlanga, 2023).

Implementing AI in Science Teaching: Best Practices and Recommendations

Policy and infrastructure support are imperative for successfully integrating AI into science education at the primary level. Policymakers' development of guidelines and regulations is crucial to facilitate the incorporation of AI tools in classrooms, all while upholding student data privacy and security standards (Brown & Klein, 2020). Furthermore, ensuring adequate infrastructure support, such as dependable internet connectivity and access to suitable hardware, is vital for teachers to employ AI resources in their teaching methodologies effectively. The realisation of the full potential of AI in science education hinges on substantial policy frameworks and robust infrastructure. Hence, policymakers and educational leaders must possess a high level of scientific literacy to make informed decisions (Kotsis, 2024e) and prioritise these elements to enable the integration of AI in primary science teaching.

The provision of training and support for educators plays a pivotal role in the successful introduction of novel technologies, including AI, in educational settings (González-Pérez & Ramírez-Montoya, 2022). Teachers must acquire the knowledge and skills to integrate AI tools seamlessly into their teaching practices. This necessitates offering professional development opportunities, workshops, and continual support to instil confidence in educators for effectively utilising AI technologies to enhance student learning outcomes. Additionally, establishing a support system where teachers can seek guidance and assistance when confronted with challenges or obstacles in implementing AI in classrooms is essential. Through investments in the training and support of educators, educational institutions can optimise the potential advantages of AI in science education and foster a more interactive and personalised learning environment for students (Shank, 2023).

Evaluating and monitoring AI tools in educational environments is crucial for assessing their efficacy and impact on teaching and learning outcomes (Khan et al., 2021). Educators need to regularly evaluate the performance of AI tools to ascertain if they align with the intended objectives and promote student engagement. This evaluation process entails collecting student feedback, observing the utilisation of tools in classrooms, and analysing student progress and performance data. When assessing AI tools, it is equally important to consider usability, reliability, and ethical implications. By monitoring the implementation of AI tools and consistently evaluating their effects, educators can make well-informed decisions regarding their integration into the curriculum (Kim et al., 2022).

Continuous enhancement and adaptation are fundamental components of integrating AI into science education at the primary level. With the evolution of technology and the emergence of new AI tools, educators must consistently assess and refine their instructional approaches to deliver the most effective and engaging education to students. Embracing a mindset of continuous improvement enables educators to adjust their teaching strategies to leverage the capabilities of AI in enhancing student learning outcomes. This iterative process of reflection, adaptation, and innovation empowers teachers to stay abreast of the latest advancements in AI technology and harness its full potential in educational settings. Educators can hone their AI integration skills through ongoing professional development and peer collaboration, fostering dynamic learning environments that cultivate student success (Lai, 2023).

Conclusion

The comprehensive analysis of AI's potential applications in primary education science teaching revealed several key findings. Firstly, AI can enhance personalised learning experiences by adapting to individual student needs and providing targeted feedback. This adaptability can lead to improved student engagement and academic performance. Secondly, AI tools such as virtual labs and simulations can provide hands-on learning experiences that are otherwise not feasible in traditional classroom settings. These tools offer a practical way for students to explore complex scientific concepts in a safe and interactive environment. Lastly, integrating AI in science teaching can help teachers streamline administrative tasks, allowing them to focus more on delivering high-quality instruction and supporting student learning outcomes. By leveraging AI technology, educators can enhance their teaching practices and provide students with a more enriching learning experience.

Integrating AI in science teaching in primary education has significant implications for teachers and educators. AI technologies can enhance the teaching and learning experience by providing personalised learning opportunities, automating administrative tasks, and facilitating real-time student feedback. Teachers can leverage AI tools to create more engaging and interactive lessons, track student progress more efficiently, and identify areas where individual students may need additional support. However, educators must also be mindful of the ethical implications of using AI in the classroom, such as data privacy concerns and potential biases in algorithmic decision-making. As such, teachers and educators must stay informed about the latest developments in AI technologies and receive adequate training to incorporate these tools into their teaching practices effectively.

