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 A B S T R A C T

In the era of big data and real-time analytics, there is a growing demand for fast, adaptive, and efficient 
techniques for data analytics that are not only accurate but also responsive and adaptable to dynamic 
environments. Anytime algorithms have gained significant attention in data analytics due to their ability to 
provide approximate results at any point in time (which improves over time), making them highly suitable 
for quick decision-making. Anytime algorithms, which can trade computational time for quality of results, 
are increasingly critical for applications requiring rapid, adaptive insights. They are widely used in stock 
market analysis, fraud detection, sentiment analysis, weather forecasting, etc. To the best of our knowledge, 
there is no literature survey of research papers on anytime algorithms that comprehensively reviews the 
approaches, classifies them and highlights the open research issues. This paper provides a comprehensive 
survey of anytime algorithms tailored for data analytics over large datasets while emphasizing their application 
in time-sensitive decision-making environments. We examine the algorithmic foundations and the state-of-the-
art anytime approaches across various data analytics tasks, including classification, clustering and frequent 
itemset mining. Qualitative analysis has also been presented for each algorithm described in this paper based on 
key aspects such as interruptibility, resource adaptiveness, and solution quality under constrained conditions. 
This survey also highlights the latest advancements and emerging research trends, providing insights into how 
anytime algorithms can be further developed to meet the demands of complex and dynamic environments.
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1. Introduction

Data analytics refers to the process of discovering useful patterns, 
trends, and relationships within large data by using a variety of tech-
niques from statistics, machine learning, and artificial intelligence. It 
involves analyzing data to extract meaningful insights and transforming 
them into actionable knowledge [1]. With the rapid growth of data gen-
erated by businesses, social media, and IoT devices, data analytics has 
become an essential tool for organizations seeking to gain a competitive 
advantage through data-driven decision-making.

There are various data analytics tasks including — classification [2,
3], clustering [4], anomaly detection [5], association rule mining [6], 
and sequence mining [1]. Classification assigns objects to one of several 
predefined categories, which is useful in many diverse applications 
that include — detecting spam email messages based on the message 
header and content [1], categorizing cells as malignant or benign based 
on the results of MRI scans [1], classifying galaxies based on their 
shapes [1], Fraud Detection in credit card transactions [6], etc. Cluster 
analysis seeks to find groups of closely related objects so that the 
objects that belong to the same cluster are more similar to each other 
than the objects that belong to other clusters. A few applications of 
clustering include — grouping sets of related customers [1], finding 
ocean areas that significantly impact the earth’s climate [7], grouping 
astronomical galaxies [8], etc. Association analysis discovers patterns 
that describe strongly associated features in the data. The applications 
of association analysis include — finding groups of genes that have 
related functionality [9], identifying web pages that are accessed to-
gether [10], identifying the patterns of frequently purchased items at 
retail stores [11], etc.

1.1. Challenges faced by traditional algorithms

Traditional data analytics techniques often struggle to process large-
scale data, especially in environments where the computational re-
sources and the processing time are constrained.  These include issues 
with scalability, processing speed, adaptability to complex structures, 
data processing capabilities, and balancing trade-offs between accuracy 
and computational efficiency, particularly in resource-constrained envi-
ronments. They are often inadequate for handling variable inter-arrival 
rates of data. They run on their own limited speed handling capability 
and are not flexible enough to handle variable speeds. If they were to 
be used at speeds beyond their maximum capability, they would have 
to either process sampled data or buffer unlimited data and eventually 
get stuck [12]. For example, while traditional SVMs require fixed kernel 
evaluations, anytime SVMs [13] reduce evaluations dynamically, im-
proving efficiency in resource-constrained environments. Table  1 shows 
the comparison between budget/non-anytime vs anytime algorithms 
for large-scale static data.

In such scenarios, Anytime algorithms [14–17] come to the rescue, 
wherein they can provide incremental insights from the analysis that 
improve with an increase in the allocated resources, such as computa-
tional resources and time. Anytime algorithms are a class of algorithms 
that offer a trade-off between the constraints on available resources and 
2 
the quality of results. They can be interrupted at any time before their 
completion and provide intermediate, valid approximate results. The 
quality of that result can be improved with an increase in resources al-
located. Resources could be processing time allowance, computational 
resources, etc. This behavior of an anytime algorithm is depicted in Fig. 
1, where we can see that the accuracy of the result improves with an 
increase in processing time allowance.

There are many application domains where anytime algorithms are 
applicable in decision-making. For example, consider the application 
of stock market analysis to predict trends from large-scale data [14]. 
Stock markets generate vast amounts of real-time data, including stock 
prices and trading volumes, which keep on varying from time to time. 
Anytime algorithms can process this data incrementally, providing 
preliminary insights quickly if interrupted and refining predictions as 
more resources become available. This kind of algorithm benefits both a 
short-term stock investor who is interested in quick results, as well as a 
long-term stock investor who is willing to wait until a more refined and 
accurate result is computed. Other application domains where anytime 
algorithms are useful include — sentiment analysis in social media 
analytics, speech recognition in NLP [18], object recognition from im-
ages and videos [19], fraud detection in credit card transactions [20], 
path planning in robotics [21], etc. The development of anytime al-
gorithms reflects a growing need for efficient and timely computation 
of solutions. By allowing for progressive refinement and early access 
to results, these algorithms empower users to make informed decisions 
quickly while still benefiting from more comprehensive analysis over 
time. Anytime algorithms are particularly useful for handling large and 
dynamic data, where traditional methods may struggle to keep up with 
the volume and speed at which the data is generated. By providing 
approximate results at any point in time, anytime algorithms enable 
rapid insights and adaptability, making them an attractive solution for 
a wide range of data-driven applications.

Anytime algorithms can be categorized as - contract and interruptible. 
Both types can provide useful insights when constrained by resources. 
They differ in how they manage allocated resources and provide useful 
results during execution. A contract algorithm is one that gets its 
resources (time, computational hardware, etc.) allocated beforehand, 
and the algorithm executes within those allotted resources to produce 
the best possible result. Contract algorithms, if interrupted before the 
contract ends, don’ t guarantee a valid result. An interruptible algo-
rithm, on the other hand, is designed to give a result at any point 
of interruption during its execution. An interruptible algorithm is one 
whose resource allocation is not given in advance. If interrupted, it will 
return the best solution it has found so far, and if allowed to continue, 
it will refine its result further. For instance, in a fraud detection system, 
if the algorithm is interrupted before it finishes, it can produce quick 
fraud alerts, and if more processing time is given, it can refine the 
accuracy of these alerts as more data gets analyzed. This feature makes 
interruptible algorithms highly flexible and suitable for environments 
where computational resources or time availability are uncertain.

1.2. Anytime algorithms in data analytics

In the context of data analytics, anytime algorithms can be applied 
to two broader scenarios - mining large databases and mining data 
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Table 1
Comparison between non-anytime and anytime algorithms in data analytics.
 Aspect Non-anytime algorithms Anytime algorithms  
 Execution model Run to completion before 

producing any output.
Can be interrupted at any 
point to provide the 
best-so-far result. 

 

 Result availability Only available after full 
processing.

Progressive refinement; output 
improves with an increase in 
processing time. 

 

 Adaptability to time 
constraints

Fixed runtime Adapts to varying time 
allowances. 

 

 Suitable for large 
datasets

Requires full dataset 
processing before 
producing the usable 
results. 

Can work progressively, giving 
early, approximate results.

 

 Handling resource 
constraints

Fixed computational 
budget

Adjusts processing based on 
available resources (memory, 
time).

 

 Scalability Requires more hardware Provides intermediate results, 
and refines over time. 

 

 Use in real-time 
decision-making

Cannot return intermediate 
insights before completion.

Well-suited for real-time and 
streaming environments where 
quick decisions are needed. 

 

 Quality of 
intermediate results

No intermediate result; 
must wait for the final 
result.

Quality improves with an 
increase in time; early results 
may be coarse but usable.

 

Fig. 1. Characteristic of an anytime algorithm [12].

streams. In this survey paper, we focus on anytime algorithms for 
mining large databases.

Anytime algorithms for large datasets produce multiple results of 
various approximations, whose accuracy increases with an increase 
in processing time allowance. This gives the user flexibility in the 
trade-off between computational resources and the accuracy of the min-
ing results. Anytime algorithms for data analytics include- induction-
tree based [22,23], kernel-based [13], ensemble-based [24–26], neu-
ral networks based [27–29], nearest-neighbors based [30], probabil-
ity estimation based [31,32], density-based [33–36], frequent itemset 
mining [14,20], etc.

Similarly, if we categorize the algorithms on the basis of contract 
and interruptible, anytime decision trees [22,23], anytime frequent 
itemset mining [14], etc., come under contract algorithms. Anytime 
interruptible decision trees [37], anytime nearest neighbors [16,30,38], 
anytime bayesian classifiers [39], anytime set-wise classification [40], 
etc. are the interruptible algorithms.

To measure the performance of anytime algorithms for large
datasets, the focus is on their ability to provide progressively improved 
results when more resources (processing time and computational re-
sources) become available. The quality of the solution (accuracy) 
produced under varied (generally improving) constrained conditions 
is used to evaluate the effectiveness of an anytime algorithm. Fig.  2 
describes the framework for anytime algorithms.
3 
Fig. 2. Framework for anytime algorithms.

1.3. Metrics for performance evaluation of anytime algorithms

To evaluate the performance of anytime algorithms, particularly for 
large datasets, metrics are required that capture their ability to pro-
vide progressively improved solutions as more computational resources 
(e.g., processing time, memory) become available. Unlike traditional 
algorithms, which return a single final result after completing the 
execution, however, the performance of the anytime algorithms can 
be evaluated based on the quality of the intermediate results and the 
speed at which they improve over time. The following metrics are 
recommended to systematically assess their performance:

• Initial Solution Quality under Interruption: Measures the qual-
ity of the first available intermediate solution when the algorithm 
is interrupted early.

• Time-Computational Efficiency Trade-off: Evaluates how effi-
ciently an anytime algorithm transforms available computational 
resources (e.g., CPU time, memory usage, etc.) into quality im-
provements such as improved accuracy, F1-score, reduced clas-
sification cost, or higher clustering purity—in its intermediate 
and final solutions with an increase in processing time allowance 
(refer to Fig.  1). Better computational efficiency means that even 
if the algorithm is interrupted early, it will deliver more useful 
results.

• Scalability: Measures how well an algorithm maintains its any-
time properties with an increase in size or complexity of data or 
stream speed.

1.3.1. Characteristics of anytime algorithms
Fig.  3 showcases the key characteristics of anytime algorithms (i)

Interruptibility, (ii) Resource Adaptiveness, (iii) Incremental Learning, and 
(iv) Scalability.

