
Computer Science Review 59 (2026) 100850

A
1

Contents lists available at ScienceDirect

Computer Science Review

journal homepage: www.elsevier.com/locate/cosrev

Review article

Time-sensitive data analytics: A survey of anytime techniques, applications
and challenges
Jagat Sesh Challa , Aarti, Navneet Goyal, Poonam Goyal ∗
Department of Computer Science & Information Systems, Pilani Campus, Birla Institute of Technology and Science, Pilani, India

A R T I C L E I N F O

Keywords:
Data analytics
Classification
Clustering
Anomaly detection
Frequent itemset mining
Anytime algorithms

 A B S T R A C T

In the era of big data and real-time analytics, there is a growing demand for fast, adaptive, and efficient
techniques for data analytics that are not only accurate but also responsive and adaptable to dynamic
environments. Anytime algorithms have gained significant attention in data analytics due to their ability to
provide approximate results at any point in time (which improves over time), making them highly suitable
for quick decision-making. Anytime algorithms, which can trade computational time for quality of results,
are increasingly critical for applications requiring rapid, adaptive insights. They are widely used in stock
market analysis, fraud detection, sentiment analysis, weather forecasting, etc. To the best of our knowledge,
there is no literature survey of research papers on anytime algorithms that comprehensively reviews the
approaches, classifies them and highlights the open research issues. This paper provides a comprehensive
survey of anytime algorithms tailored for data analytics over large datasets while emphasizing their application
in time-sensitive decision-making environments. We examine the algorithmic foundations and the state-of-the-
art anytime approaches across various data analytics tasks, including classification, clustering and frequent
itemset mining. Qualitative analysis has also been presented for each algorithm described in this paper based on
key aspects such as interruptibility, resource adaptiveness, and solution quality under constrained conditions.
This survey also highlights the latest advancements and emerging research trends, providing insights into how
anytime algorithms can be further developed to meet the demands of complex and dynamic environments.

Contents

1. Introduction .. 2
1.1. Challenges faced by traditional algorithms ... 2
1.2. Anytime algorithms in data analytics ... 2
1.3. Metrics for performance evaluation of anytime algorithms... 3

1.3.1. Characteristics of anytime algorithms... 3
1.4. Our contribution .. 4

2. Anytime classification .. 4
2.1. Induction tree-based anytime algorithms .. 6
2.2. Kernel-based anytime algorithms ... 7
2.3. Feature-based anytime algorithms.. 7
2.4. Ensemble-based anytime algorithms ... 7
2.5. Neural networks-based anytime algorithms... 8
2.6. Probability estimation-based anytime algorithms... 8
2.7. Nearest neighbors-based anytime algorithms... 9
2.8. Active learning-based anytime algorithms... 9
2.9. Anytime algorithms for vision applications ... 10
2.10. Application-based other anytime algorithms for classification... 10

3. Anytime clustering... 10
3.1. Density-based anytime algorithms.. 11

∗ Corresponding author.
E-mail addresses: jagatsesh@pilani.bits-pilani.ac.in (J.S. Challa), p20210419@pilani.bits-pilani.ac.in (Aarti), goel@pilani.bits-pilani.ac.in (N. Goyal),

poonam@pilani.bits-pilani.ac.in (P. Goyal).

https://doi.org/10.1016/j.cosrev.2025.100850
Received 14 June 2025; Received in revised form 25 September 2025; Accepted 25 October 2025
vailable online 30 October 2025
574-0137/© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/cosrev
https://www.elsevier.com/locate/cosrev
https://orcid.org/0000-0002-9794-0087
mailto:jagatsesh@pilani.bits-pilani.ac.in
mailto:p20210419@pilani.bits-pilani.ac.in
mailto:goel@pilani.bits-pilani.ac.in
mailto:poonam@pilani.bits-pilani.ac.in
https://doi.org/10.1016/j.cosrev.2025.100850
https://doi.org/10.1016/j.cosrev.2025.100850

J.S. Challa et al. Computer Science Review 59 (2026) 100850
3.2. Constraint-based anytime algorithm ... 12
4. Anytime frequent itemset mining .. 12
5. Anytime algorithms for recommendation systems ... 13
6. Anytime algorithms for streaming data .. 13
7. limitations of the survey ... 14
8. Open issues and research opportunities in the design of anytime algorithms... 14
9. Conclusion .. 14
 Declaration of Generative AI and AI-assisted technologies in the writing process .. 16
 Declaration of competing interest .. 16
 Data availability .. 16
 References... 16
1. Introduction

Data analytics refers to the process of discovering useful patterns,
trends, and relationships within large data by using a variety of tech-
niques from statistics, machine learning, and artificial intelligence. It
involves analyzing data to extract meaningful insights and transforming
them into actionable knowledge [1]. With the rapid growth of data gen-
erated by businesses, social media, and IoT devices, data analytics has
become an essential tool for organizations seeking to gain a competitive
advantage through data-driven decision-making.

There are various data analytics tasks including — classification [2,
3], clustering [4], anomaly detection [5], association rule mining [6],
and sequence mining [1]. Classification assigns objects to one of several
predefined categories, which is useful in many diverse applications
that include — detecting spam email messages based on the message
header and content [1], categorizing cells as malignant or benign based
on the results of MRI scans [1], classifying galaxies based on their
shapes [1], Fraud Detection in credit card transactions [6], etc. Cluster
analysis seeks to find groups of closely related objects so that the
objects that belong to the same cluster are more similar to each other
than the objects that belong to other clusters. A few applications of
clustering include — grouping sets of related customers [1], finding
ocean areas that significantly impact the earth’s climate [7], grouping
astronomical galaxies [8], etc. Association analysis discovers patterns
that describe strongly associated features in the data. The applications
of association analysis include — finding groups of genes that have
related functionality [9], identifying web pages that are accessed to-
gether [10], identifying the patterns of frequently purchased items at
retail stores [11], etc.

1.1. Challenges faced by traditional algorithms

Traditional data analytics techniques often struggle to process large-
scale data, especially in environments where the computational re-
sources and the processing time are constrained. These include issues
with scalability, processing speed, adaptability to complex structures,
data processing capabilities, and balancing trade-offs between accuracy
and computational efficiency, particularly in resource-constrained envi-
ronments. They are often inadequate for handling variable inter-arrival
rates of data. They run on their own limited speed handling capability
and are not flexible enough to handle variable speeds. If they were to
be used at speeds beyond their maximum capability, they would have
to either process sampled data or buffer unlimited data and eventually
get stuck [12]. For example, while traditional SVMs require fixed kernel
evaluations, anytime SVMs [13] reduce evaluations dynamically, im-
proving efficiency in resource-constrained environments. Table 1 shows
the comparison between budget/non-anytime vs anytime algorithms
for large-scale static data.

In such scenarios, Anytime algorithms [14–17] come to the rescue,
wherein they can provide incremental insights from the analysis that
improve with an increase in the allocated resources, such as computa-
tional resources and time. Anytime algorithms are a class of algorithms
that offer a trade-off between the constraints on available resources and
2
the quality of results. They can be interrupted at any time before their
completion and provide intermediate, valid approximate results. The
quality of that result can be improved with an increase in resources al-
located. Resources could be processing time allowance, computational
resources, etc. This behavior of an anytime algorithm is depicted in Fig.
1, where we can see that the accuracy of the result improves with an
increase in processing time allowance.