Advancing AI in science education is crucial for preparing students for the rapidly evolving technological landscape. As technology permeates every aspect of our lives,

students must have the necessary skills to navigate this digital world. By integrating AI into science teaching, educators can enhance learning experiences, personalise instruction, and promote critical thinking skills. To effectively implement AI in science education, teachers must receive adequate training and resources to leverage this technology to its full potential. Additionally, policymakers and stakeholders in education must work together to support initiatives that promote the integration of AI in the classroom. A call to action is needed to prioritise AI in science education to ensure that students are prepared for the challenges and opportunities of the future.

In conclusion, integrating AI in science teaching in primary education has shown great potential for enhancing the effectiveness of teachers. Using AI technology, educators can personalise learning experiences, provide immediate feedback, and create interactive lessons catering to individual student needs. While there may be concerns about the implications of AI on teachers' roles and responsibilities, it is clear that this technology can ultimately support and empower educators in their quest to provide high-quality education to their students. As we continue to explore the possibilities of AI in the classroom, teachers need to stay informed, adapt to changes, and embrace the opportunities that this innovative technology presents. By doing so, we can ensure that our students receive a genuinely enriching and impactful educational experience.

Conflict of Interests

No conflict of Interest.

References

- Afzaal, M., Zia, A., Nouri, J., & Fors, U. (2024). Informative feedback and explainable AI-based recommendations to support students' self-regulation. *Technology, Knowledge and Learning*, 29(1), 331-354. <https://doi.org/10.1007/s10758-023-09650-0>
- Ahmad, K., Qadir, J., Al-Fuqaha, A., Iqbal, W., El-Hassan, A., Benhaddou, D., & Ayyash, M. (2020). Data-Driven Artificial Intelligence in Education: A Comprehensive Review. <https://doi.org/10.35542/osf.io/zvu2n>
- Alam, A. (2023). Harnessing the Power of AI to Create Intelligent Tutoring Systems for Enhanced Classroom Experience and Improved Learning Outcomes. In: Rajakumar, G., Du, K.L., Rocha, Á. (eds) Intelligent Communication Technologies and Virtual Mobile Networks. ICICV 2023. *Lecture Notes on Data Engineering and Communications Technologies*, vol 171. Springer, Singapore. https://doi.org/10.1007/978-981-99-1767-9_42
- Ambele, R., Kaijage, S., Dida, M., Trojer, L., & Kyando, N. (2022). A review of the Development Trend of Personalized learning Technologies and its Applications. *International Journal of Advances in Scientific Research and Engineering*, 8(11), 75-91. <https://doi.org/10.31695/IJASRE.2022.8.11.9>
- Appleman, A. (2022). Professional Development Opportunities. TCB: *Technical Services in Religion & Theology*, 30(3), 18–23. <https://doi.org/10.31046/tcb.v30i2.3125>
- Baidya, A.K., & Barik, D.P. (2023). Issues And Challenges Of Tribal Education In North-East India. *International Journal of Scientific Research in Modern Science and Technology*, 2(9), 76-80. <https://doi.org/10.59828/ijsrmt.v2i9.151>