(i) Interruptibility : Anytime algorithms can be stopped at any point 
in time and still return the best possible approximate result 
achieved so far. This is imperative in real-time or resource-
constrained environments where computation may need to be 
halted unexpectedly.

(ii) Resource Adaptiveness: Anytime algorithms are designed to dy-
namically adjust their computation based on available resources 
like time, memory, or computational power. When more re-
sources are available, the algorithm refines its solution and 
provides a more accurate result.

(iii) Incremental Learning : The model can update itself incrementally 
as new data objects arrive, without needing to retrain from 
scratch. This is crucial for adapting to evolving data patterns 
over time.
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Fig. 3. Key characteristics of anytime algorithms.

Fig. 4. Overview of anytime algorithms for data analytics in large data.

(iv) Scalability : The algorithm can handle increasing volumes of data 
without a significant drop in performance. It remains efficient 
even as data streams become larger and faster.

1.4. Our contribution

In this paper, we provide an extensive literature survey of anytime 
algorithms by considering 56 research articles to examine all relevant 
research accomplished in the field of data analytics for large datasets. 
Fig.  4 presents an overview of the number of anytime algorithms 
developed for different data analytics tasks applied to large datasets, 
along with the span of years in which these algorithms were proposed.

Classification (1996–2025) shows the highest number of anytime 
algorithm contributions, with 41 algorithms identified over nearly three 
decades. 8 methods were proposed for clustering from 2009 to 2022, 3 
methods exist for frequent itemset mining (2002–2020), and 4 methods 
were proposed for recommendation systems (RS) (2009–2018). The rel-
atively low number reflects the computational complexity of Frequent 
Itemset mining.  The survey based on the various types of anytime 
algorithms across different data analytics tasks is also analyzed in terms 
of publications per year and key factors of anytime algorithms. Fig.  5 
shows the number of publications on anytime algorithms published per 
year for different data analytics tasks from 1996 to 2025. The trend 
highlights a steady growth in research interest, with a significant rise 
after 2010, indicating the increasing relevance of anytime algorithms 
in time-sensitive and large-scale data analytics tasks. Table  4, 5 sum-
marizes the anytime algorithms for different analytics tasks that are 
4 
Fig. 5. Year-wise summary of publications in anytime data analytics.

useful for handling large-scale data based on different machine learning 
models and highlighting the specific features of each algorithm.

This survey essentially addresses the following research questions:

• RQ1: What are the key findings of this extensive literature survey 
on anytime algorithms for data analytics in the context of large 
datasets?

• RQ2: What are the fundamental principles that underpin the 
design of anytime algorithms for various tasks of data analytics?

• RQ3: In what way have the anytime algorithms for data analytics 
evolved over time, and what are the major improvements over 
previous approaches in terms of theoretical validation?

• RQ4: What are the significant research challenges identified in 
the area of anytime algorithms for data analytics? What are the 
future research opportunities to extend the capabilities of these 
algorithms or propose new algorithms?

• RQ5: How can parallelization techniques enhance the scalability 
and efficiency of anytime algorithms for data analytics?

The rest of the paper is organized as follows: Section 2 explains various 
methods proposed for anytime classification. Section 3 discusses differ-
ent approaches developed for anytime clustering. Section 4 describes 
the methods introduced for frequent itemset mining. Section 5 discusses 
the algorithms designed for recommendation systems. Section 6 gives 
a brief insight into the anytime algorithms for data analytics in stream 
environments. Section 7 discusses the limitations of the survey. Sec-
tion 8 discusses the significant research issues based on the survey 
conducted and future directions for research. Finally, Section 9 sum-
marizes the methods presented in the previous sections and concludes 
the manuscript.

2. Anytime classification

We give a comprehensive survey of different types of anytime 
classification algorithms that were proposed in the literature, including 
traditional classification algorithms, active learning based algorithms, 
vision applications-based algorithms and a few others. The anytime 
traditional classification algorithms for large datasets are summarized 
in Fig.  6, while Fig.  7 presents application-based anytime classification 
algorithms. Table  2 presents a summary of datasets used to evaluate 
various anytime classification algorithms, providing the best possible 
results. The datasets range from small synthetic datasets (e.g., XOR-10, 
Multi-XOR, Synthetic with sizes under 1000 instances) to large-scale 
real-world datasets such as ImageNet (1.2M instances), Letter (20,000 
instances), Munin1 (5 million entries), and Skin Nonskin (245,057 in-
stances). Classification accuracy is the most commonly reported metric, 
though other performance indicators like F1-score, AUC, regret, log-
likelihood, and Kullback score are also considered, depending on the 
nature of the application.

Decision tree-based anytime approaches such as ID3-k, LSID3, and 
ACT were evaluated on symbolic datasets like Tic-tac-toe and XOR-10, 
demonstrating high accuracy (up to 100%) and effective interruptibility 
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Fig. 6. Categorization of anytime traditional classification algorithms for large data.
Table 2
Datasets used for evaluation of anytime classification algorithms that achieve the highest performance.
 Algorithm Dataset characteristics Results  
 ID3-k & LSID3 [22] Name: Tic-tac-toe, Size: 958 Accuracy: 88%  
 IIDT [37] Name: XOR-10, Size: 10000 Accuracy: 100%  
 Esmeir et al. [41] Name: XOR-10, Size: 10000 Accuracy: 100%  
 ACT [23] Name: XOR-10, Size: 10000 Accuracy: >80%  
 Esmeir et al. [42] Name: Multi-XOR, Size: 200 Accuracy: >98%  
 Esmeir et al. [43] Name: Multi-XOR, Size: 200 Accuracy: >78%  
 DeCoste et al. [13] Name: Sonar, Size: 208 Accuracy: >90%  
 Sofman et al. [44] Name: Outdoor Mobile Robot, Size: 6000 True Positive Rate: >90%  
 Greedy Miser [45] Name: Scene-15, Size : 4485 Accuracy: >80%  
 AFR [46] Name: Synthetic, Size: 1000 Accuracy: >75%  
 EnE [47] Name: Switchboard Corpus, Size: 2500 Accuracy: >45%  
 SpeedBoost [25] Name: Pendigits, Size : 7494 Accuracy: 98%  
 SpeedMachines [48] Name: Stanford Background, Size: 715 Accuracy: 80%  
 OTB & OMB [26] Name: Freiburg EEG, Size: 79 No. of seizures detected: >65 
 Anytime DNN [49] Name: ImageNet, Size: 1.2M Accuracy: 92.9%  
 Lee et al. [28] Name: ImageNet, Size: 1.2M Accuracy: >78%  
 MSDnet [29] Name: ImageNet, Size: 1.2M Accuracy: 75%  
 Hu et al. [27] Name: ImageNet, Size: 1.2M Accuracy: 76%  
 Anytime NB [50] Name: Synthetic, Size: 21 Kullback score: 0.1  
 treeNet [51] Name: Synthetic, Size: 22 Error rate : 0  
 Hulten et al. [52] Name: Munin1, Size: 5M Log-likelihoods: 38.417  
 AAODE [31] Name: Pendigits, Size: 7494 Error rate : 0.6  
 AAPE [53] Name: Pendigits, Size: 7494 Error rate : 0.86  
 AAPWE [54] Name: Pendigits, Size: 7494 Error rate : 0.215  
 SAAPE [32] Name: Pendigits, Size: 7494 Error rate : 0.185  
 SimpleRank [16] Name: Letter, Size: 20000 Accuracy: 100%  
 MVP-Trees [30] Name: Image, Size: 10221 Accuracy: 98%  
 Any-𝑘-NN [38] Name: Skin Nonskin, Size: 245057 F1-score: 94%  
 NN classifier [55] Name: Letter, Size: 20000 Accuracy: 100%  
 IEThresh [56] Name: RTE, Size: 100 Accuracy: 92%  
 Tomanek et al. [57] Name: MUC7T, Size: 3113 F1-score: >85%  
 AAL [58] Name: MUC7T, Size: 3113 F1-score: 88%  
 Ramirez et al. [59] Name: IMDB, Size: 26784 AUC:0.79  
 Karayev et al. [19] Name: PASCAL VOC, Size: 9963 Average Precision: 66%  
 Anytime Scenes [60] Name: Scene-15, Size: 4485 Accuracy: 80%  
 Liu et al. [61] Name: Leuven Street Scenes, Size: 293 Accuracy: 90%  
 ICF [62] Name: Leuven Street Scenes, Size: 293 Accuracy: 89.55%  
 AFS [63] Name: Iris, Size: 150 Error rate : 2.0  
 Schlobach et al. [64] Name: DICE, Size: 4859 Recall: 90%  
 APM [65] Name: Dynamic Pricing, Size: 5 × 5 Regret: 0  
 Viet et al. [66] Name: TwoPat, Size: 5000 Accuracy: 97.72%  
 Aria et al. [67] Name: IMDB, Size: 26784 Confidence: 95%  
 Ben-Shimon [68] Name: MovieLens, Size: 1M AUC:80.34  
 Ben-Shimon et al. [69] Name: MovieLens, Size: 1M Precision: 0.5  
 KARPET [70] Name: DBLP, Size: 5M Run time: 2–5 ms  
5 
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Fig. 7. Categorization of anytime application-based classification algorithms for large data.
in constrained scenarios. More recent advancements leverage deep 
neural networks (e.g., Anytime DNN, MSDnet, and Hu et al.’s method), 
achieving competitive accuracy (above 75%–92%) on complex image 
datasets such as ImageNet. Similarly, algorithms like SpeedBoost, AAPE 
variants, and SimpleRank show high accuracy or low error rates on 
digit classification benchmark datasets such as Pendigits and Letter, 
reinforcing the reliability of decision tree ensembles and probabilistic 
classifiers for real-time learning. Several approaches address domain-
specific challenges: algorithms like Sofman et al. and OTB & OMB 
are applied to robotics and biomedical datasets (e.g., Outdoor Mo-
bile Robot, Freiburg EEG), while others like AAL, AAPE, and ICF 
are tested on street scenes, IMDB, and MUC7T, reflecting real-world 
utility in fields such as autonomous navigation, emotion detection, and 
natural language processing, also illustrating the broad applicability 
of anytime classification. Notably, methods like Any-𝑘-NN and AAL 
focus on real-time performance with high F1-scores and are suited 
for data stream processing and active learning scenarios. The table 
demonstrates that anytime classification algorithms maintain compet-
itive performance while offering flexibility in computational resources 
and decision timing, making them valuable for time-constrained or 
dynamic environments. Overall, the table highlights the diversity in 
dataset characteristics and the versatility of anytime classification al-
gorithms in achieving reliable results across different data analytics 
models. 

Now, let us delve into the insights of these algorithms.