There are many application domains where anytime algorithms are
applicable in decision-making. For example, consider the application
of stock market analysis to predict trends from large-scale data [14].
Stock markets generate vast amounts of real-time data, including stock
prices and trading volumes, which keep on varying from time to time.
Anytime algorithms can process this data incrementally, providing
preliminary insights quickly if interrupted and refining predictions as
more resources become available. This kind of algorithm benefits both a
short-term stock investor who is interested in quick results, as well as a
long-term stock investor who is willing to wait until a more refined and
accurate result is computed. Other application domains where anytime
algorithms are useful include — sentiment analysis in social media
analytics, speech recognition in NLP [18], object recognition from im-
ages and videos [19], fraud detection in credit card transactions [20],
path planning in robotics [21], etc. The development of anytime al-
gorithms reflects a growing need for efficient and timely computation
of solutions. By allowing for progressive refinement and early access
to results, these algorithms empower users to make informed decisions
quickly while still benefiting from more comprehensive analysis over
time. Anytime algorithms are particularly useful for handling large and
dynamic data, where traditional methods may struggle to keep up with
the volume and speed at which the data is generated. By providing
approximate results at any point in time, anytime algorithms enable
rapid insights and adaptability, making them an attractive solution for
a wide range of data-driven applications.

Anytime algorithms can be categorized as - contract and interruptible.
Both types can provide useful insights when constrained by resources.
They differ in how they manage allocated resources and provide useful
results during execution. A contract algorithm is one that gets its
resources (time, computational hardware, etc.) allocated beforehand,
and the algorithm executes within those allotted resources to produce
the best possible result. Contract algorithms, if interrupted before the
contract ends, don’ t guarantee a valid result. An interruptible algo-
rithm, on the other hand, is designed to give a result at any point
of interruption during its execution. An interruptible algorithm is one
whose resource allocation is not given in advance. If interrupted, it will
return the best solution it has found so far, and if allowed to continue,
it will refine its result further. For instance, in a fraud detection system,
if the algorithm is interrupted before it finishes, it can produce quick
fraud alerts, and if more processing time is given, it can refine the
accuracy of these alerts as more data gets analyzed. This feature makes
interruptible algorithms highly flexible and suitable for environments
where computational resources or time availability are uncertain.

1.2. Anytime algorithms in data analytics

In the context of data analytics, anytime algorithms can be applied
to two broader scenarios - mining large databases and mining data

J.S. Challa et al. Computer Science Review 59 (2026) 100850
Table 1
Comparison between non-anytime and anytime algorithms in data analytics.
 Aspect Non-anytime algorithms Anytime algorithms
 Execution model Run to completion before

producing any output.
Can be interrupted at any
point to provide the
best-so-far result.

 Result availability Only available after full
processing.

Progressive refinement; output
improves with an increase in
processing time.

 Adaptability to time
constraints

Fixed runtime Adapts to varying time
allowances.

 Suitable for large
datasets

Requires full dataset
processing before
producing the usable
results.

Can work progressively, giving
early, approximate results.

 Handling resource
constraints

Fixed computational
budget

Adjusts processing based on
available resources (memory,
time).

 Scalability Requires more hardware Provides intermediate results,
and refines over time.

 Use in real-time
decision-making

Cannot return intermediate
insights before completion.

Well-suited for real-time and
streaming environments where
quick decisions are needed.

 Quality of
intermediate results

No intermediate result;
must wait for the final
result.

Quality improves with an
increase in time; early results
may be coarse but usable.

Fig. 1. Characteristic of an anytime algorithm [12].

streams. In this survey paper, we focus on anytime algorithms for
mining large databases.

Anytime algorithms for large datasets produce multiple results of
various approximations, whose accuracy increases with an increase
in processing time allowance. This gives the user flexibility in the
trade-off between computational resources and the accuracy of the min-
ing results. Anytime algorithms for data analytics include- induction-
tree based [22,23], kernel-based [13], ensemble-based [24–26], neu-
ral networks based [27–29], nearest-neighbors based [30], probabil-
ity estimation based [31,32], density-based [33–36], frequent itemset
mining [14,20], etc.

Similarly, if we categorize the algorithms on the basis of contract
and interruptible, anytime decision trees [22,23], anytime frequent
itemset mining [14], etc., come under contract algorithms. Anytime
interruptible decision trees [37], anytime nearest neighbors [16,30,38],
anytime bayesian classifiers [39], anytime set-wise classification [40],
etc. are the interruptible algorithms.

To measure the performance of anytime algorithms for large
datasets, the focus is on their ability to provide progressively improved
results when more resources (processing time and computational re-
sources) become available. The quality of the solution (accuracy)
produced under varied (generally improving) constrained conditions
is used to evaluate the effectiveness of an anytime algorithm. Fig. 2
describes the framework for anytime algorithms.
3
Fig. 2. Framework for anytime algorithms.

1.3. Metrics for performance evaluation of anytime algorithms

To evaluate the performance of anytime algorithms, particularly for
large datasets, metrics are required that capture their ability to pro-
vide progressively improved solutions as more computational resources
(e.g., processing time, memory) become available. Unlike traditional
algorithms, which return a single final result after completing the
execution, however, the performance of the anytime algorithms can
be evaluated based on the quality of the intermediate results and the
speed at which they improve over time. The following metrics are
recommended to systematically assess their performance:

• Initial Solution Quality under Interruption: Measures the qual-
ity of the first available intermediate solution when the algorithm
is interrupted early.

• Time-Computational Efficiency Trade-off: Evaluates how effi-
ciently an anytime algorithm transforms available computational
resources (e.g., CPU time, memory usage, etc.) into quality im-
provements such as improved accuracy, F1-score, reduced clas-
sification cost, or higher clustering purity—in its intermediate
and final solutions with an increase in processing time allowance
(refer to Fig. 1). Better computational efficiency means that even
if the algorithm is interrupted early, it will deliver more useful
results.

• Scalability: Measures how well an algorithm maintains its any-
time properties with an increase in size or complexity of data or
stream speed.

1.3.1. Characteristics of anytime algorithms
Fig. 3 showcases the key characteristics of anytime algorithms (i)

Interruptibility, (ii) Resource Adaptiveness, (iii) Incremental Learning, and
(iv) Scalability.

(i) Interruptibility : Anytime algorithms can be stopped at any point
in time and still return the best possible approximate result
achieved so far. This is imperative in real-time or resource-
constrained environments where computation may need to be
halted unexpectedly.

(ii) Resource Adaptiveness: Anytime algorithms are designed to dy-
namically adjust their computation based on available resources
like time, memory, or computational power. When more re-
sources are available, the algorithm refines its solution and
provides a more accurate result.

(iii) Incremental Learning : The model can update itself incrementally
as new data objects arrive, without needing to retrain from
scratch. This is crucial for adapting to evolving data patterns
over time.

J.S. Challa et al. Computer Science Review 59 (2026) 100850
Fig. 3. Key characteristics of anytime algorithms.

Fig. 4. Overview of anytime algorithms for data analytics in large data.

(iv) Scalability : The algorithm can handle increasing volumes of data
without a significant drop in performance. It remains efficient
even as data streams become larger and faster.

1.4. Our contribution

In this paper, we provide an extensive literature survey of anytime
algorithms by considering 56 research articles to examine all relevant
research accomplished in the field of data analytics for large datasets.
Fig. 4 presents an overview of the number of anytime algorithms
developed for different data analytics tasks applied to large datasets,
along with the span of years in which these algorithms were proposed.