- Barrot, J. S. (2023). Using automated written corrective feedback in the writing classrooms: effects on L2 writing accuracy. *Computer Assisted Language Learning*, 36(4), 584–607. <https://doi.org/10.1080/09588221.2021.1936071>
- Bates, T., Cobo, C., Mariño, O., & Wheeler, S. (2020). Can artificial intelligence transform higher education? *International Journal of Educational Technology in Higher Education*, 17, 1-12. <https://doi.org/10.1186/s41239-020-00218-x>
- Betul Aktas, (2024). Data-Driven Decision Support Systems for Business Process Improvement. *Journal of American Journal of Business and Operations Research*, 11 (1), 79-88. <https://doi.org/10.54216/AJBOR.110109>
- Bhutoria, A. (2022). Personalized education and artificial intelligence in the United States, China, and India: A systematic review using a human-in-the-loop model. *Computers and Education: Artificial Intelligence*, 3, 100068. <https://doi.org/10.1016/j.caeari.2022.100068>
- Bond, M., Khosravi, H., De Laat, M., Bergdahl, N., Negrea, V., Oxley, E., Pham, P., Chong, S. W., & Siemens, G. (2024). A meta systematic review of artificial intelligence in higher education: A call for increased ethics, collaboration, and rigour. *International Journal of Educational Technology in Higher Education*, 21(1), 1-41. <https://doi.org/10.1186/s41239-023-00436-z>
- Brown, M., & Klein, C. (2020). Whose data? Which rights? Whose power? A policy discourse analysis of student privacy policy documents. *The Journal of Higher Education*, 91(7), 1149-1178. <https://doi.org/10.1080/00221546.2020.1770045>
- Butakor, P. K. (2023). EXPLORING PRE-SERVICE TEACHERS' BELIEFS ABOUT THE ROLE OF ARTIFICIAL INTELLIGENCE IN HIGHER EDUCATION IN GHANA. *International Journal of Innovative Technologies in Social Science*, 3(39). https://doi.org/10.31435/rsglobal_ijitss/30092023/8057
- Carvalho, L., Martinez-Maldonado, R., Tsai, Y. S., Markauskaite, L., & De Laat, M. (2022). How can we design for learning in an AI world? *Computers and Education: Artificial Intelligence*, 3, 100053. <https://doi.org/10.1016/j.caeari.2022.100053>
- Castaneda, D. I., & Cuellar, S. (2020). Knowledge sharing and innovation: A systematic review. *Knowledge and Process Management*, 27(3), 159-173. <https://doi.org/10.1002/kpm.1637>
- Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. *TechTrends*, 66(4), 616-630. <https://doi.org/10.1007/s11528-022-00715-y>
- Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. *IEEE Access*, 8, 75264-75278. <https://doi.org/10.1109/ACCESS.2020.2988510>
- Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. *Computers and Education: Artificial Intelligence*, 1, 100002. <https://doi.org/10.1016/j.caeari.2020.100002>
- Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2023). Artificial intelligence student assistants in the classroom: Designing chatbots to support student success. *Information Systems Frontiers*, 25(1), 161-182. <https://doi.org/10.1007/s10796-022-10291-4>
- Chin, C. (2007). Teacher questioning in science classrooms: Approaches that stimulate productive thinking. *Journal of Research in Science Teaching: The Official Journal of the*

National Association for Research in Science Teaching, 44(6), 815-843.
<https://doi.org/10.1002/tea.20171>

Chowdhary, K.R. (2020a). Natural Language Processing. In: *Fundamentals of Artificial Intelligence*. 603-649, Springer, New Delhi. https://doi.org/10.1007/978-81-322-3972-7_19

Chowdhary, K.R. (2020b). Introducing Artificial Intelligence. In: *Fundamentals of Artificial Intelligence*. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3972-7_1

Colchester, K., Hagras, H., Alghazzawi, D., & Aldabbagh, G. (2017). A survey of artificial intelligence techniques employed for adaptive educational systems within e-learning platforms. *Journal of Artificial Intelligence and Soft Computing Research*, 7(1), 47-64. <https://sciendo.com/article/10.1515/jaiscr-2017-0004>

Dermeval, D., Paiva, R., Bittencourt, I. I., Vassileva, J., & Borges, D. (2018). Authoring tools for designing intelligent tutoring systems: a systematic review of the literature. *International Journal of Artificial Intelligence in Education*, 28, 336-384. <https://doi.org/10.1007/s40593-017-0157-9>

Felix, J.A., & Webb, L. (2024). Use of artificial intelligence in education delivery and assessment, UK Parliament POST, *POSTnote*, 712. <https://doi.org/10.58248/PN712>

Fischer, G., Lundin, J., & Lindberg, J. O. (2020). Rethinking and reinventing learning, education and collaboration in the digital age—from creating technologies to transforming cultures. *The International Journal of Information and Learning Technology*, 37(5), 241-252. <https://doi.org/10.1108/IJILT-04-2020-0051>

Giovanola, B., & Tíribelli, S. (2023). Correction: Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms. *AI & SOCIETY*. <https://doi.org/10.1007/s00146-023-01722-0>

González-Calatayud, V., Prendes-Espinosa, P., & Roig-Vila, R. (2021). Artificial intelligence for student assessment: A systematic review. *Applied Sciences*, 11(12), 5467. <https://doi.org/10.3390/app11125467>