2.1. Induction tree-based anytime algorithms

Traditional decision tree induction methods, such as CART, ID3, and 
C4.5, rely on local heuristics to produce smaller trees but often fail to 
achieve globally optimal solutions. To address this limitation, anytime 
decision tree induction algorithms were proposed, which produce a 
better, higher-quality decision tree as additional processing time is al-
located. These algorithms also account for testing and misclassification 
costs, leading to the induction of cost-sensitive decision trees that aim 
to minimize the total classification cost while maximizing accuracy.

Esmeir et al. [22] introduce lookahead-based algorithms for any-
time induction of decision trees, specifically ID3-𝑘 and LSID3. These 
6 
algorithms are capable of constructing better decision trees when more 
time becomes available, thereby improving upon greedy algorithms. 
Essentially, during the tree construction, they predict the profitability 
of a node split by estimating its impact on deeper node descendants, 
giving better quality decision trees. Furthermore, the LSID3 algorithm 
is a contract algorithm (apriori resource allocation) allowing for the 
utilization of additional resources (time) to construct more refined deci-
sion trees.  However, the approach has higher computational overhead, 
limiting scalability to large datasets.

To overcome the limitations of contract algorithms, Esmeir et al. 
[37] developed interruptible anytime decision trees. Unlike contract-
based approaches, these algorithms do not require prior resource al-
location (execution time), can be interrupted at any time during ex-
ecution and are capable of providing improved solutions. The first 
proposed algorithm involves the conversion of the LSID3 contract al-
gorithm into an interruptible variant. The second algorithm is referred 
to as IIDT (Interruptible Induction of Decision Trees), which iteratively 
replaces sub-trees of the current tree with sub-trees generated using 
higher resource allocations, with the expectation of yielding better 
results.  This approach incurs high recomputation overhead during 
subtree replacement and is still limited in large-scale, high-dimensional 
datasets. Esmeir et al. [41] introduced a comprehensive framework for 
anytime induction of decision trees, enabling hard-to-learn concepts to 
leverage additional computational resources to produce better hypothe-
ses and exploit larger time budgets. This work provides a comparative 
analysis of anytime decision tree models, including LSID3 and IIDT, in 
relation to traditional decision tree models that use bagging, skewing, 
and GATree. The study concludes that, under scenarios where resource 
constraints are not a limiting factor, LSID3 and IIDT emerge as the 
top-performing models, effectively utilizing the available resources to 
produce more accurate and robust decision trees.

Esmeir et al. [23] introduced a sampling-based method where the 
cost of each sub-tree, generated by candidate splits, is estimated using 
Anytime Cost-Sensitive Trees (ACT ) method. In this method, the split 
that minimizes the overall cost is favored in the tree construction 
process. This method works as a contract anytime algorithm, which 
allows for trading learning time to achieve higher classification accu-
racy. By leveraging additional time resources, the algorithm obtains 



J.S. Challa et al. Computer Science Review 59 (2026) 100850 
better estimates of the different candidate splits, resulting in more cost-
efficient decision trees.  Due to the contract-based approach, it may 
overfit cost estimates with small budgets.

Esmeir et al. [42] introduced an approach which works in envi-
ronments where computation time can be traded for both test and 
misclassification costs. It is built on LSID3, which is not designed to 
minimize test and misclassification costs. The proposed approach lever-
ages additional time and computational resources to generate decision 
trees with lower costs, demonstrating good anytime behavior with 
diminishing returns. LSID3 uses SID3 to bias the samples towards small 
trees; however, ACT does towards low-cost trees.  Cost optimization 
in decision tree induction depends heavily on the accuracy of the 
underlying cost model, and unrealistic cost assumptions may yield 
suboptimal trees.  TATA (Tree-classification AT Anycost) is another 
anytime framework introduced by Esmeir et al. [43] that produces 
anytime decision-tree classifiers. It allows for dynamic allocation of 
learning time and can be configured to work under various budget 
schemes for classification. This flexibility enables TATA to either pro-
duce classifiers with fixed time or cost limits or to continue classifying 
until interrupted. Notably, this method leverages additional learning 
time to produce anycost classifiers by forming larger samples, which 
improves tree-utility estimations.  However, requiring many samples 
for high accuracy increases the runtime in large datasets.

2.2. Kernel-based anytime algorithms

Support vector machines (SVMs) classify objects using support vec-
tors and use multiplication of objects and support vectors to perform 
kernel computations. In traditional SVM models, the classification cost 
of a query object is the same irrespective of its difficulty level. The 
same number of kernel evaluations (dot products between objects and 
support vectors) is used for every data object. However, we can reduce 
the number of such kernel evaluations for a few data objects to enhance 
SVM’s performance.

DeCoste [13] presented a computational geometry-based method 
that reduces the classification cost and the number of kernel computa-
tions used in Support Vector Machines (SVMs), making it more efficient 
for large datasets. Traditional SVM classification requires a substantial 
number of kernel computations, especially for large datasets, because it 
applies a uniform number of kernel computations to all objects, which 
can be computationally expensive. However, this approach produces 
the same final classification results as a traditional SVM but with 
fewer kernel computations for ‘‘easier’’ cases. In this approach, the 
classification cost is proportional to the difficulty level of each object: 
‘‘easy’’ points (those lying far from the decision boundary with large 
margins) are classified with fewer kernel computations, while ‘‘hard’’ 
points (those near the margin) require more evaluations rather than 
applying a uniform cost across all objects. The method is designed 
to work in an anytime fashion, making it particularly useful for real-
time or resource-constrained environments. This approach reduces the 
number of steps(𝑘) and performs efficiently with reduced error rates 
as 𝑘 increases. However, margin-based computation prioritization may 
still incur high costs for borderline cases in large-scale datasets. 

Sofman et al. [44] developed Anytime novelty detection algorithm, a 
kernel-based algorithm designed to handle noisy, redundant, and high-
dimensional feature spaces, commonly encountered in robotics. The 
approach transforms the challenge of environmental change detection 
into a location-specific novelty detection problem and uses Multiple 
Discriminant Analysis (MDA) instead of PCA to enhance robustness in 
high-dimensional spaces. It works as a variant of the NORMA (an online 
kernelized SVM) algorithm and is optimized using gradient descent 
by assuming new queries are novel until proven otherwise. It utilizes 
an anytime framework that ensures efficient computation with a fixed 
buffer size while reordering stored examples for faster adaptation, 
ensuring bounded computation time and effective anytime novelty 
prediction, even in complex environments.  However, the performance 
depends on the accuracy of novelty assumptions and may generate 
higher false-positive rates in noisy environments. 
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2.3. Feature-based anytime algorithms

Xu et al. [45] introduced Greedy Miser, which is an anytime al-
gorithm that minimizes test-time CPU usage by incorporating feature 
extraction costs into gradient boosting. It is an extension of stage-wise 
regression and achieves a balance between accuracy and computational 
efficiency by minimizing costly features without sacrificing prediction 
quality. It integrates cost-efficiency into the training and selection of 
weak classifiers, yielding a simple yet effective model.  It can produce 
valid classification results with varying test-time budgets and progres-
sively better predictions by incrementally adding features based on 
cost-benefit; it can stop early and still produce a valid output. The 
greedy miser algorithm for different values of 𝜆 ∈ {0, 1∕4, 1∕2, 1, 2, 4}
as feature-cost trade-off parameter (number of features in each cost 
group), yields an accuracy of more than 80% at the test-time cost of 
25 s over the state-of-the-art approach Early-Exits. The lower the value 
of 𝜆, the better the accuracy, but at higher costs. However, performance 
is highly sensitive to the accuracy of cost estimates, as the algorithm 
may discard high-cost but highly informative features when working 
under strict budgets, potentially leading to suboptimal accuracy. 

Xu et al. [46] introduced the Anytime Feature Representation (AFR) 
algorithm that explicitly addresses the trade-off between using expen-
sive features and evaluation cost in the data representation rather 
than the classifier. AFR enables conventional classifiers to become 
test-time cost-sensitive anytime classifiers; however, it introduces ad-
ditional computational overhead due to the integrated representation 
learning stage. It combines the advantages of anytime learning and 
large margin classifiers, tackling the classification problem with a novel 
approach to budgeted learning. The algorithm consists of two inte-
grated parts: classification using SVMs and feature representation learn-
ing using Greedy Miser. The feature representation mapping transforms 
the input vector into a new representation, which is then classified 
by the SVM within cost budgets. The anytime setting is achieved 
by incrementally increasing the cost budgets until the cost constraint 
no longer affects the optimal solution. AFR achieves the highest test 
scores overall, due to the generalization capabilities of large-margin 
classifiers.

2.4. Ensemble-based anytime algorithms

Ensemble methods are machine learning algorithms that construct 
a set of classifiers (base classifiers) and make predictions for new data 
points by combining the results of base classifiers, typically through a 
weighted voting mechanism or iterative refinement.

Kary et al. [47] developed the EnE (Ears and Eyes), which is an 
anytime ensemble learning approach for sub-dialogue topic spotting. 
A classifier is designed to categorize short fragments of a conversation 
into one of several predefined topics provided during training. It aims 
for anytime classification by being biased towards faster performance 
over classification accuracy, analyzing the impact of test conversation 
length on the topic classification accuracy.  It achieves anytime behav-
ior by progressively improving classification accuracy as sub-dialogue 
length increases. The classifier leverages existing technologies, such 
as the BOOSTEXTER classifier and IBM’s WATSON ASR system. The 
proposed two-phase training (verbatim + noisy ASR transcripts) with 
a single classifier is tuned for variable dialogue lengths. It achieves a 
limited classification accuracy of 45% on increasing the subdialogue 
length to ‘‘FULL’’, which significantly outperforms the majority-class 
baseline accuracy of 13%. Grubb et al. [25] devised the SpeedBoost, 
which is an extension of functional gradient descent to learn multiple 
anytime predictors, which are hypotheses that can automatically trade 
computation time for predicting accuracy with additional predictors. 
It essentially selects a set of weak predictors from simpler candidate 
models in an anytime fashion, efficiently allocating computational re-
sources to more challenging examples by targeting specific data subsets. 
However, performance heavily depends on the quality/diversity of 
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candidate predictors because it uses extra resources at the time of 
prediction to generate a fast approximate result that can be improved 
by including a larger number of candidate predictors. 