Classification (1996–2025) shows the highest number of anytime
algorithm contributions, with 41 algorithms identified over nearly three
decades. 8 methods were proposed for clustering from 2009 to 2022, 3
methods exist for frequent itemset mining (2002–2020), and 4 methods
were proposed for recommendation systems (RS) (2009–2018). The rel-
atively low number reflects the computational complexity of Frequent
Itemset mining. The survey based on the various types of anytime
algorithms across different data analytics tasks is also analyzed in terms
of publications per year and key factors of anytime algorithms. Fig. 5
shows the number of publications on anytime algorithms published per
year for different data analytics tasks from 1996 to 2025. The trend
highlights a steady growth in research interest, with a significant rise
after 2010, indicating the increasing relevance of anytime algorithms
in time-sensitive and large-scale data analytics tasks. Table 4, 5 sum-
marizes the anytime algorithms for different analytics tasks that are
4
Fig. 5. Year-wise summary of publications in anytime data analytics.

useful for handling large-scale data based on different machine learning
models and highlighting the specific features of each algorithm.

This survey essentially addresses the following research questions:

• RQ1: What are the key findings of this extensive literature survey
on anytime algorithms for data analytics in the context of large
datasets?

• RQ2: What are the fundamental principles that underpin the
design of anytime algorithms for various tasks of data analytics?

• RQ3: In what way have the anytime algorithms for data analytics
evolved over time, and what are the major improvements over
previous approaches in terms of theoretical validation?

• RQ4: What are the significant research challenges identified in
the area of anytime algorithms for data analytics? What are the
future research opportunities to extend the capabilities of these
algorithms or propose new algorithms?

• RQ5: How can parallelization techniques enhance the scalability
and efficiency of anytime algorithms for data analytics?

The rest of the paper is organized as follows: Section 2 explains various
methods proposed for anytime classification. Section 3 discusses differ-
ent approaches developed for anytime clustering. Section 4 describes
the methods introduced for frequent itemset mining. Section 5 discusses
the algorithms designed for recommendation systems. Section 6 gives
a brief insight into the anytime algorithms for data analytics in stream
environments. Section 7 discusses the limitations of the survey. Sec-
tion 8 discusses the significant research issues based on the survey
conducted and future directions for research. Finally, Section 9 sum-
marizes the methods presented in the previous sections and concludes
the manuscript.

2. Anytime classification

We give a comprehensive survey of different types of anytime
classification algorithms that were proposed in the literature, including
traditional classification algorithms, active learning based algorithms,
vision applications-based algorithms and a few others. The anytime
traditional classification algorithms for large datasets are summarized
in Fig. 6, while Fig. 7 presents application-based anytime classification
algorithms. Table 2 presents a summary of datasets used to evaluate
various anytime classification algorithms, providing the best possible
results. The datasets range from small synthetic datasets (e.g., XOR-10,
Multi-XOR, Synthetic with sizes under 1000 instances) to large-scale
real-world datasets such as ImageNet (1.2M instances), Letter (20,000
instances), Munin1 (5 million entries), and Skin Nonskin (245,057 in-
stances). Classification accuracy is the most commonly reported metric,
though other performance indicators like F1-score, AUC, regret, log-
likelihood, and Kullback score are also considered, depending on the
nature of the application.

Decision tree-based anytime approaches such as ID3-k, LSID3, and
ACT were evaluated on symbolic datasets like Tic-tac-toe and XOR-10,
demonstrating high accuracy (up to 100%) and effective interruptibility

J.S. Challa et al. Computer Science Review 59 (2026) 100850
Fig. 6. Categorization of anytime traditional classification algorithms for large data.
Table 2
Datasets used for evaluation of anytime classification algorithms that achieve the highest performance.
 Algorithm Dataset characteristics Results
 ID3-k & LSID3 [22] Name: Tic-tac-toe, Size: 958 Accuracy: 88%
 IIDT [37] Name: XOR-10, Size: 10000 Accuracy: 100%
 Esmeir et al. [41] Name: XOR-10, Size: 10000 Accuracy: 100%
 ACT [23] Name: XOR-10, Size: 10000 Accuracy: >80%
 Esmeir et al. [42] Name: Multi-XOR, Size: 200 Accuracy: >98%
 Esmeir et al. [43] Name: Multi-XOR, Size: 200 Accuracy: >78%
 DeCoste et al. [13] Name: Sonar, Size: 208 Accuracy: >90%
 Sofman et al. [44] Name: Outdoor Mobile Robot, Size: 6000 True Positive Rate: >90%
 Greedy Miser [45] Name: Scene-15, Size : 4485 Accuracy: >80%
 AFR [46] Name: Synthetic, Size: 1000 Accuracy: >75%
 EnE [47] Name: Switchboard Corpus, Size: 2500 Accuracy: >45%
 SpeedBoost [25] Name: Pendigits, Size : 7494 Accuracy: 98%
 SpeedMachines [48] Name: Stanford Background, Size: 715 Accuracy: 80%
 OTB & OMB [26] Name: Freiburg EEG, Size: 79 No. of seizures detected: >65
 Anytime DNN [49] Name: ImageNet, Size: 1.2M Accuracy: 92.9%
 Lee et al. [28] Name: ImageNet, Size: 1.2M Accuracy: >78%
 MSDnet [29] Name: ImageNet, Size: 1.2M Accuracy: 75%
 Hu et al. [27] Name: ImageNet, Size: 1.2M Accuracy: 76%
 Anytime NB [50] Name: Synthetic, Size: 21 Kullback score: 0.1
 treeNet [51] Name: Synthetic, Size: 22 Error rate : 0
 Hulten et al. [52] Name: Munin1, Size: 5M Log-likelihoods: 38.417
 AAODE [31] Name: Pendigits, Size: 7494 Error rate : 0.6
 AAPE [53] Name: Pendigits, Size: 7494 Error rate : 0.86
 AAPWE [54] Name: Pendigits, Size: 7494 Error rate : 0.215
 SAAPE [32] Name: Pendigits, Size: 7494 Error rate : 0.185
 SimpleRank [16] Name: Letter, Size: 20000 Accuracy: 100%
 MVP-Trees [30] Name: Image, Size: 10221 Accuracy: 98%
 Any-𝑘-NN [38] Name: Skin Nonskin, Size: 245057 F1-score: 94%
 NN classifier [55] Name: Letter, Size: 20000 Accuracy: 100%
 IEThresh [56] Name: RTE, Size: 100 Accuracy: 92%
 Tomanek et al. [57] Name: MUC7T, Size: 3113 F1-score: >85%
 AAL [58] Name: MUC7T, Size: 3113 F1-score: 88%
 Ramirez et al. [59] Name: IMDB, Size: 26784 AUC:0.79
 Karayev et al. [19] Name: PASCAL VOC, Size: 9963 Average Precision: 66%
 Anytime Scenes [60] Name: Scene-15, Size: 4485 Accuracy: 80%
 Liu et al. [61] Name: Leuven Street Scenes, Size: 293 Accuracy: 90%
 ICF [62] Name: Leuven Street Scenes, Size: 293 Accuracy: 89.55%
 AFS [63] Name: Iris, Size: 150 Error rate : 2.0
 Schlobach et al. [64] Name: DICE, Size: 4859 Recall: 90%
 APM [65] Name: Dynamic Pricing, Size: 5 × 5 Regret: 0
 Viet et al. [66] Name: TwoPat, Size: 5000 Accuracy: 97.72%
 Aria et al. [67] Name: IMDB, Size: 26784 Confidence: 95%
 Ben-Shimon [68] Name: MovieLens, Size: 1M AUC:80.34
 Ben-Shimon et al. [69] Name: MovieLens, Size: 1M Precision: 0.5
 KARPET [70] Name: DBLP, Size: 5M Run time: 2–5 ms
5