González-Pérez, L. I., & Ramírez-Montoya, M. S. (2022). Components of Education 4.0 in 21st century skills frameworks: systematic review. *Sustainability*, 14(3), 1493. <https://doi.org/10.3390/su14031493>

Graesser, A. C., Fiore, S. M., Greiff, S., Andrews-Todd, J., Foltz, P. W., & Hesse, F. W. (2018). Advancing the Science of Collaborative Problem Solving. *Psychological Science in the Public Interest*. <https://doi.org/10.1177/1529100618808244>

Groenewald, E. S., Kumar, N., Avinash, S. I., & Yerasuri, S. (2024). Virtual Laboratories Enhanced by AI for hands-on Informatics Learning. *Journal of Informatics Education and Research*, 4(1). <https://doi.org/10.52783/jier.v4i1.600>

Haleem, A., Javaid, M., Qadri, M. A., & Suman, R. (2022). Understanding the role of digital technologies in education: A review. *Sustainable Operations and Computers*, 3, 275-285. <https://doi.org/10.1016/j.susoc.2022.05.004>

Hardy, I., Meschede, N., & Mannel, S. (2022). Measuring adaptive teaching in classroom discourse: Effects on student learning in elementary science education. *Frontiers in Education*, 7, 1041316. <https://doi.org/10.3389/feduc.2022.1041316>

- Harmon, J., Pitt, V., Summons, P., & Inder, K. J. (2021). Use of artificial intelligence and virtual reality within clinical simulation for nursing pain education: A scoping review. *Nurse Education Today*, 97, 104700. <https://doi.org/10.1016/j.nedt.2020.104700>
- Hebebci, M. T., & Ertuğrul, U. S. T. A. (2022). The effects of integrated STEM education practices on problem-solving skills, scientific creativity, and critical thinking dispositions. *Participatory Educational Research*, 9(6), 358-379. <https://doi.org/10.17275/per.22.143.9.6>
- Hernandez-de-Menendez, M., Escobar Díaz, C., & Morales-Menendez, R. (2020). Technologies for the future of learning: state of the art. *International Journal on Interactive Design and Manufacturing*, 14(2), 683-695. <https://doi.org/10.1007/s12008-019-00640-0>
- Hirça, N. (2013). The Influence of Hands-on Physics Experiments on Scientific Process Skills According to Prospective Teachers' Experiences. *European Journal of Physics Education*, 4(1), 1-9. <https://eric.ed.gov/?id=EJ1052287>
- Holstein, K., & Doroudi, S. (2021). Equity and Artificial Intelligence in Education: Will "AIEd" Amplify or Alleviate Inequities in Education? <https://arxiv.org/abs/2104.12920>
- Hooda, M., Rana, C., Dahiya, O., Rizwan, A., & Hossain, M. S. (2022). Artificial intelligence for assessment and feedback to enhance student success in higher education. *Mathematical Problems in Engineering*, 2022, 1-19. <https://doi.org/10.1155/2022/5215722>
- Jian, M.J. (2023). Personalized learning through AI. *Advances in Engineering Innovation*, Vol. 5, 16-19. <https://doi.org/10.54254/2977-3903/5/2023039>
- Jo, E. S., & Gebru, T. (2020). Lessons from archives: Strategies for collecting sociocultural data in machine learning. In Proceedings of the *Conference on Fairness, Accountability, and Transparency (FAT* '20)* (pp. 306-316). <https://doi.org/10.1145/3351095.3372829>
- Kabudi, T., Pappas, I., & Olsen, D. H. (2021). AI-enabled adaptive learning systems: A systematic mapping of the literature. *Computers and Education: Artificial Intelligence*, 2, 100017. <https://doi.org/10.1016/j.caai.2021.100017>
- Kai, W. (2022). Social and cultural capital and learners' cognitive ability: issues and prospects for educational relevance, access and equity towards digital communication in China. *Current Psychology*, 42, 15549 - 15563. <https://doi.org/10.1007/s12144-021-02517-6>
- Kapici, H. O., Akcay, H., & Cakir, H. (2022). Investigating the effects of different levels of guidance in inquiry-based hands-on and virtual science laboratories. *International Journal of Science Education*, 44(2), 324-345. <https://doi.org/10.1080/09500693.2022.2028926>
- Khan, I., Ahmad, A. R., Jabeur, N., & Mahdi, M. N. (2021). An artificial intelligence approach to monitor student performance and devise preventive measures. *Smart Learning Environments*, 8, 1-18. <https://doi.org/10.1186/s40561-021-00161-y>
- Kharbat, F. F., Alshawabkeh, A., & Woolsey, M. L. (2021). Identifying gaps in using artificial intelligence to support students with intellectual disabilities from education