Building on this, SpeedMachines is another anytime technique pro-
posed by Grubb et al. [48] for learning structured prediction. It ac-
counts for both structural elements and feature computation during 
training, which influence the test-time inference. This approach au-
tomatically integrates new learners into predictors that enhance per-
formance while optimizing efficiency in both feature and inference 
computation times. It refines predictions by incrementally updating 
only uncertain regions in structured outputs.  The goal is to minimize 
a risk function by predicting portions of the output locally, which 
requires careful cost model tuning. Hierarchical Inference Machines 
(HIM) approach achieves 80% pixel classification accuracy with an 
increase in inference time from 10−1 to 100 over Speedy Inference 
Machines (SIM). Wang et al. [26] introduced two novel anytime online 
boosting algorithms: OTB (Online Transfer Boosting) and OMB (Online 
Multitask Boosting). These algorithms are designed to handle data 
samples that arrive sequentially from different domains in batches, 
leveraging the knowledge of instances from other domains to enhance 
learning performance. They are implemented in an online fashion, 
which makes them anytime by approximating the normalization factor 
to provide intermediate models at any stage. The framework sup-
ports flexible base learners, allowing any online learner to be adapted 
for transfer or multitask learning, unlike existing non-anytime meth-
ods that are limited to specific learners.  However, it is sensitive to 
domain/task similarity, and complexity increases with many tasks.

2.5. Neural networks-based anytime algorithms

Deep Neural Networks (DNNs) have emerged as one of the most ver-
satile machine learning techniques, achieving state-of-the-art accuracy 
across a wide range of applications. However, this high level of accu-
racy comes with a significant computational cost, particularly when 
applying DNNs to new examples. For many tasks, the computational 
demands of DNNs have increased rapidly. Moreover, high test-time cost 
prevents DNNs from deploying on resource-constrained platforms. To 
mitigate this issue, anytime neural networks have been introduced, 
offering a solution that significantly reduces the computation time 
required for processing test data.

Bolukbasi et al. [49] presented an anytime deep neural network 
approach which adaptively reduces evaluation time on new examples 
without loss of accuracy. Instead of redesigning or approximating 
existing networks, two novel schemes were introduced: (1) adaptive 
network evaluation and (2) adaptive network selection. These schemes 
allow many examples to be correctly classified using fewer layers or 
lighter networks, thereby reducing the computational time.  It achieves 
accuracy by adaptively selecting the number of layers or the network 
to evaluate per example, enabling partial inference when interrupted. 
However, performance depends on the reliability of early-exit decisions 
and misclassification in early layers cannot be recovered without full 
network evaluation.  Lee et al. [28] introduced an approach for anytime 
neural prediction via slicing, where multiple thin sub-networks of the 
same depth are trained for the anytime prediction of test data. It lever-
ages multi-branch residual DNNs by progressively removing branches 
while keeping the original depth. Then, each sub-network is trained 
with an independent batch normalization layer to ensure stability and 
accuracy across different capacities. The approach starts by evaluating 
the smallest sub-networks to make quick predictions and progressively 
moves to larger sub-networks as more resources become available, 
enabling progressive refinement in accuracy. It is observed that the 
difference between errors of shallow and thin networks increases as the 
required FLOPs decrease.  However, smaller sub-networks suffer from 
higher error rates, especially under extreme FLOP reduction.

Huang et al. [29] presented a Multi-scale dense convolutional 
network (MSDNet), which is a resource-efficient image classification 
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method that optimizes CPU usage at test time through multi-branch 
network parameters.  However, dense multi-branch structure increases 
training complexity and memory. It is based on two design principles: 
(1) generating and maintaining coarse-level features throughout the 
network and (2) interconnecting the layers with dense connectivity. 
These design principles allow the intermediate classifiers at a few layers 
to make early predictions at multiple depths without interference, 
improving accuracy incrementally as more FLOPs are spent.

Hu et al. [27] presented another approach, discussing the anytime 
predictions in DNNs, where an anytime predictor produces a sequence 
of more expensive and accurate predictions. In this approach, fea-
ture transformations are used to generate a sequence of intermediate 
features, which are then used for auxiliary predictions by using a 
prediction layer with parameters. Furthermore, it generates accurate 
anytime predictions increasingly with a loss weighting scheme to inter-
mediate layers of the existing feed-forward networks without degrading 
the final performance.  However, it requires a careful loss weighting 
scheme for intermediate predictions to avoid degrading final accuracy.

2.6. Probability estimation-based anytime algorithms

Naive Bayes classifiers are a group of classification algorithms based 
on Bayes’ Theorem. Rather than being a single algorithm, it represents a 
family of algorithms that all share a common principle: the assumption 
that each pair of features is independent of the other.

Liu et al. [50] introduced an anytime algorithm for Bayesian net-
work evaluation that modulates the granularity of state-space represen-
tations to balance accuracy and computational efficiency. It progres-
sively refines the state space of variables and produces increasingly 
accurate approximations over time. The approach leverages the rela-
tionship between state-space granularity and computational demands, 
allowing for adaptive precision adjustments based on the needs of 
each problem instance.  However, the REMB scoring function used 
to assess the quality of abstractions is computationally expensive for 
highly connected networks. Jitnah et al. [51] developed treeNet, which 
evaluates belief networks (BNs) using a two-step process: first, trans-
forming the BN into a tree structure, with the query node at the root; 
second, performing anytime inference through treeNet search. Upon 
incorporating new evidence, the posterior probability of the query node 
is recalculated using a modified polytree message-passing algorithm 
through best-first search as more steps are processed, enabling real-
time, incremental updates.  However, initially designed for polytrees, 
requiring adaptation for general Bayesian networks. 

Hulten et al. [52] proposed a scaling-up method for any induction 
algorithm based on discrete search, allowing the running time to be-
come independent of database size while maintaining decision quality 
similar to that achieved with infinite data. The method works within 
predefined memory limits and requires only sequential data access, 
producing anytime results suitable for batch processing, streaming, 
time-changing, and active-learning applications. In the context of learn-
ing Bayesian networks, it significantly accelerates the learning process, 
achieving mining speeds of millions of examples per minute with-
out compromising predictive performance. The framework is versatile, 
supporting various search types – including greedy, hill-climbing, and 
genetic algorithms – and enabling algorithms to function incrementally, 
within memory constraints, and adapt to changing data.  However, 
performance depends on model complexity, and it is not inherently 
optimized for highly dynamic network structures. 

Webb et al. [31] introduced the Anytime AODE algorithm, which 
is an extension of the AODE (Average of One-Dependence Estimators) 
algorithm, designed to provide conditional probability estimates for 
each class, rather than simply selecting a single class label. The goal 
of AAODE is to develop an algorithm similar to Naive Bayes (NB). 
This approach enables the algorithm to refine its initial class prob-
ability estimates incrementally through additional computation (by 
adding more SPODEs), up to a specified computational budget for 
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improved classification. The algorithm is inspired by the notion of n-
dependence estimators and utilizes the Super-Parent One-Dependence 
Estimator(SPODE) to compute probability estimates.  However, the 
performance gain diminishes with very large numbers of sub-models.

Yang et al. [53] devised AAPE (Anytime Averaged Probabilistic 
Estimators), which is an anytime classification algorithm, designed to 
adapt to varying computational resources in online applications. It 
incrementally improves classification accuracy by ensembling Bayesian 
probabilistic estimators, beginning with Naive Bayes (0-dependence) 
and adding Superparent-One-Dependence Estimators (SPODEs) as time 
allows. At each interruption point, AAPE provides averaged probabil-
ity estimates, supporting robust classifications and incremental learn-
ing.  However, it may require many SPODEs to match state-of-the-art 
accuracy.

Hui et al. [54] developed Anytime Averaged Probabilistic with 
Weight Estimator (AAPWE), which is an enhancement of the AAPE al-
gorithm designed for online classification. Unlike traditional algorithms 
that require significant computational resources and time, AAPWE 
allows for immediate classifications by providing the best predicted 
class label based on averaged probabilities estimates. It incorporates 
weights for superparent attributes to improve classification effective-
ness.  However, effectiveness totally depends on the accurate weighting 
of superparent attributes. 

Hui et al. [32] introduced Scheduling Anytime Average aged Prob-
abilistic Estimators (SAAPE), a novel anytime classification framework 
that extends the AAPE algorithm. It is designed to classify a pool of in-
stances, delivering accurate results even when interrupted, while opti-
mizing collective classification performance. The framework uses seven 
scheduling schemes, such as First-Come-First-Served (FCFS), Round 
Robin, Minimum-margin instance first (MMIF), Controversial instance 
first, and Hybrid, to allocate computational resources efficiently to 
multiple instances, allowing for efficient and effective anytime classifi-
cation. It handles multiple instances simultaneously, assigning priority 
values to each instance and allocating resources to the highest-priority 
instance.  However, scheduling overhead may offset gains in small 
datasets.

2.7. Nearest neighbors-based anytime algorithms

𝑘-Nearest Neighbors (𝑘-NN) is a supervised classification algorithm 
that assigns a class label to test data objects based on their feature 
similarity with 𝑘 objects that are closest to the test object. When applied 
to data stored on hierarchical data structures like R-trees, 𝑘-NN works 
as an efficient branch-and-bound traversal algorithm, optimizing the 
search process by systematically pruning irrelevant branches, thereby 
reducing the computational overhead while identifying the nearest 
neighbors [71].

Ueno et al. [16] designed a SimpleRank method to produce an 
instant classification result whose accuracy progressively improves 
with an increase in time allowance. This anytime classifier utilizes a 
heuristic-based method to sort the index of training data based on its 
contribution to classification and scans them sequentially until time 
runs out. This sorted index is then used to classify test data objects in 
an anytime manner. This approach is designed for streams; however, it 
can be applied to static datasets as well.  However, performance may 
degrade if ranking does not align well with true relevance.

Xu et al. [30] introduced an Anytime 𝑘-Nearest Neighbor (𝑘-NN) 
search algorithm utilizing MVP-trees. MVP-tree is a variant of R-trees, 
where the metric distance function determines domain-specific knowl-
edge. In an MVP tree, median values are leveraged to create partitions, 
and the pivots of these partitions are stored as entries in the internal 
nodes, enhancing the efficiency of the search process. This method 
identifies 𝑘 answers and improves the answer set monotonically to 
return an approximate solution on early termination.  However, perfor-
mance depends on the effectiveness of pivot selection and partitioning. 
The relative error of 𝑘-NN monotonically decreases from 0.25 and 
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converges to 0 with an increase in cost, i.e. average number of distance 
calculations from 500 to 2500.

Aarti et al. developed Any-𝑘-NN [38], which is an anytime hier-
archical method for 𝑘-NN classification on data streams. This method 
uses a classification model Any-NN-forest, which is a collection of 𝑐
Any-NN-trees, one tree for each of the 𝑐 classes. Any-NN-tree stores 
a hierarchy of micro-clusters to summarize the training data objects, 
along with their class labels. This enables the algorithm to utilize micro-
clusters at the lower levels of the tree to make decisions when the time 
allowance for inference is less. And, as the time allowance increases, the 
algorithm can traverse to the micro-clusters at the deeper levels of the 
tree to produce more accurate results. This enables Any-𝑘-NN to handle 
very large data streams, incrementally updating its classification model, 
and effectively handle concept drift and class evolution. This method 
was originally proposed for handling data streams. However, it can 
be easily adapted to static datasets by disabling incremental updates. 
Any-MP-𝑘-NN is the parallel variant for anytime 𝑘-NN classification 
of multi-port data streams over distributed memory architectures. It 
improves classification accuracy with an increase in the number of par-
allel streams (handled by separate computing nodes), achieves memory 
efficiency and handles very large, high-speed data streams effectively. 
The syncing process of Any-NN-forests across computing nodes in-
volves encoding, communication, and aggregation steps, which could 
introduce dependencies. 