J.S. Challa et al. Computer Science Review 59 (2026) 100850
Fig. 7. Categorization of anytime application-based classification algorithms for large data.
in constrained scenarios. More recent advancements leverage deep
neural networks (e.g., Anytime DNN, MSDnet, and Hu et al.’s method),
achieving competitive accuracy (above 75%–92%) on complex image
datasets such as ImageNet. Similarly, algorithms like SpeedBoost, AAPE
variants, and SimpleRank show high accuracy or low error rates on
digit classification benchmark datasets such as Pendigits and Letter,
reinforcing the reliability of decision tree ensembles and probabilistic
classifiers for real-time learning. Several approaches address domain-
specific challenges: algorithms like Sofman et al. and OTB & OMB
are applied to robotics and biomedical datasets (e.g., Outdoor Mo-
bile Robot, Freiburg EEG), while others like AAL, AAPE, and ICF
are tested on street scenes, IMDB, and MUC7T, reflecting real-world
utility in fields such as autonomous navigation, emotion detection, and
natural language processing, also illustrating the broad applicability
of anytime classification. Notably, methods like Any-𝑘-NN and AAL
focus on real-time performance with high F1-scores and are suited
for data stream processing and active learning scenarios. The table
demonstrates that anytime classification algorithms maintain compet-
itive performance while offering flexibility in computational resources
and decision timing, making them valuable for time-constrained or
dynamic environments. Overall, the table highlights the diversity in
dataset characteristics and the versatility of anytime classification al-
gorithms in achieving reliable results across different data analytics
models.

Now, let us delve into the insights of these algorithms.

2.1. Induction tree-based anytime algorithms

Traditional decision tree induction methods, such as CART, ID3, and
C4.5, rely on local heuristics to produce smaller trees but often fail to
achieve globally optimal solutions. To address this limitation, anytime
decision tree induction algorithms were proposed, which produce a
better, higher-quality decision tree as additional processing time is al-
located. These algorithms also account for testing and misclassification
costs, leading to the induction of cost-sensitive decision trees that aim
to minimize the total classification cost while maximizing accuracy.

Esmeir et al. [22] introduce lookahead-based algorithms for any-
time induction of decision trees, specifically ID3-𝑘 and LSID3. These
6
algorithms are capable of constructing better decision trees when more
time becomes available, thereby improving upon greedy algorithms.
Essentially, during the tree construction, they predict the profitability
of a node split by estimating its impact on deeper node descendants,
giving better quality decision trees. Furthermore, the LSID3 algorithm
is a contract algorithm (apriori resource allocation) allowing for the
utilization of additional resources (time) to construct more refined deci-
sion trees. However, the approach has higher computational overhead,
limiting scalability to large datasets.

To overcome the limitations of contract algorithms, Esmeir et al.
[37] developed interruptible anytime decision trees. Unlike contract-
based approaches, these algorithms do not require prior resource al-
location (execution time), can be interrupted at any time during ex-
ecution and are capable of providing improved solutions. The first
proposed algorithm involves the conversion of the LSID3 contract al-
gorithm into an interruptible variant. The second algorithm is referred
to as IIDT (Interruptible Induction of Decision Trees), which iteratively
replaces sub-trees of the current tree with sub-trees generated using
higher resource allocations, with the expectation of yielding better
results. This approach incurs high recomputation overhead during
subtree replacement and is still limited in large-scale, high-dimensional
datasets. Esmeir et al. [41] introduced a comprehensive framework for
anytime induction of decision trees, enabling hard-to-learn concepts to
leverage additional computational resources to produce better hypothe-
ses and exploit larger time budgets. This work provides a comparative
analysis of anytime decision tree models, including LSID3 and IIDT, in
relation to traditional decision tree models that use bagging, skewing,
and GATree. The study concludes that, under scenarios where resource
constraints are not a limiting factor, LSID3 and IIDT emerge as the
top-performing models, effectively utilizing the available resources to
produce more accurate and robust decision trees.

Esmeir et al. [23] introduced a sampling-based method where the
cost of each sub-tree, generated by candidate splits, is estimated using
Anytime Cost-Sensitive Trees (ACT) method. In this method, the split
that minimizes the overall cost is favored in the tree construction
process. This method works as a contract anytime algorithm, which
allows for trading learning time to achieve higher classification accu-
racy. By leveraging additional time resources, the algorithm obtains

J.S. Challa et al. Computer Science Review 59 (2026) 100850
better estimates of the different candidate splits, resulting in more cost-
efficient decision trees. Due to the contract-based approach, it may
overfit cost estimates with small budgets.

Esmeir et al. [42] introduced an approach which works in envi-
ronments where computation time can be traded for both test and
misclassification costs. It is built on LSID3, which is not designed to
minimize test and misclassification costs. The proposed approach lever-
ages additional time and computational resources to generate decision
trees with lower costs, demonstrating good anytime behavior with
diminishing returns. LSID3 uses SID3 to bias the samples towards small
trees; however, ACT does towards low-cost trees. Cost optimization
in decision tree induction depends heavily on the accuracy of the
underlying cost model, and unrealistic cost assumptions may yield
suboptimal trees. TATA (Tree-classification AT Anycost) is another
anytime framework introduced by Esmeir et al. [43] that produces
anytime decision-tree classifiers. It allows for dynamic allocation of
learning time and can be configured to work under various budget
schemes for classification. This flexibility enables TATA to either pro-
duce classifiers with fixed time or cost limits or to continue classifying
until interrupted. Notably, this method leverages additional learning
time to produce anycost classifiers by forming larger samples, which
improves tree-utility estimations. However, requiring many samples
for high accuracy increases the runtime in large datasets.

2.2. Kernel-based anytime algorithms

Support vector machines (SVMs) classify objects using support vec-
tors and use multiplication of objects and support vectors to perform
kernel computations. In traditional SVM models, the classification cost
of a query object is the same irrespective of its difficulty level. The
same number of kernel evaluations (dot products between objects and
support vectors) is used for every data object. However, we can reduce
the number of such kernel evaluations for a few data objects to enhance
SVM’s performance.

DeCoste [13] presented a computational geometry-based method
that reduces the classification cost and the number of kernel computa-
tions used in Support Vector Machines (SVMs), making it more efficient
for large datasets. Traditional SVM classification requires a substantial
number of kernel computations, especially for large datasets, because it
applies a uniform number of kernel computations to all objects, which
can be computationally expensive. However, this approach produces
the same final classification results as a traditional SVM but with
fewer kernel computations for ‘‘easier’’ cases. In this approach, the
classification cost is proportional to the difficulty level of each object:
‘‘easy’’ points (those lying far from the decision boundary with large
margins) are classified with fewer kernel computations, while ‘‘hard’’
points (those near the margin) require more evaluations rather than
applying a uniform cost across all objects. The method is designed
to work in an anytime fashion, making it particularly useful for real-
time or resource-constrained environments. This approach reduces the
number of steps(𝑘) and performs efficiently with reduced error rates
as 𝑘 increases. However, margin-based computation prioritization may
still incur high costs for borderline cases in large-scale datasets.