and health perspectives. *Aslib Journal of Information Management*, 73(1), 101-128. <https://doi.org/10.1108/AJIM-02-2020-0054>

Kim, J., Lee, H., & Cho, Y. H. (2022). Learning design to support student-AI collaboration: Perspectives of leading teachers for AI in education. *Education and Information Technologies*, 27(5), 6069-6104. <https://doi.org/10.1007/s10639-021-10831-6>

Kopala, M. R., Ashta, A., Mor, S., & Parekh, N. (2023). The Co-Evolution of India's Policy on Science, Technology, and Innovation with University Education: The Need for Innovation in Higher Educational Institutions. *Space and Culture, India*, 11(2), 6–17. <https://doi.org/10.20896/saci.v11i2.1333>

Kotsis, K.T., (2023a). Alternative ideas about concepts of physics are a timelessly valuable tool for physics education. *Eurasian Journal of Science and Environmental Education*, 3(2), 83-97. <https://doi.org/10.30935/ejsee/13776>

Kotsis, K., (2023b). Misconceptions about Science Concepts in Traditional Fairy Tales. *EIKI Journal of Effective Teaching Methods*, 1(4). <https://doi.org/10.59652/jetm.v1i4.65>

Kotsis, K., (2024a). ChatGPT Develops Physics Experiment Worksheets for Primary Education Teachers. *European Journal of Education Studies*, 11(5). 1-20. <http://dx.doi.org/10.46827/ejes.v11i5.5274>

Kotsis, K., (2024b). Artificial Intelligence Creates Fairy Tales For Physics Teaching In Primary Education. *European Journal of Open Education and E-learning Studies*, 9(1), 1-16. <http://dx.doi.org/10.46827/ejoe.v9i1.5250>

Kotsis, K.T., (2024c). Obstacles to Teaching Science in Primary School and Strategies to Overcome Them. *European Journal of Contemporary Education and E-Learning*, 2(1), 223-233. [https://doi.org/10.59324/ejceel.2024.2\(1\).18](https://doi.org/10.59324/ejceel.2024.2(1).18)

Kotsis, K., (2024d). ChatGPT Develops Physics Experiment Worksheets for Primary Education Teachers. *European Journal of Education Studies*, 11(5). 1-20. <http://dx.doi.org/10.46827/ejes.v11i5.5274>

Kotsis, K., (2024e). The Scientific Literacy Enables Policymakers To Legislate On Artificial Intelligence. *European Journal of Political Science Studies*, 7(1), 69-83. <http://dx.doi.org/10.46827/ejpss.v7i1.1682>

Kuleto, V, Ilić M, Dumangiu M, Ranković M, Martins OMD, Păun D, Mihoreanu L. Exploring Opportunities and Challenges of Artificial Intelligence and Machine Learning in Higher Education Institutions. *Sustainability*. 2021; 13(18):10424. <https://doi.org/10.3390/su131810424>

Kuziemski, M., & Misuraca, G. (2020). AI governance in the public sector: Three tales from the frontiers of automated decision-making in democratic settings. *Telecommunications policy*, 44(6), 101976. <https://doi.org/10.1016/j.telpol.2020.101976>

Lai, W. (2023). Analysis of Social Adaptation and Integration Issues Faced by Foreigners in China -Taking African Business Community in Guangzhou as an Example. *Journal of Education, Humanities and Social Sciences*, 20, 285-292. <https://doi.org/10.54097/ehss.v20i.11684>