Xi et al. [55] proposed another anytime algorithm that transforms 
the nearest neighbor classifier to provide immediate class predic-
tions while allowing for increased accuracy with additional computa-
tional time. The framework prioritizes the examination of important 
exemplars—instances that are highly representative of a class – thereby 
optimizing resource allocation during classification. By employing a 
simple algorithm to establish a high-quality ordering of exemplars, the 
method can achieve substantial accuracy even when processing only a 
small fraction of the dataset.  It achieves 90% accuracy on increasing 
the number of instances from 500 to 1500.

2.8. Active learning-based anytime algorithms

Donmez et al. [56] developed IEThresh (Interval Estimate Thresh-
old), an anytime active learning framework for scenarios involving 
multiple noisy labelers of unknown accuracy. IEThresh uses interval 
estimation to dynamically assess each labeler’s reliability by calculat-
ing a confidence interval around their estimated accuracy and then 
selecting the labeler(s) with the highest upper-bound confidence, and 
filters unreliable ones early. This approach balances exploration and 
exploitation by initially exploring multiple labelers to gauge accuracy, 
then increasingly relying on those identified as most reliable. IEThresh 
requires fewer queries to achieve a given level of accuracy with sig-
nificantly reduced labeling effort.  However, performance depends on 
having enough early queries to reliably estimate labeler quality. 

Tomanek et al. [57] introduced cost-sensitive approaches to Ac-
tive Learning (AL) to optimize annotation time and proposing three 
methods to incorporate annotation time into AL selection: a fixed cost 
budget, a linear benefit-cost rank, and a benefit-cost ratio to prioritize 
instances for annotation. The cost-sensitive methods proved especially 
advantageous in early rounds, suggesting the potential for even greater 
effectiveness in large annotation pools.  However, it requires an accu-
rate estimation of annotation times for each instance to perform well. 
It achieves an F-score of more than 85% on increasing the annotation 
time from 1000 to 6000 s over the FuSAL method.

Ramirez et al. [58] presented an Anytime Active Learning (AAL) 
approach that optimizes both annotation time and response rate by 
potentially interrupting annotators before they complete labeling in-
stances. AAL aims to balance two competing objectives: minimizing 
annotation cost and maximizing the likelihood of receiving a label 
within a budget.  The Static AAL strategy disregards the impact of 
sub-instance size k on label acquisition probability, while the Dynamic 
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AAL strategy models this probability to guide sub-instance selection. 
It is observed that Dynamic AAL adjusts sub-instance sizes based on 
utility and uncertainty, while Static AAL uses fixed sizes. However, it 
requires careful modeling of sub-instance size effects, and the static 
variant ignores these effects and may be suboptimal.

Ramirez et al. [59] introduced another approach which improves 
annotation efficiency by allowing annotators to label examples based 
on partial inspection, for instance, reading the first 25 words of a 
document instead of the entire text. By optimizing the balance be-
tween annotation time and label accuracy through dynamic interrup-
tion policies, the approach reduces annotation costs without sacrificing 
classifier performance.  However, overly interrupting may reduce label 
accuracy. On annotating the first 25 words, it achieves AUC 0.792 
(17% error reduction) within 3600s vs. AUC 0.752 when annotating 
100 words. 

2.9. Anytime algorithms for vision applications

Karayev et al. [19] devised a method for timely multi-class ob-
ject detection in images to achieve optimal performance at any point 
between a specified start time and deadline. The approach uses a 
dynamic, closed-loop policy to infer image contents and decide which 
detector or classifier to deploy next. The system treats detectors and 
classifiers as black boxes, learning from execution traces through re-
inforcement learning. A new timeliness performance measure is intro-
duced, enabling the policy to dynamically select actions that maximize 
recognition performance under time constraints. The system continu-
ously updates its belief model based on observations, influencing the 
selection of subsequent actions, and aims to deliver the best possible 
recognition result if interrupted at any point between the setup time 
and the deadline.  However, the approach depends on high-quality 
execution traces for effective policy learning. 

Karayev et al. [60] developed another approach to optimize any-
time performance in visual architectures by learning dynamic feature 
selection policies. It sequentially computes features and classifies at 
any stage, improving prediction quality with a budget. Decisions are 
made during test time based on observed data and intermediate results, 
with the approach leveraging a Markov Decision Process (MDP) and 
reinforcement learning.  It aims to learn multiple classifiers for dif-
ferent clusters of feature sets, ensuring robustness to varying subsets; 
however, this increases the training complexity. Dynamic policy outper-
forms static baselines across budgets up to 60, improving the specificity 
of predictions at leaf nodes.

Liu et al. [61] presented a dynamic hierarchical model for anytime 
scene labeling. It allows for flexible trade-offs between efficiency and 
accuracy in pixel-level prediction, improving accuracy with increased 
budget. The approach incorporates feature computation and model 
inference costs, optimizing performance for any given test-time budget 
by learning a sequence of image-adaptive hierarchical models. The goal 
is to find an optimal selection policy that generates a sequence of 
hierarchical models with good performance at all possible test-time cost 
budgets.  However, policy learning via MDP may be computationally 
expensive for very large datasets. It achieves 90% accuracy improve-
ment over state-of-the-art scene parsing baselines on three semantic 
segmentation datasets with increasing test-time budgets. 

Frohlich et al. [62] presented Iterative Context Forests (ICF), a 
novel approach for contextual semantic segmentation using a tree-
based framework that integrates local information with contextual 
knowledge. Designed for anytime scenarios, ICF allows for an inter-
ruption during the labeling process, enabling the immediate use of 
contextual cues after the first iteration. The method utilizes Random 
Decision Forests (RDF) to incorporate context directly during training 
without relying on Conditional Random Fields (CRF).  However, it 
may require many iterations for maximum accuracy in highly complex 
scenes. It achieves 89.55% accuracy over the CRF baseline with an 
additional 1.74s computation per image. 
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2.10. Application-based other anytime algorithms for classification

Mark et al. [63] introduced an anytime, information-theoretic con-
nectionist network which represents interactions between the predict-
ing attributes and the classification attributes for feature selection, 
which incrementally improves feature subset quality over time. It is 
interruptible, providing a partial set of relevant features at any stage, 
with result quality measured by fuzzy information gain—a metric that 
aligns with user-perceived model quality.  However, the approach is 
dependent on the effectiveness of fuzzy information gain as a quality 
metric, which may not capture all domain-specific relevance aspects. It 
reduces the tree size from 9 to 5 with minimal error increase (0.0% →
2.0%) using the C4.5 classifier.

Schlobach et al. [64] introduced an anytime classification algorithm 
based on approximate subsumption, a concept derived from ontology, 
and its performance is compared with classical subsumption using 
realistic benchmarks. This approach addresses the need for rapid query 
answers, with the quality of results improving as more time is allocated. 
The algorithm approximates the ontology O to answer the query rather 
than approximating the query Q itself, involving an approximation 
of terminological subsumption. This is achieved by interpreting the 
ontology in a non-standard way, using lower and upper approximations 
of an interpretation.  The MORE strategy achieves the highest gains of 
more than 20% as iterations increased from 60 to 85; however, approx-
imation accuracy depends heavily on ontology structure and concept 
frequency, potentially limiting applicability to sparse ontologies. 

Bartok et al. [65] developed a novel anytime algorithm designed to 
achieve near-optimal regret in finite stochastic partial monitoring prob-
lems. The algorithm adapts dynamically to different difficulty levels 
within the opponent’s strategy space, achieving minimax regret within 
logarithmic factors for both easy and hard instances while ensuring 
logarithmic individual regret in easy cases. By tailoring to stochastic 
game settings, where opponent outcomes are generated independently 
and identically distributed, the approach minimizes cumulative loss 
relative to the optimal action’s expected loss.  It achieves a minimax 
regret of 0; however, it requires stochastic opponent strategies and may 
degrade in adversarial settings. 

Viet et al. [66] introduced an efficient method for speeding up the 
anytime time series classification by using motifs. Motifs, being much 
shorter subsequences of the time series, allow faster ordering. This 
reduces the computational cost of ordering instances for classification, 
which is typically high when using distance measures like Dynamic 
Time Warping (DTW). The process involves extracting motifs, ordering 
them using the SimpleRank method [16], and rearranging the training 
set accordingly.  However, Motif-based ordering may reduce accuracy 
slightly compared to full DTW ordering. 

3. Anytime clustering

Clustering is the task of assigning unlabeled objects into groups 
called clusters such that the similarity of objects within a group is 
maximized and the similarity of objects between different groups is 
minimized. Many clustering methods suffer from scalability issues on 
large datasets and do not support user involvement during run time. 
They include algorithms such as DBSCAN [72], 𝑆-means [73], etc. 
To address these issues, anytime clustering algorithms are proposed. 
An anytime clustering algorithm works by balancing execution time 
with the quality of the clustering results [34]. Fig.  8 summarizes the 
anytime algorithms proposed for clustering of large datasets. Ta-
ble  3 highlights the anytime clustering algorithms along with their 
corresponding dataset characteristics and evaluation outcomes. These 
evaluations highlight the versatility of anytime algorithms across vari-
ous data analytics tasks and demonstrate their ability to produce useful 
intermediate results with constrained resources. Our survey primarily 
focuses on identifying the presence or absence of parallel implementa-
tions across different tasks. Also, the discussion of parallel algorithms 
is qualitative and based on reported capabilities in the original papers, 
not on independently verified benchmarks. 
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Table 3
Datasets used for evaluation of anytime clustering, FI mining and recommendation systems that achieve the 
highest performance.
 Algorithm Dataset characteristics Results  
 AnyDBC [35] Name: Mallat, Size: 10000 NMI Score : 0.824  
 AnyDBC-MC [74] Name: PAMAP2, Size: 974479 NMI Score : 1  
 A-DBSCAN [33] Name: COIL20, Size: 10000 NMI Score : 0.908  
 A-DBSCAN-XS [34] Name: DS1 (fiber), Size: 1500 NMI Score : 0.988  
 AnyOPTICS [36] Name: Lankersim, Size: 20k–99k NMI Score : 1  
 SPARROW-SNN [75] Name: Sequoia, Size: 62556 Accuracy: 93%  
 Sakai et al. [76] Name: PAMAP2, Size: 974479 NMI Score : 1  
 COBRAS [77] Name: Iris, Size: 150 Adjusted Rand Index : 1.0 
 Multi-User Static FI [14] Name: Synthetic, Size : 20000 Accuracy: >95%  
 FPOF [20] Name: Chess, Size : 3196 Accuracy: 100%  
 ALPINE [78] Name: Mushroom, Size : 8124 Time: <50 s  
 Arai et al. [67] Name : IMDB, Size :26 784 Confidence: up to 95%  
 Ben-Shimon [68] Name: MovieLens, Size: 1M AUC : 80.34  
 Ben-Shimon et al. [69] Name: MovieLens, Size: 1M Precision: 0.5  
 KARPET [70] Name: DBLP, Size:5M Runtime : 2–5 ms  
Fig. 8. Categorization of anytime clustering algorithms for large data.