Sofman et al. [44] developed Anytime novelty detection algorithm, a
kernel-based algorithm designed to handle noisy, redundant, and high-
dimensional feature spaces, commonly encountered in robotics. The
approach transforms the challenge of environmental change detection
into a location-specific novelty detection problem and uses Multiple
Discriminant Analysis (MDA) instead of PCA to enhance robustness in
high-dimensional spaces. It works as a variant of the NORMA (an online
kernelized SVM) algorithm and is optimized using gradient descent
by assuming new queries are novel until proven otherwise. It utilizes
an anytime framework that ensures efficient computation with a fixed
buffer size while reordering stored examples for faster adaptation,
ensuring bounded computation time and effective anytime novelty
prediction, even in complex environments. However, the performance
depends on the accuracy of novelty assumptions and may generate
higher false-positive rates in noisy environments.
7
2.3. Feature-based anytime algorithms

Xu et al. [45] introduced Greedy Miser, which is an anytime al-
gorithm that minimizes test-time CPU usage by incorporating feature
extraction costs into gradient boosting. It is an extension of stage-wise
regression and achieves a balance between accuracy and computational
efficiency by minimizing costly features without sacrificing prediction
quality. It integrates cost-efficiency into the training and selection of
weak classifiers, yielding a simple yet effective model. It can produce
valid classification results with varying test-time budgets and progres-
sively better predictions by incrementally adding features based on
cost-benefit; it can stop early and still produce a valid output. The
greedy miser algorithm for different values of 𝜆 ∈ {0, 1∕4, 1∕2, 1, 2, 4}
as feature-cost trade-off parameter (number of features in each cost
group), yields an accuracy of more than 80% at the test-time cost of
25 s over the state-of-the-art approach Early-Exits. The lower the value
of 𝜆, the better the accuracy, but at higher costs. However, performance
is highly sensitive to the accuracy of cost estimates, as the algorithm
may discard high-cost but highly informative features when working
under strict budgets, potentially leading to suboptimal accuracy.

Xu et al. [46] introduced the Anytime Feature Representation (AFR)
algorithm that explicitly addresses the trade-off between using expen-
sive features and evaluation cost in the data representation rather
than the classifier. AFR enables conventional classifiers to become
test-time cost-sensitive anytime classifiers; however, it introduces ad-
ditional computational overhead due to the integrated representation
learning stage. It combines the advantages of anytime learning and
large margin classifiers, tackling the classification problem with a novel
approach to budgeted learning. The algorithm consists of two inte-
grated parts: classification using SVMs and feature representation learn-
ing using Greedy Miser. The feature representation mapping transforms
the input vector into a new representation, which is then classified
by the SVM within cost budgets. The anytime setting is achieved
by incrementally increasing the cost budgets until the cost constraint
no longer affects the optimal solution. AFR achieves the highest test
scores overall, due to the generalization capabilities of large-margin
classifiers.

2.4. Ensemble-based anytime algorithms

Ensemble methods are machine learning algorithms that construct
a set of classifiers (base classifiers) and make predictions for new data
points by combining the results of base classifiers, typically through a
weighted voting mechanism or iterative refinement.

Kary et al. [47] developed the EnE (Ears and Eyes), which is an
anytime ensemble learning approach for sub-dialogue topic spotting.
A classifier is designed to categorize short fragments of a conversation
into one of several predefined topics provided during training. It aims
for anytime classification by being biased towards faster performance
over classification accuracy, analyzing the impact of test conversation
length on the topic classification accuracy. It achieves anytime behav-
ior by progressively improving classification accuracy as sub-dialogue
length increases. The classifier leverages existing technologies, such
as the BOOSTEXTER classifier and IBM’s WATSON ASR system. The
proposed two-phase training (verbatim + noisy ASR transcripts) with
a single classifier is tuned for variable dialogue lengths. It achieves a
limited classification accuracy of 45% on increasing the subdialogue
length to ‘‘FULL’’, which significantly outperforms the majority-class
baseline accuracy of 13%. Grubb et al. [25] devised the SpeedBoost,
which is an extension of functional gradient descent to learn multiple
anytime predictors, which are hypotheses that can automatically trade
computation time for predicting accuracy with additional predictors.
It essentially selects a set of weak predictors from simpler candidate
models in an anytime fashion, efficiently allocating computational re-
sources to more challenging examples by targeting specific data subsets.
However, performance heavily depends on the quality/diversity of

J.S. Challa et al. Computer Science Review 59 (2026) 100850
candidate predictors because it uses extra resources at the time of
prediction to generate a fast approximate result that can be improved
by including a larger number of candidate predictors.

Building on this, SpeedMachines is another anytime technique pro-
posed by Grubb et al. [48] for learning structured prediction. It ac-
counts for both structural elements and feature computation during
training, which influence the test-time inference. This approach au-
tomatically integrates new learners into predictors that enhance per-
formance while optimizing efficiency in both feature and inference
computation times. It refines predictions by incrementally updating
only uncertain regions in structured outputs. The goal is to minimize
a risk function by predicting portions of the output locally, which
requires careful cost model tuning. Hierarchical Inference Machines
(HIM) approach achieves 80% pixel classification accuracy with an
increase in inference time from 10−1 to 100 over Speedy Inference
Machines (SIM). Wang et al. [26] introduced two novel anytime online
boosting algorithms: OTB (Online Transfer Boosting) and OMB (Online
Multitask Boosting). These algorithms are designed to handle data
samples that arrive sequentially from different domains in batches,
leveraging the knowledge of instances from other domains to enhance
learning performance. They are implemented in an online fashion,
which makes them anytime by approximating the normalization factor
to provide intermediate models at any stage. The framework sup-
ports flexible base learners, allowing any online learner to be adapted
for transfer or multitask learning, unlike existing non-anytime meth-
ods that are limited to specific learners. However, it is sensitive to
domain/task similarity, and complexity increases with many tasks.

2.5. Neural networks-based anytime algorithms

Deep Neural Networks (DNNs) have emerged as one of the most ver-
satile machine learning techniques, achieving state-of-the-art accuracy
across a wide range of applications. However, this high level of accu-
racy comes with a significant computational cost, particularly when
applying DNNs to new examples. For many tasks, the computational
demands of DNNs have increased rapidly. Moreover, high test-time cost
prevents DNNs from deploying on resource-constrained platforms. To
mitigate this issue, anytime neural networks have been introduced,
offering a solution that significantly reduces the computation time
required for processing test data.

Bolukbasi et al. [49] presented an anytime deep neural network
approach which adaptively reduces evaluation time on new examples
without loss of accuracy. Instead of redesigning or approximating
existing networks, two novel schemes were introduced: (1) adaptive
network evaluation and (2) adaptive network selection. These schemes
allow many examples to be correctly classified using fewer layers or
lighter networks, thereby reducing the computational time. It achieves
accuracy by adaptively selecting the number of layers or the network
to evaluate per example, enabling partial inference when interrupted.
However, performance depends on the reliability of early-exit decisions
and misclassification in early layers cannot be recovered without full
network evaluation. Lee et al. [28] introduced an approach for anytime
neural prediction via slicing, where multiple thin sub-networks of the
same depth are trained for the anytime prediction of test data. It lever-
ages multi-branch residual DNNs by progressively removing branches
while keeping the original depth. Then, each sub-network is trained
with an independent batch normalization layer to ensure stability and
accuracy across different capacities. The approach starts by evaluating
the smallest sub-networks to make quick predictions and progressively
moves to larger sub-networks as more resources become available,
enabling progressive refinement in accuracy. It is observed that the
difference between errors of shallow and thin networks increases as the
required FLOPs decrease. However, smaller sub-networks suffer from
higher error rates, especially under extreme FLOP reduction.