Li, C., Lim, M., Bentaleb, A., & Zimmermann, R. (2023). A Real-Time Blind Quality-of-Experience Assessment Metric for HTTP Adaptive Streaming. *2023 IEEE International Conference on Multimedia and Expo (ICME)*, 1661-1666. <https://doi.org/10.1109/ICME55011.2023.00286>

- Lim, J., Shin, Y., Lee, S., Chun, M. S., Park, J., & Ihm, J. (2023). Improving Learning Effects of Student-Led and Teacher-Led Discussion Contingent on Prediscussion Activity. *The Journal of Experimental Education*, 1-18. <https://doi.org/10.1080/00220973.2023.2221394>
- Lim, L., Bannert, M., van der Graaf, J., Singh, S., Fan, Y., Surendrannair, S., ... & Gašević, D. (2023). Effects of real-time analytics-based personalized scaffolds on students' self-regulated learning. *Computers in Human Behavior*, 139, 107547. <https://doi.org/10.1016/j.chb.2022.107547>
- Luckin, R., Cukurova, M., Kent, C., & du Boulay, B. (2022). Empowering educators to be AI-ready. *Computers and Education: Artificial Intelligence*, 3, 100076. <https://doi.org/10.1016/j.caeari.2022.100076>
- Ma, C., & Lu, J. (2023). Research on the Application Strategies of Teaching Methods in Physics Teaching. *International Journal of New Developments in Education*. Vol. 5, Issue 9: 11-19. <https://doi.org/10.25236/IJNDE.2023.050903>
- McComas, W. F. (2017). Understanding How Science Works: The Nature of Science as the Foundation for Science Teaching and Learning. *School Science Review*, 98(365), 71–76. <https://eric.ed.gov/?id=EJ1154893>
- McKay, C. (2020). Predicting risk in criminal procedure: actuarial tools, algorithms, AI and judicial decision-making. *Current Issues in Criminal Justice*, 32(1), 22–39. <https://doi.org/10.1080/10345329.2019.1658694>
- Mhlanga, D. (2023). Open AI in Education, the Responsible and Ethical Use of ChatGPT Towards Lifelong Learning. *SSRN Electronic Journal*. <http://dx.doi.org/10.2139/ssrn.4354422>
- Miao, F., Holmes, W., Huang, R., & Zhang, H. (2021). AI and education: A guidance for policymakers. UNESCO Publishing.
- Nozari, H., Ghahremani-Nahr, J., & Szmelter-Jarosz, A. (2024). AI and machine learning for real-world problems. In *Advances in Computers* (Vol. 134, pp. 1-12). Elsevier. <https://doi.org/10.1016/bs.adcom.2023.02.001>
- Obe, W. H. (2018). *The teaching of science in primary schools*. David Fulton Publishers.
- Ouyang, F., Wu, M., Zheng, L., Zhang, L., & Jiao, P. (2023). Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. *International Journal of Educational Technology in Higher Education*, 20(1), 4. <https://doi.org/10.1186/s41239-022-00372-4>
- Özsoy, S. (2012). Is the Earth flat or round? Primary school children's understandings of the planet earth: The case of Turkish children. *International Electronic Journal of Elementary Education*, 4(2), 407–415. <https://eric.ed.gov/?id=EJ1070476>
- Pratama, M. P., Sampelolo, R., & Lura, H. (2023). Revolutionizing education: harnessing the power of artificial intelligence for personalized learning. *Klasikal: Journal of Education, Language Teaching and Science*, 5(2), 350-357. <https://doi.org/10.52208/klasikal.v5i2.877>
- Quach, S., Thaichon, P., Martin, K. D., Weaven, S., & Palmatier, R. W. (2022). Digital technologies: Tensions in privacy and data. *Journal of the Academy of Marketing Science*, 50(6), 1299-1323. <https://doi.org/10.1007/s11747-022-00845-y>

Rizvi, M. (2023). Investigating AI-Powered Tutoring Systems that Adapt to Individual Student Needs, Providing Personalized Guidance and Assessments. *The Eurasia Proceedings of Educational and Social Sciences*, 31, 67–73. <https://doi.org/10.55549/epess.1381518>

Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In *Handbook of research on science education, Volume II* (pp. 559-572). Routledge. <https://doi.org/10.4324/9780203097267-32>

Sakib, N., Anik, F.I., & Li, L. (2023). ChatGPT in IT Education Ecosystem: Unraveling Long-Term Impacts on Job Market, Student Learning, and Ethical Practices. *Proceedings of the 24th Annual Conference on Information Technology Education*, 73–78. <https://doi.org/10.1145/3585059.3611447>

Schildkamp, K. (2019). Data-based decision-making for school improvement: Research insights and gaps. *Educational Research*, 61(3), 257-273. <https://doi.org/10.1080/00131881.2019.1625716>

Seo, K., Tang, J., Roll, I., Fels, S., & Yoon, D. (2021). The impact of artificial intelligence on learner-instructor interaction in online learning. *International journal of educational technology in higher education*, 18, 1-23. <https://doi.org/10.1186/s41239-021-0029-9>

Shank, M. K. (2023). Novice teachers' training and support needs in evidence-based classroom management. *Preventing School Failure: Alternative Education for Children and Youth*, 67(4), 197–208. <https://doi.org/10.1080/1045988X.2023.2195361>

Sharifuddin, N.S., & Hashim, H. (2024). Benefits and Challenges in Implementing Artificial Intelligence in Education (AIED) in ESL Classroom: A Systematic Review (2019-2022). *International Journal of Academic Research in Business and Social Sciences*. <http://dx.doi.org/10.6007/IJARBSS/v14-i1/20422>

Singh, A. & Chouhan, T. (2023). Artificial Intelligence in HRM: Role of Emotional–Social Intelligence and Future Work Skill, Tyagi, P., Chilamkurti, N., Grima, S., Sood, K. and Balusamy, B. (Ed.) *The Adoption and Effect of Artificial Intelligence on Human Resources Management, Part A (Emerald Studies in Finance, Insurance, and Risk Management)*, Emerald Publishing Limited, Leeds, pp. 175-196. <https://doi.org/10.1108/978-1-80382-027-920231009>

Smith, C., & Gillespie, M. (2023). Research on professional development and teacher change: Implications for adult basic education. In *Review of Adult Learning and Literacy*, Volume 7 , 205-244. Routledge. <https://doi.org/10.4324/9781003417996>

Srinivasa, K.G., Kurni, M., Saritha, K. (2022). Harnessing the Power of AI to Education. In: *Learning, Teaching, and Assessment Methods for Contemporary Learners*. Springer Texts in Education. Springer, Singapore. https://doi.org/10.1007/978-981-19-6734-4_13

Tapalova, O., & Zhiyenbayeva, N. (2022). Artificial intelligence in education: AIEd for personalised learning pathways. *Electronic Journal of e-Learning*, 20(5), 639-653. <https://eric.ed.gov/?id=EJ1373006>

Varona, D., & Suárez, J. L. (2022). Discrimination, bias, fairness, and trustworthy AI. *Applied Sciences*, 12(12), 5826. <https://doi.org/10.3390/app12125826>

Vie, JJ., Popineau, F., Bruillard, É., Bourda, Y. (2017). A Review of Recent Advances in Adaptive Assessment. In: Peña-Ayala, A. (eds) *Learning Analytics: Fundamentals*,

Applications, and Trends. Studies in Systems, Decision and Control, vol 94. Springer, Cham.
https://doi.org/10.1007/978-3-319-52977-6_4

Winarni, S., & Syahrial, S. (2023). Identification of Prospective Chemistry Teachers' Misconceptions When Practicing Basic Teaching Skills and Their Correction Through Cognitive Conflict Strategies. *Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education)*, 11(2), 318-332. <https://doi.org/10.24815/jpsi.v11i2.28304>

Zacharia, Z. C., Manoli, C., Xenofontos, N., et al. (2015). Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: A literature review. *Educational Technology Research and Development*, 63, 257–302. <https://doi.org/10.1007/s11423-015-9370-0>

Zhai, J., & Tan, A. L. (2015). Roles of teachers in orchestrating learning in elementary science classrooms. *Research in Science Education*, 45, 907-926. <https://doi.org/10.1007/s11165-014-9451-9>