3.1. Density-based anytime algorithms

Mai et al. [33] introduced A-DBSCAN, an anytime approach to 
the density-based clustering algorithm DBSCAN [72]. It leverages a 
sequence of lower-bounding functions (LBs) as a distance measure to 
generate multiple approximations of the final clustering result and 
significantly accelerate the computation of true density-based clusters. 
However, performance gains depend on the choice of lower-bounding 
functions and suboptimal LB sequences can slow convergence or reduce 
early-stage accuracy. 

Mai et al. [34] developed A-DBSCAN-XS, an extended version of A-
DBSCAN, designed to improve its performance by reducing distance 
calculations required at each level, making A-DBSCAN-XS more ef-
ficient and faster than A-DBSCAN.  A-DBSCAN-XS builds upon the 
anytime scheme of A-DBSCAN and incorporates the 𝜇-range query 
scheme of the extended Xseedlist data structure and updates only a 
subset of edges related to core objects at each level instead of all 
edges, reducing computational overhead. However, improvement in 
11 
performance relies on the efficiency of the 𝜇-range query scheme and 
subset edge updates; it may yield slightly slower refinement if the 
subset selection misses important edges early on. A-DBSCAN-XS is a 
single-threaded method which achieves a significant speedup compared 
to traditional DBSCAN and its variants. For example, on the dataset 
DS1, A-DBSCAN-XS achieves an NMI score of 0.842 at level 3 with 
a runtime of only 2.62 s, which is 112 times faster than DBSCAN 
(293.6 s). When it comes to the end, A-DBSCAN-XS requires only 5.3 s 
for DS1, which is 55 times faster than DBSCAN. For very large datasets, 
A-DBSCAN-XS demonstrates remarkable scalability. On a dataset with 
20,000 fibers, A-DBSCAN-XS requires 1,284 s, which is 17 times faster 
than DBSCAN (21,292.4 s). 

Mai et al. [35] presented AnyDBC, an anytime approach to the 
DBSCAN clustering algorithm which actively learns from data by iter-
atively analyzing the current cluster structure formation through some 
range queries. Unlike traditional methods that perform range queries on 
all objects, it refines the clusters at each iteration by selecting the most 
promising objects, thereby reducing both the number of range queries 
and label propagation time.  However, it requires effective selection of 
promising objects, and performance can drop if the selection heuristic 
is poor.

Mai et al. [74] developed AnyDBC-MC, a parallel extension of Any-
DBC, designed for shared memory architectures and enabling scalable 
parallel processing. It also improves the performance of AnyDBC by 
parallelizing the processing of queries in blocks and efficiently merging 
the results into the current cluster structure, allowing for more rapid 
clustering operations.  As a result, AnyDBC-MC achieves orders of 
magnitude speedup even on a single thread compared to its sequential 
AnyDBC and demonstrates excellent scalability across multiple threads, 
maintaining high performance in multi-core environments. For the 
PAMAP2 dataset, AnyDBC take 346.9 s, while AnyDBC-MC (t = 1) 
takes 363.3 s. AnyDBC-MC is also orders of magnitude faster than other 
parallel algorithms like PDSDBSCAN and HPDBSCAN. For instance, 
AnyDBC-MC is up to 335.9 times faster than PDSDBSCAN on the 
Gas Sensor dataset with 16 threads. AnyDBC-MC exhibits near-linear 
scalability, achieving a 14.5× speedup on the Corpus dataset with 16 
threads, with scalability further enhanced by larger block sizes (𝛼, 𝛽) 
that increase per-thread workload and reduce synchronization over-
head. In AnyDBC-MC, steps like merging (Step 4) and graph updates 
(Step 8) may suffer from load imbalance when the number of merge 
pairs is fewer than the number of threads, and scalability can be slightly 
reduced by NUMA effects. 

Mai et al. [36] proposed Any-OPTICS for anytime OPTICS cluster-
ing, designed to improve performance in large-scale applications by 
reducing expensive distance computations. This is achieved by gener-
ating intermediate results and refining them continuously. Any-OPTICS 
works on multiple levels and uses the distance function to generate the 
reachability plot, which represents the ordering of objects. It essen-
tially produces multiple reachability plots of various approximations 
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by employing a sequence of lower-bounding (LB) distances of the true 
distance function.  However, performance depends on the choice of 
lower-bounding distances. Any-OPTICS-XS [36] is an extended version 
of Any-OPTICS, offering greater efficiency when handling highly ex-
pensive distance calculations. It relies on the monotonicity property of 
the reachability plots and a sequence of LBs, which helps to reduce the 
total number of distance calculations and enhance performance.

Sakai et al. [76] introduced Anytime Cell-Based DBSCAN, which is 
another anytime DBSCAN approach that enhances DBSCAN by dividing 
the dataset into smaller cells, which are then randomly selected and 
connected to compute clustering results rapidly. The algorithm itera-
tively refines these connections as more cells are processed to improve 
clustering accuracy and deliver precise results.  However, clustering 
quality in early stages may depend heavily on the random selection 
of cells, potentially leading to less representative clusters until more 
iterations refine the connections. 

Folino et al. [75] introduced the SPARROW-SNN approach, which 
is a distributed, biologically inspired clustering algorithm designed 
for peer-to-peer networks with a small-world topology. It combines 
an adaptive, flocking-based approach with a shared nearest-neighbor 
(SNN) clustering method to discover clusters independently across 
peers. By identifying dense regions in data and forming clusters around 
core points where local neighborhood density exceeds a specified 
threshold, it can detect clusters of varying shapes and sizes. Addition-
ally, this decentralized, asynchronous approach supports incremental 
clustering and adapts well to large, distributed datasets. Essentially, 
this algorithm presents a trade-off between the number of peers used 
for the clustering and the accuracy of the clustering results.  SPARROW-
SNN achieves a significant reduction in execution time by processing 
a fraction of the dataset while scaling efficiently with more peers. By 
visiting only 5% of the data, accuracy drops only from 88% to 81%; for 
10% of the visits, from 99% to 94%. This shows near-linear scalability 
in distributed settings since increasing peers reduces per-peer work-
load with minimal loss in clustering quality. The algorithm’s design 
minimizes global dependencies by using local, asynchronous com-
munication between peers and decentralized clustering, where peers 
work independently and they only merge via neighbor updates. These 
are the characteristics that generally enhance parallelism. However, 
communication costs may increase with peers. 

3.2. Constraint-based anytime algorithm

Van et al. [77] presented the COBRAS(Constraint-Based Repeated 
Aggregation and Splitting) algorithm, an interactive constraint-based 
clustering approach. Being query-efficient and time-efficient, it com-
bines user feedback with pairwise queries to create effective clusters. 
COBRAS works by grouping data into super-instances (small, locally 
coherent groups) that are assumed to belong to the same cluster. It 
iteratively refines the super-instances based on user feedback, enabling 
it to produce more granular clustering that improves over time, which 
makes it particularly suited for interactive and semi-supervised cluster-
ing tasks.  However, effectiveness depends on the quality and represen-
tativeness of user-provided pairwise constraints, and performance can 
degrade if user feedback is noisy or biased.

4. Anytime frequent itemset mining

Anytime frequent itemset (FI) mining algorithms produce an ap-
proximate set of FIs whose approximation can be progressively im-
proved as more processing time is available. There are three anytime 
FI mining algorithms for static data, as summarized in Fig.  9.  The 
existing anytime methods have already exploited the use of statistical 
bounds and a sampling-based approach for quick and approximate 
results that improve over time. So, there is no future scope to im-
prove, and thus leading to scarcity in FI mining. This scarcity can be 
primarily attributed to several factors, such as the computational cost, 
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Fig. 9. Anytime frequent itemset mining algorithms.

combinatorial complexity and the difficulty of generating meaningful, 
valid intermediate results without exhaustive computation. FI mining 
is inherently expensive and complex (exponential in worst-case) due 
to the combinatorial explosion of itemsets. The search space for item-
sets is exponential in the number of items in candidate generation 
algorithms, due to which the number of FIs can grow combinatorially, 
especially when the minimum support threshold is low. Unlike classi-
fication (where early patterns support meaningful end results), partial 
FIs cannot reduce the complexity of space exploration. 

Zhang et al. [14] developed an anytime static approach for mining 
large databases shared by multiple users. This technique identifies 
frequent itemsets (FI) in the database, gradually enhancing the quality 
of results as computation time increases. It provides progressively 
refined FIs, where early approximate mining outcomes can be accessed 
in an anytime manner. To support multiple-user inquiries, the approach 
leverages sampling and incremental mining, ensuring that intermediate 
results can be utilized effectively across users. This approach has been 
successfully applied to stock market data, utilizing the intermediate 
results generated by the anytime mining process. The method outper-
forms Apriori, with a consistent running time below 1500 s, even as 
incremental steps increase to 4. However, the accuracy of intermediate 
results depends on the sampling quality, and incremental updates may 
not capture sudden or highly dynamic changes in data distribution.

Giacometti et al. [20] introduced FPOF, an anytime approach for 
calculating the Frequent Pattern Outlier Factor, which is a metric used 
to detect anomalies in datasets. The method utilizes pattern sampling 
rather than exhaustive pattern mining, allowing the algorithm to pro-
duce approximations of FPOF with a guaranteed maximum error, based 
on statistical bounds like Bennett’s inequality. This makes it suitable 
for large datasets, where exhaustive mining would be impractical.  On 
a 500 K-transactional dataset, it achieved 90% accuracy within 10 s. 
FPOF is interruptible and resource-adaptive but sensitive to sampling 
bias, which can affect outlier detection accuracy. 