Huang et al. [29] presented a Multi-scale dense convolutional
network (MSDNet), which is a resource-efficient image classification
8
method that optimizes CPU usage at test time through multi-branch
network parameters. However, dense multi-branch structure increases
training complexity and memory. It is based on two design principles:
(1) generating and maintaining coarse-level features throughout the
network and (2) interconnecting the layers with dense connectivity.
These design principles allow the intermediate classifiers at a few layers
to make early predictions at multiple depths without interference,
improving accuracy incrementally as more FLOPs are spent.

Hu et al. [27] presented another approach, discussing the anytime
predictions in DNNs, where an anytime predictor produces a sequence
of more expensive and accurate predictions. In this approach, fea-
ture transformations are used to generate a sequence of intermediate
features, which are then used for auxiliary predictions by using a
prediction layer with parameters. Furthermore, it generates accurate
anytime predictions increasingly with a loss weighting scheme to inter-
mediate layers of the existing feed-forward networks without degrading
the final performance. However, it requires a careful loss weighting
scheme for intermediate predictions to avoid degrading final accuracy.

2.6. Probability estimation-based anytime algorithms

Naive Bayes classifiers are a group of classification algorithms based
on Bayes’ Theorem. Rather than being a single algorithm, it represents a
family of algorithms that all share a common principle: the assumption
that each pair of features is independent of the other.

Liu et al. [50] introduced an anytime algorithm for Bayesian net-
work evaluation that modulates the granularity of state-space represen-
tations to balance accuracy and computational efficiency. It progres-
sively refines the state space of variables and produces increasingly
accurate approximations over time. The approach leverages the rela-
tionship between state-space granularity and computational demands,
allowing for adaptive precision adjustments based on the needs of
each problem instance. However, the REMB scoring function used
to assess the quality of abstractions is computationally expensive for
highly connected networks. Jitnah et al. [51] developed treeNet, which
evaluates belief networks (BNs) using a two-step process: first, trans-
forming the BN into a tree structure, with the query node at the root;
second, performing anytime inference through treeNet search. Upon
incorporating new evidence, the posterior probability of the query node
is recalculated using a modified polytree message-passing algorithm
through best-first search as more steps are processed, enabling real-
time, incremental updates. However, initially designed for polytrees,
requiring adaptation for general Bayesian networks.

Hulten et al. [52] proposed a scaling-up method for any induction
algorithm based on discrete search, allowing the running time to be-
come independent of database size while maintaining decision quality
similar to that achieved with infinite data. The method works within
predefined memory limits and requires only sequential data access,
producing anytime results suitable for batch processing, streaming,
time-changing, and active-learning applications. In the context of learn-
ing Bayesian networks, it significantly accelerates the learning process,
achieving mining speeds of millions of examples per minute with-
out compromising predictive performance. The framework is versatile,
supporting various search types – including greedy, hill-climbing, and
genetic algorithms – and enabling algorithms to function incrementally,
within memory constraints, and adapt to changing data. However,
performance depends on model complexity, and it is not inherently
optimized for highly dynamic network structures.

Webb et al. [31] introduced the Anytime AODE algorithm, which
is an extension of the AODE (Average of One-Dependence Estimators)
algorithm, designed to provide conditional probability estimates for
each class, rather than simply selecting a single class label. The goal
of AAODE is to develop an algorithm similar to Naive Bayes (NB).
This approach enables the algorithm to refine its initial class prob-
ability estimates incrementally through additional computation (by
adding more SPODEs), up to a specified computational budget for

J.S. Challa et al. Computer Science Review 59 (2026) 100850
improved classification. The algorithm is inspired by the notion of n-
dependence estimators and utilizes the Super-Parent One-Dependence
Estimator(SPODE) to compute probability estimates. However, the
performance gain diminishes with very large numbers of sub-models.

Yang et al. [53] devised AAPE (Anytime Averaged Probabilistic
Estimators), which is an anytime classification algorithm, designed to
adapt to varying computational resources in online applications. It
incrementally improves classification accuracy by ensembling Bayesian
probabilistic estimators, beginning with Naive Bayes (0-dependence)
and adding Superparent-One-Dependence Estimators (SPODEs) as time
allows. At each interruption point, AAPE provides averaged probabil-
ity estimates, supporting robust classifications and incremental learn-
ing. However, it may require many SPODEs to match state-of-the-art
accuracy.

Hui et al. [54] developed Anytime Averaged Probabilistic with
Weight Estimator (AAPWE), which is an enhancement of the AAPE al-
gorithm designed for online classification. Unlike traditional algorithms
that require significant computational resources and time, AAPWE
allows for immediate classifications by providing the best predicted
class label based on averaged probabilities estimates. It incorporates
weights for superparent attributes to improve classification effective-
ness. However, effectiveness totally depends on the accurate weighting
of superparent attributes.

Hui et al. [32] introduced Scheduling Anytime Average aged Prob-
abilistic Estimators (SAAPE), a novel anytime classification framework
that extends the AAPE algorithm. It is designed to classify a pool of in-
stances, delivering accurate results even when interrupted, while opti-
mizing collective classification performance. The framework uses seven
scheduling schemes, such as First-Come-First-Served (FCFS), Round
Robin, Minimum-margin instance first (MMIF), Controversial instance
first, and Hybrid, to allocate computational resources efficiently to
multiple instances, allowing for efficient and effective anytime classifi-
cation. It handles multiple instances simultaneously, assigning priority
values to each instance and allocating resources to the highest-priority
instance. However, scheduling overhead may offset gains in small
datasets.

2.7. Nearest neighbors-based anytime algorithms

𝑘-Nearest Neighbors (𝑘-NN) is a supervised classification algorithm
that assigns a class label to test data objects based on their feature
similarity with 𝑘 objects that are closest to the test object. When applied
to data stored on hierarchical data structures like R-trees, 𝑘-NN works
as an efficient branch-and-bound traversal algorithm, optimizing the
search process by systematically pruning irrelevant branches, thereby
reducing the computational overhead while identifying the nearest
neighbors [71].

Ueno et al. [16] designed a SimpleRank method to produce an
instant classification result whose accuracy progressively improves
with an increase in time allowance. This anytime classifier utilizes a
heuristic-based method to sort the index of training data based on its
contribution to classification and scans them sequentially until time
runs out. This sorted index is then used to classify test data objects in
an anytime manner. This approach is designed for streams; however, it
can be applied to static datasets as well. However, performance may
degrade if ranking does not align well with true relevance.

Xu et al. [30] introduced an Anytime 𝑘-Nearest Neighbor (𝑘-NN)
search algorithm utilizing MVP-trees. MVP-tree is a variant of R-trees,
where the metric distance function determines domain-specific knowl-
edge. In an MVP tree, median values are leveraged to create partitions,
and the pivots of these partitions are stored as entries in the internal
nodes, enhancing the efficiency of the search process. This method
identifies 𝑘 answers and improves the answer set monotonically to
return an approximate solution on early termination. However, perfor-
mance depends on the effectiveness of pivot selection and partitioning.
The relative error of 𝑘-NN monotonically decreases from 0.25 and
9
converges to 0 with an increase in cost, i.e. average number of distance
calculations from 500 to 2500.

Aarti et al. developed Any-𝑘-NN [38], which is an anytime hier-
archical method for 𝑘-NN classification on data streams. This method
uses a classification model Any-NN-forest, which is a collection of 𝑐
Any-NN-trees, one tree for each of the 𝑐 classes. Any-NN-tree stores
a hierarchy of micro-clusters to summarize the training data objects,
along with their class labels. This enables the algorithm to utilize micro-
clusters at the lower levels of the tree to make decisions when the time
allowance for inference is less. And, as the time allowance increases, the
algorithm can traverse to the micro-clusters at the deeper levels of the
tree to produce more accurate results. This enables Any-𝑘-NN to handle
very large data streams, incrementally updating its classification model,
and effectively handle concept drift and class evolution. This method
was originally proposed for handling data streams. However, it can
be easily adapted to static datasets by disabling incremental updates.
Any-MP-𝑘-NN is the parallel variant for anytime 𝑘-NN classification
of multi-port data streams over distributed memory architectures. It
improves classification accuracy with an increase in the number of par-
allel streams (handled by separate computing nodes), achieves memory
efficiency and handles very large, high-speed data streams effectively.
The syncing process of Any-NN-forests across computing nodes in-
volves encoding, communication, and aggregation steps, which could
introduce dependencies.

Xi et al. [55] proposed another anytime algorithm that transforms
the nearest neighbor classifier to provide immediate class predic-
tions while allowing for increased accuracy with additional computa-
tional time. The framework prioritizes the examination of important
exemplars—instances that are highly representative of a class – thereby
optimizing resource allocation during classification. By employing a
simple algorithm to establish a high-quality ordering of exemplars, the
method can achieve substantial accuracy even when processing only a
small fraction of the dataset. It achieves 90% accuracy on increasing
the number of instances from 500 to 1500.

2.8. Active learning-based anytime algorithms

Donmez et al. [56] developed IEThresh (Interval Estimate Thresh-
old), an anytime active learning framework for scenarios involving
multiple noisy labelers of unknown accuracy. IEThresh uses interval
estimation to dynamically assess each labeler’s reliability by calculat-
ing a confidence interval around their estimated accuracy and then
selecting the labeler(s) with the highest upper-bound confidence, and
filters unreliable ones early. This approach balances exploration and
exploitation by initially exploring multiple labelers to gauge accuracy,
then increasingly relying on those identified as most reliable. IEThresh
requires fewer queries to achieve a given level of accuracy with sig-
nificantly reduced labeling effort. However, performance depends on
having enough early queries to reliably estimate labeler quality.

Tomanek et al. [57] introduced cost-sensitive approaches to Ac-
tive Learning (AL) to optimize annotation time and proposing three
methods to incorporate annotation time into AL selection: a fixed cost
budget, a linear benefit-cost rank, and a benefit-cost ratio to prioritize
instances for annotation. The cost-sensitive methods proved especially
advantageous in early rounds, suggesting the potential for even greater
effectiveness in large annotation pools. However, it requires an accu-
rate estimation of annotation times for each instance to perform well.
It achieves an F-score of more than 85% on increasing the annotation
time from 1000 to 6000 s over the FuSAL method.

Ramirez et al. [58] presented an Anytime Active Learning (AAL)
approach that optimizes both annotation time and response rate by
potentially interrupting annotators before they complete labeling in-
stances. AAL aims to balance two competing objectives: minimizing
annotation cost and maximizing the likelihood of receiving a label
within a budget. The Static AAL strategy disregards the impact of
sub-instance size k on label acquisition probability, while the Dynamic

J.S. Challa et al. Computer Science Review 59 (2026) 100850
AAL strategy models this probability to guide sub-instance selection.
It is observed that Dynamic AAL adjusts sub-instance sizes based on
utility and uncertainty, while Static AAL uses fixed sizes. However, it
requires careful modeling of sub-instance size effects, and the static
variant ignores these effects and may be suboptimal.

Ramirez et al. [59] introduced another approach which improves
annotation efficiency by allowing annotators to label examples based
on partial inspection, for instance, reading the first 25 words of a
document instead of the entire text. By optimizing the balance be-
tween annotation time and label accuracy through dynamic interrup-
tion policies, the approach reduces annotation costs without sacrificing
classifier performance. However, overly interrupting may reduce label
accuracy. On annotating the first 25 words, it achieves AUC 0.792
(17% error reduction) within 3600s vs. AUC 0.752 when annotating
100 words.

2.9. Anytime algorithms for vision applications

Karayev et al. [19] devised a method for timely multi-class ob-
ject detection in images to achieve optimal performance at any point
between a specified start time and deadline. The approach uses a
dynamic, closed-loop policy to infer image contents and decide which
detector or classifier to deploy next. The system treats detectors and
classifiers as black boxes, learning from execution traces through re-
inforcement learning. A new timeliness performance measure is intro-
duced, enabling the policy to dynamically select actions that maximize
recognition performance under time constraints. The system continu-
ously updates its belief model based on observations, influencing the
selection of subsequent actions, and aims to deliver the best possible
recognition result if interrupted at any point between the setup time
and the deadline. However, the approach depends on high-quality
execution traces for effective policy learning.

Karayev et al. [60] developed another approach to optimize any-
time performance in visual architectures by learning dynamic feature
selection policies. It sequentially computes features and classifies at
any stage, improving prediction quality with a budget. Decisions are
made during test time based on observed data and intermediate results,
with the approach leveraging a Markov Decision Process (MDP) and
reinforcement learning. It aims to learn multiple classifiers for dif-
ferent clusters of feature sets, ensuring robustness to varying subsets;
however, this increases the training complexity. Dynamic policy outper-
forms static baselines across budgets up to 60, improving the specificity
of predictions at leaf nodes.

Liu et al. [61] presented a dynamic hierarchical model for anytime
scene labeling. It allows for flexible trade-offs between efficiency and
accuracy in pixel-level prediction, improving accuracy with increased
budget. The approach incorporates feature computation and model
inference costs, optimizing performance for any given test-time budget
by learning a sequence of image-adaptive hierarchical models. The goal
is to find an optimal selection policy that generates a sequence of
hierarchical models with good performance at all possible test-time cost
budgets. However, policy learning via MDP may be computationally
expensive for very large datasets. It achieves 90% accuracy improve-
ment over state-of-the-art scene parsing baselines on three semantic
segmentation datasets with increasing test-time budgets.

Frohlich et al. [62] presented Iterative Context Forests (ICF), a
novel approach for contextual semantic segmentation using a tree-
based framework that integrates local information with contextual
knowledge. Designed for anytime scenarios, ICF allows for an inter-
ruption during the labeling process, enabling the immediate use of
contextual cues after the first iteration. The method utilizes Random
Decision Forests (RDF) to incorporate context directly during training
without relying on Conditional Random Fields (CRF). However, it
may require many iterations for maximum accuracy in highly complex
scenes. It achieves 89.55% accuracy over the CRF baseline with an
additional 1.74s computation per image.
10
2.10. Application-based other anytime algorithms for classification

Mark et al. [63] introduced an anytime, information-theoretic con-
nectionist network which represents interactions between the predict-
ing attributes and the classification attributes for feature selection,
which incrementally improves feature subset quality over time. It is
interruptible, providing a partial set of relevant features at any stage,
with result quality measured by fuzzy information gain—a metric that
aligns with user-perceived model quality. However, the approach is
dependent on the effectiveness of fuzzy information gain as a quality
metric, which may not capture all domain-specific relevance aspects. It
reduces the tree size from 9 to 5 with minimal error increase (0.0% →
2.0%) using the C4.5 classifier.