Hu et al. [78] proposed ALPINE, a progressive anytime frequent 
itemset (FI) mining algorithm that provides definite guarantees during 
mining. Unlike traditional algorithms that only return complete results 
at the end, ALPINE incrementally enumerates FIs in a progressive order, 
ensuring that each discovered itemset is correct and final, with no need 
for retraction or reordering later. This is achieved by partitioning the 
search space into itemset intervals indexed by support and systemati-
cally exploring them in increasing frequency order, making the mining 
process both monotonic and complete over time. The algorithm ensures 
that at any interruption point, the set of itemsets discovered so far 
is definitive and requires no revision, ensuring reliable intermediate 
outputs and guaranteeing that they will be part of the final result. 
Although ALPINE guarantees correctness at all times, the overhead 
of maintaining support-indexed itemset intervals can reduce efficiency 
when handling extremely large, dense, or highly frequent datasets. This 
may lead to higher memory usage and slower performance compared 
to specialized non-anytime algorithms like FP-growth. 
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5. Anytime algorithms for recommendation systems

Platforms like Amazon, Netflix, and Spotify use recommender sys-
tems (RS) to personalize content or product suggestions for users. 
Anytime Algorithms can quickly provide recommendations based on a 
limited user profile or session data. It refines recommendations as more 
interaction data (clicks, views, ratings) is gathered in real-time.

Arai et al. [67] introduced an anytime framework for top-𝑘 queries 
on multi-attribute exact and fuzzy datasets, enhancing algorithms like 
TA (Threshold Algorithm) and TA-Sorted. The framework provides 
probabilistic quality measures (confidence that the current top-𝑘 is 
correct, precision as a lower bound on overlap with the true top-𝑘, and 
score distance as an upper bound on score difference) at any execu-
tion point, allowing early termination with quantified guarantees. The 
approach uses data distribution models (e.g., histograms or probability 
density functions) to estimate unseen tuple scores probabilistically, en-
suring monotonic improvement for TA (and expected monotonicity for 
TA-Sorted). The framework reduces runtime by allowing early termina-
tion with guarantees, with extensions for multidimensional histograms 
to handle attribute correlations. It ensures flexibility in trading off 
computation time for result quality, making these algorithms suitable 
for resource-constrained environments where early, usable results are 
preferred over waiting for full convergence. However, the method is 
limited by its reliance on accurate pre-computed or on-demand data 
distribution models, which may be unavailable or inaccurate for hidden 
or dynamic data sources, leading to unreliable guarantees.

Ben-Shimon [68] introduces anytime algorithms for top-𝑁 item–
item collaborative filtering recommenders, addressing the needs of RS 
providers who must balance computational costs with model quality 
for outsourced services. The neighborhood-based CF is integrated into 
an anytime framework, where models can be interrupted at any time, 
yielding valid (suboptimal) results that improve monotonically and 
converge to optimality. Two ordering methods for item-pair similarity 
computations are proposed: (1) LSH Tree, which uses locality-sensitive 
hashing to build a balanced binary tree of item signatures, prioritizing 
likely similar pairs via bottom-up traversal and (2) Most Popular First, 
which sorts items by decreasing popularity (consumption set size) and 
computes similarities sequentially. These outperform a baseline (Ama-
zon’s arbitrary-order approach) in time-quality trade-offs. However, 
the approach focuses only on item–item similarity with the Jaccard 
coefficient, limiting generality to other similarity measures or model-
based recommenders and is also limited by their reliance on implicit 
feedback datasets.

Ben-Shimon et al. [69] proposed another anytime algorithm for 
balancing computational costs and recommendation quality in RS, 
particularly for recommendation service providers. The algorithm gen-
erates recommendations of increasing quality as more time becomes 
available. The popular item–item top-N collaborative filtering approach 
is integrated into an anytime framework by prioritizing the order of 
item-pair similarity computations, ensuring valid suboptimal models at 
any interruption point while converging to optimality with sufficient 
time. This can be achieved by including two size-based heuristics for 
ordering pairs: an upper bound estimate (favoring pairs with similar 
and larger consumption set sizes) and an expected Jaccard estimate 
(assuming uniform user consumption distributions for precomputation) 
to prioritize item-pair computations, with efficient implementations 
via grouping or precalculation. However, the approach is sensitive to 
highly skewed consumption distributions, though the methods scale 
well to large catalogs.

Yang et al. [70] proposed KARPET (Kernelization1 And Rapid 
Pruning-based Exploration for Tree patterns), an any-𝑘 algorithm for 
retrieving top-𝑘 tree pattern matches in labeled graphs (heterogeneous 
information networks, HINs). Unlike traditional top-𝑘 algorithms re-
quiring a fixed 𝑘, KARPET is an anytime algorithm that quickly returns 
the highest-ranked tree pattern matches (based on edge/node weights) 
and progressively delivers subsequent lower-ranked matches, allowing 
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termination at any point with valid results. It tackles the NP-complete 
subgraph isomorphism problem for acyclic query patterns by leverag-
ing: (1) aggressive pruning of the search space using the Yannakakis 
algorithm for homomorphic patterns, (2) a dynamic programming-
based bottom-up cost calculation followed by top-down guided search, 
and (3) filtering to ensure isomorphism (no node repetition). KARPET 
exploits label constraints to reduce the gap between homomorphism 
and isomorphism, achieving millisecond-level response times for top 
results on graphs with millions of nodes/edges. However, KARPET is 
designed for tree (acyclic) query patterns, limiting its applicability to 
cyclic patterns common in some graph applications. 

6. Anytime algorithms for streaming data

Nowadays, the volume, velocity, and variety of data being gener-
ated have grown exponentially, particularly with the advent of Internet 
of Things (IoT) devices, real-time monitoring systems, and social media 
platforms. This has led to an increasing demand for streaming data 
analytics, where streaming data is characterized by the continuous 
arrival of a sequence of data objects at a fast and variable rate. They are 
dynamic in nature, with real-time data arrival, and require processing 
of data objects on the fly as they arrive rather than being stored and 
analyzed in batches. Streaming data presents unique challenges, such 
as the need for real-time processing, limited memory resources, and the 
ability to handle evolving data distributions (concept drift). Traditional 
batch-processing algorithms are unsuitable for these scenarios, as they 
require the entire dataset to be available upfront and are not designed 
to provide intermediate results or adapt to evolving data distributions.

Anytime streaming algorithms have emerged as a solution to these 
challenges. They are designed to handle varying inter-arrival rates of 
data in the streams. Essentially, they produce approximate but valid 
results when the stream speed is high and produce more accurate 
results when the stream speed is low. Most of them take advantage 
of hierarchical indexing structures in order to achieve the anytime 
features. The key characteristics of these algorithms are similar to 
anytime algorithms for large datasets; (i) Interruptibility, i.e. the abil-
ity to provide valid results at any point during execution, even if 
interrupted. In addition to interruptibility, these algorithms also have 
properties like (ii) Resource Adaptiveness, i.e., the ability to adjust 
to varying levels of computational resources (e.g., time, memory) and 
produce results that improve as more resources become available. (iii) 
Incremental Learning, i.e. the ability to update models incrementally 
as new data arrives, without requiring a complete reprocessing of the 
entire data and (iv) Scalability, i.e. the ability to handle high-speed data 
streams and large volumes of data efficiently, often through the use 
of hierarchical indexing structures or parallel processing techniques. 
They are applied across a wide range of data analytics tasks, includ-
ing classification, clustering, frequent itemset mining and anomaly 
detection. Anytime streaming algorithms include — Anytime Nearest 
Neighbors [16,17], Anytime Bayesian classifiers [39,79,80], Anytime 
Setwise Classification [40], ClusTree [12], LiarTree [81], SubClus-
tree [82], AnyFI [15,83], etc. Anytime streaming algorithms efficiently 
process high-speed data streams and can be widely used in applica-
tions that include — Financial Analytics (fraud detection and stock 
market analysis) [84], Cybersecurity (intrusion detection and malware 
classification) [40], Healthcare Monitoring (patient vital sign tracking 
and anomaly detection), IoT & Smart Cities for Traffic monitoring, Air 
Quality Assessment, Energy Consumption Optimization, Social Media 
Analytics (sentiment analysis and event detection in live streams), 
etc.  A prominent real-time application is network traffic monitoring 
for anomaly detection. In such systems, massive and unpredictable 
volumes of traffic, evolving cyber threats, and limited processing re-
sources on network edge devices (routers, firewalls) demand anytime 
streaming algorithms that can dynamically adapt to varying data rates, 
handle concept drift, and maintain real-time responsiveness without 
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compromising on detection accuracy. In such scenarios, anytime al-
gorithms have emerged as a solution. Specifically, when the system 
is under high load or working under constrained hardware (like edge 
routers), anytime algorithms quickly generate a coarse-grained analysis 
to detect anomalies without stalling. As more resources or time become 
available, either because the traffic eases or the system reprioritizes 
tasks, the algorithm incrementally refines its earlier output, enabling 
more precise anomaly detection. This progressive refinement allows the 
system to remain responsive under pressure while still improving detec-
tion quality over time. Another application is fraud detection in credit 
card transactions [20]. These systems monitor financial transactions to 
detect suspicious or anomalous behavior, where delays could lead to 
financial loss. Anytime algorithms can detect suspicious activity early 
and revise it if additional data (e.g., user behavior history) is given.

Anytime streaming algorithm, such as ClusTree [12], is an anytime 
hierarchical clustering algorithm designed for evolving data streams. 
It maintains aggregated micro-clusters in a tree that is updated incre-
mentally, allowing it to provide clustering results at anytime. Its design 
efficiently handles variable stream speeds, concept drift and limited 
memory, though it is tailored specifically for clustering In contrast, 
AnySC [85] is an anytime setwise classification algorithm that employs 
a hierarchical CProf-forest structure to classify test entities in data 
streams within any given processing time allowance. It incrementally 
refines classification results using a best-first traversal strategy and 
supports updates. AnyFI [83], on the other hand, focuses on anytime 
frequent itemset mining for transactional data streams, employing a 
Buffered Frequent Itemset Forest and tilted-time windows to produce 
intermediate results that improve with time, though with potentially 
high memory usage. 

7.  limitations of the survey

This survey presents a comprehensive review of anytime algorithms 
across various data analytics tasks, such as with a particular focus 
on classification, clustering, frequent itemset mining, etc. These tasks 
were chosen due to their prominence in anytime algorithm research, 
encompassing 56 articles published between 1996 and 2025. However, 
a few limitations remain:

• We have selected the algorithms based on Anytime properties, 
such as interruptibility, resource adaptiveness, incremental learn-
ing and scalability & focused on only core data analytics tasks.

• The literature on anytime algorithms for static data is not yet fully 
explored for all the tasks of data analytics; mainly, core tasks are 
focused on in this survey.

• The literature remains skewed towards classification tasks, while 
other domains, such as clustering, frequent itemset mining and 
especially parallel anytime algorithms, are relatively underex-
plored, mainly due to many computational challenges. This gap 
reflects both the limited existing work and the need for further 
exploration.

• The survey provides a primarily qualitative review and lacks em-
pirical benchmarks comparing accuracy, speedup, or scalability 
across anytime algorithms.

• The issues related to industrial deployment, such as integration 
with existing systems and real-time constraints, are not deeply 
explored due to limited information in the literature.

8. Open issues and research opportunities in the design of any-
time algorithms

Based on the survey conducted on anytime algorithms for data 
analytics, we have found the following aspects remain open and worth-
while to be further studied in the future.
14 
• Lack of Anytime variants for traditional algorithms: While 
numerous algorithms exist in the literature for processing the 
large datasets, many of them do not have their respective anytime 
variants. Traditional algorithms such as Denclue [86], Shared 
Nearest Neighbors [87], RECOME [88], SLINK [89], CLINK and 
AverageLINK, etc, are designed to work within limited memory 
and computational time to achieve optimal results. However, they 
are not suitable for scenarios where real-time or progressive re-
sults are needed. Developing anytime variants of these traditional 
algorithms would significantly expand the applicability of the 
anytime algorithm to a broader range of data mining tasks.

• Lack of Interruptible variants Many algorithms reported in the 
literature are contract algorithms wherein the resource alloca-
tion (e.g., time, memory) must be known in advance. Examples 
include ID3-k & LSID3 [22], Anytime Cost-sensitive induction 
trees [23], Multi-User Static FI [14], etc. Although these algo-
rithms are capable of handling interruptions and resource con-
straints within a fixed budget, they do not provide meaningful 
results at the intermediate stages. Moreover, they are computa-
tionally expensive and may require significant processing memory 
and power to generate the results. Hence, efficient interruptible 
variants of the above algorithms can be developed.

• Need for Parallel and Scalable Anytime Implementations
Most algorithms in the literature are sequential in nature, which 
poses a memory and computational resource bottleneck while 
processing large datasets. Only a few algorithms actually support 
parallelism [34,74,75]. This opens up opportunities to develop 
parallel algorithms for various parallel architectures such as 
distributed memory, shared memory, hybrid and GP-GPU ar-
chitectures. One can experiment on both data parallel and task 
parallel workflows for the designed algorithms while exploiting 
the above parallel hardware architectures. Parallelization can 
significantly benefit the anytime algorithms in terms of efficiency, 
scalability, and performance, especially while handling large 
datasets.

• Potential Applications for Anytime Algorithms There is al-
ways an open-ended opportunity to develop novel anytime algo-
rithms for many use cases that involve quick decision-making in 
time-constrained or dynamic environments. For example, mod-
ern traffic systems aim to optimize vehicle routing and flow 
in real-time using data from sensors, GPS, and traffic cameras. 
Anytime algorithms help in generating quick route suggestions 
based on current traffic data for changing conditions like ac-
cidents, road closures, or congestion. If more time or data are 
given, the algorithm can refine the route further. Similarly, in 
the domain of cloud computing, anytime algorithms can dynam-
ically allocate resources based on fluctuating/varying workloads, 
ensuring efficient performance even under varying demands of 
users. By leveraging their ability to provide immediate though 
approximate, valid solutions, anytime algorithms can enhance the 
performance or optimize the algorithm that may not be capable of 
responding swiftly to changing conditions. Another application is 
Object recognition [19], which involves identifying and classify-
ing objects within images or videos. Anytime algorithms provide 
early but approximate object detection, which helps avoid de-
lays in decision-making, especially in time-critical systems like 
self-driving cars.

9. Conclusion

This survey provides a comprehensive review of anytime algorithms 
for data analytics, emphasizing their role in addressing the demands 
of large-scale, time-sensitive, and resource-constrained environments. 
We systematically categorized and reviewed, in a detailed manner, 
a number of representative state-of-the-art anytime algorithms across 
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Table 4
Summary of anytime classification algorithms for large datasets. Acronyms used IL: Interruptiblity; RA: Resource Adaptiveness;
SI: Supports Incremental Learning; IP: Existence of Parallel Version.
 Algorithm Year Category IL RA SI IP 
 ID3-k & LSID3 [22] 2004 Induction-trees based 3  
 IIDT [37] 2005 Induction-trees based 3 3  
 Esmeir et al. [41] 2007 Induction-trees based 3  
 ACT [23] 2007 Induction-trees based 3  
 Esmeir et al. [42] 2008 Induction-trees based 3  
 Esmeir et al. [43] 2011 Induction-trees based 3  
 DeCoste et al. [13] 2002 Kernel-based 3  
 Sofman et al. [44] 2011 Kernel-based 3  
 Greedy Miser [45] 2012 Feature-based 3  
 AFR [46] 2013 Feature-based 3  
 EnE [47] 2000 Ensemble-based 3  
 SpeedBoost [25] 2012 Ensemble-based 3  
 SpeedMachines [48] 2013 Ensemble-based 3  
 OTB & OMB [26] 2015 Ensemble-based 3  
 Anytime DNN [49] 2017 Neural Nets-based 3  
 Lee et al. [28] 2018 Neural Nets-based 3  
 MSDnet [29] 2018 Neural Nets-based 3  
 Hu et al. [27] 2019 Neural Nets-based 3  
 Anytime NB [50] 1996 Prob. Estimation-based 3  
 treeNet [51] 1997 Prob. Estimation-based 3  
 Hulten et al. [52] 2002 Prob. Estimation-based 3  
 AAODE [31] 2006 Prob. Estimation-based 3  
 AAPE [53] 2007 Prob. Estimation-based 3  
 AAPWE [54] 2008 Prob. Estimation-based 3  
 SAAPE [32] 2009 Prob. Estimation-based 3  
 SimpleRank [16] 2006 Nearest Neighbor-based 3  
 MVP-Trees [30] 2008 Nearest Neighbor-based 3  
 Any-𝑘-NN [38] 2024 Nearest Neighbor-based 3 3 3 3 
 NN classifier [55] 2008 Nearest Neighbor-based 3  
 IEThresh [56] 2009 Active Learning-based 3  
 Tomanek et al. [57] 2010 Active Learning-based 3  
 AAL [58] 2013 Active Learning-based 3  
 Ramirez et al. [59] 2014 Active Learning-based 3  
 Karayev et al. [19] 2012 Vision Appl.-based 3  
 Anytime Scenes [60] 2014 Vision Appl.-based 3  
 Liu et al. [61] 2016 Vision Appl.-based 3  
 ICF [62] 2012 Vision Appl.-based 3  
 AFS [63] 2001 Application-based 3  
 Schlobach et al. [64] 2007 Application-based 3  
 APM [65] 2012 Application-based 3  
 Viet et al. [66] 2013 Application-based 3  
Table 5
Summary of anytime algorithms for clustering, FI Mining and Recommenda-
tion Systems. Acronyms used IL: Interruptiblity; RA: Resource Adaptiveness;
SI: Supports Incremental Learning and IP: Existence of Parallel Version.
 Algorithm Year Category IL RA SI IP 
 A-DBSCAN [33] 2013 Density-based Clust. 3  
 A-DBSCAN-XS [34] 2015 Density-based Clust. 3 3 
 AnyDBC [35] 2016 Density-based Clust. 3  
 AnyDBC-MC [74] 2018 Density-based Clust. 3 3 
 AnyOPTICS [36] 2016 Density-based Clust. 3  
 SPARROW-SNN [75] 2009 Density-based Clust. 3 3 
 Sakai et al. [76] 2022 Density-based Clust. 3  
 COBRAS [77] 2018 Constraint-based Clust. 3  
 Multi-User Static FI [14] 2002 FI Mining 3  
 FPOF [20] 2016 FI Mining 3  
 ALPINE [78] 2017 FI Mining 3 3  
 Aria et al. [67] 2009 Recommendation-based 3  
 Ben-Shimon [68] 2013 Recommendation-based 3 3  
 Ben-Shimon et al. [69] 2016 Recommendation-based 3 3  
 KARPET [70] 2018 Recommendation-based 3 3  

various data analytics tasks, designed to handle large datasets. These 
algorithms are categorized based on their foundational methodologies, 
covering a variety of approaches, including classification, clustering, 
and frequent itemset mining. This categorization highlights various 
algorithms employed for anytime data analytics and provides a struc-
tured overview of how different algorithms are suited to different data 
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analytics tasks.  Our literature survey analysis, based on 41 classifica-
tion algorithms (1996–2025), 8 clustering algorithms (2009–2022), 3 
frequent itemset mining algorithms (2002–2020) and 4 recommenda-
tion systems algorithms (2009–2018), shows that classification-focused 
anytime algorithms are the most mature, while clustering, frequent 
itemset mining and recommendation systems remain emerging areas 
with significant research potential. Despite the progress, key research 
challenges remain. We introduced metrics for performance evaluation 
of anytime algorithms and compared anytime algorithms with non-
anytime alternatives, highlighting their advantages in time-sensitive 
scenarios.

Table  4 summarizes the anytime classification algorithms useful for 
large-scale data based on different machine learning models. They are 
compared based on a set of key factors, which helps in understanding 
their applicability and behavior in real-world scenarios. Table  5 lists 
the anytime clustering, frequent itemset mining and recommendation 
system algorithms proposed for large datasets. Overall Table  4, 5 sum-
marizes all the algorithms presented in this paper while highlighting 
the specific features of each algorithm. They provide an overview of 
various anytime algorithms for data analytics in terms of their anytime 
capabilities, interruptibility, applications, and parallelism.

The survey also answers the questions outlined in Section 1.4. 
The key findings from the survey include the ability of the anytime 
algorithms to balance time constraints with solution quality, making 
them highly effective in large-scale, time-sensitive analytics tasks as 
seen in, for instance, hierarchical 𝑘-NN classifiers (Any-𝑘-NN) (RQ1). 
The design of anytime algorithms is focused on four fundamental 
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principles for various tasks of data analytics: interruptibility, resource 
adaptiveness, solution quality, and scalability. To achieve these ob-
jectives, many anytime algorithms leverage incremental updates and 
hierarchical structures to handle large datasets (RQ2). It highlights the 
evolution of anytime algorithms from decision-tree and probabilistic 
models to more recent developments involving ensemble learning, deep 
neural networks, and distributed frameworks, showcasing their theo-
retical advancements over traditional methods (RQ3). This survey also 
highlights the significant challenges identified in anytime algorithms 
and future research opportunities (refer to Section 8) (RQ4). It also 
emphasises how parallelization techniques can enhance the scalability 
and efficiency of these algorithms (RQ5).

In conclusion, anytime algorithms represent a robust and evolving 
solution to the challenges of modern data analytics. Their capacity 
to trade off between computational effort and decision quality makes 
them not only theoretically appealing but also highly practical for a 
wide range of real-world applications.
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