Schlobach et al. [64] introduced an anytime classification algorithm
based on approximate subsumption, a concept derived from ontology,
and its performance is compared with classical subsumption using
realistic benchmarks. This approach addresses the need for rapid query
answers, with the quality of results improving as more time is allocated.
The algorithm approximates the ontology O to answer the query rather
than approximating the query Q itself, involving an approximation
of terminological subsumption. This is achieved by interpreting the
ontology in a non-standard way, using lower and upper approximations
of an interpretation. The MORE strategy achieves the highest gains of
more than 20% as iterations increased from 60 to 85; however, approx-
imation accuracy depends heavily on ontology structure and concept
frequency, potentially limiting applicability to sparse ontologies.

Bartok et al. [65] developed a novel anytime algorithm designed to
achieve near-optimal regret in finite stochastic partial monitoring prob-
lems. The algorithm adapts dynamically to different difficulty levels
within the opponent’s strategy space, achieving minimax regret within
logarithmic factors for both easy and hard instances while ensuring
logarithmic individual regret in easy cases. By tailoring to stochastic
game settings, where opponent outcomes are generated independently
and identically distributed, the approach minimizes cumulative loss
relative to the optimal action’s expected loss. It achieves a minimax
regret of 0; however, it requires stochastic opponent strategies and may
degrade in adversarial settings.

Viet et al. [66] introduced an efficient method for speeding up the
anytime time series classification by using motifs. Motifs, being much
shorter subsequences of the time series, allow faster ordering. This
reduces the computational cost of ordering instances for classification,
which is typically high when using distance measures like Dynamic
Time Warping (DTW). The process involves extracting motifs, ordering
them using the SimpleRank method [16], and rearranging the training
set accordingly. However, Motif-based ordering may reduce accuracy
slightly compared to full DTW ordering.

3. Anytime clustering

Clustering is the task of assigning unlabeled objects into groups
called clusters such that the similarity of objects within a group is
maximized and the similarity of objects between different groups is
minimized. Many clustering methods suffer from scalability issues on
large datasets and do not support user involvement during run time.
They include algorithms such as DBSCAN [72], 𝑆-means [73], etc.
To address these issues, anytime clustering algorithms are proposed.
An anytime clustering algorithm works by balancing execution time
with the quality of the clustering results [34]. Fig. 8 summarizes the
anytime algorithms proposed for clustering of large datasets. Ta-
ble 3 highlights the anytime clustering algorithms along with their
corresponding dataset characteristics and evaluation outcomes. These
evaluations highlight the versatility of anytime algorithms across vari-
ous data analytics tasks and demonstrate their ability to produce useful
intermediate results with constrained resources. Our survey primarily
focuses on identifying the presence or absence of parallel implementa-
tions across different tasks. Also, the discussion of parallel algorithms
is qualitative and based on reported capabilities in the original papers,
not on independently verified benchmarks.

J.S. Challa et al. Computer Science Review 59 (2026) 100850
Table 3
Datasets used for evaluation of anytime clustering, FI mining and recommendation systems that achieve the
highest performance.
 Algorithm Dataset characteristics Results
 AnyDBC [35] Name: Mallat, Size: 10000 NMI Score : 0.824
 AnyDBC-MC [74] Name: PAMAP2, Size: 974479 NMI Score : 1
 A-DBSCAN [33] Name: COIL20, Size: 10000 NMI Score : 0.908
 A-DBSCAN-XS [34] Name: DS1 (fiber), Size: 1500 NMI Score : 0.988
 AnyOPTICS [36] Name: Lankersim, Size: 20k–99k NMI Score : 1
 SPARROW-SNN [75] Name: Sequoia, Size: 62556 Accuracy: 93%
 Sakai et al. [76] Name: PAMAP2, Size: 974479 NMI Score : 1
 COBRAS [77] Name: Iris, Size: 150 Adjusted Rand Index : 1.0
 Multi-User Static FI [14] Name: Synthetic, Size : 20000 Accuracy: >95%
 FPOF [20] Name: Chess, Size : 3196 Accuracy: 100%
 ALPINE [78] Name: Mushroom, Size : 8124 Time: <50 s
 Arai et al. [67] Name : IMDB, Size :26 784 Confidence: up to 95%
 Ben-Shimon [68] Name: MovieLens, Size: 1M AUC : 80.34
 Ben-Shimon et al. [69] Name: MovieLens, Size: 1M Precision: 0.5
 KARPET [70] Name: DBLP, Size:5M Runtime : 2–5 ms
Fig. 8. Categorization of anytime clustering algorithms for large data.

3.1. Density-based anytime algorithms

Mai et al. [33] introduced A-DBSCAN, an anytime approach to
the density-based clustering algorithm DBSCAN [72]. It leverages a
sequence of lower-bounding functions (LBs) as a distance measure to
generate multiple approximations of the final clustering result and
significantly accelerate the computation of true density-based clusters.
However, performance gains depend on the choice of lower-bounding
functions and suboptimal LB sequences can slow convergence or reduce
early-stage accuracy.

Mai et al. [34] developed A-DBSCAN-XS, an extended version of A-
DBSCAN, designed to improve its performance by reducing distance
calculations required at each level, making A-DBSCAN-XS more ef-
ficient and faster than A-DBSCAN. A-DBSCAN-XS builds upon the
anytime scheme of A-DBSCAN and incorporates the 𝜇-range query
scheme of the extended Xseedlist data structure and updates only a
subset of edges related to core objects at each level instead of all
edges, reducing computational overhead. However, improvement in
11
performance relies on the efficiency of the 𝜇-range query scheme and
subset edge updates; it may yield slightly slower refinement if the
subset selection misses important edges early on. A-DBSCAN-XS is a
single-threaded method which achieves a significant speedup compared
to traditional DBSCAN and its variants. For example, on the dataset
DS1, A-DBSCAN-XS achieves an NMI score of 0.842 at level 3 with
a runtime of only 2.62 s, which is 112 times faster than DBSCAN
(293.6 s). When it comes to the end, A-DBSCAN-XS requires only 5.3 s
for DS1, which is 55 times faster than DBSCAN. For very large datasets,
A-DBSCAN-XS demonstrates remarkable scalability. On a dataset with
20,000 fibers, A-DBSCAN-XS requires 1,284 s, which is 17 times faster
than DBSCAN (21,292.4 s).

Mai et al. [35] presented AnyDBC, an anytime approach to the
DBSCAN clustering algorithm which actively learns from data by iter-
atively analyzing the current cluster structure formation through some
range queries. Unlike traditional methods that perform range queries on
all objects, it refines the clusters at each iteration by selecting the most
promising objects, thereby reducing both the number of range queries
and label propagation time. However, it requires effective selection of
promising objects, and performance can drop if the selection heuristic
is poor.

Mai et al. [74] developed AnyDBC-MC, a parallel extension of Any-
DBC, designed for shared memory architectures and enabling scalable
parallel processing. It also improves the performance of AnyDBC by
parallelizing the processing of queries in blocks and efficiently merging
the results into the current cluster structure, allowing for more rapid
clustering operations. As a result, AnyDBC-MC achieves orders of
magnitude speedup even on a single thread compared to its sequential
AnyDBC and demonstrates excellent scalability across multiple threads,
maintaining high performance in multi-core environments. For the
PAMAP2 dataset, AnyDBC take 346.9 s, while AnyDBC-MC (t = 1)
takes 363.3 s. AnyDBC-MC is also orders of magnitude faster than other
parallel algorithms like PDSDBSCAN and HPDBSCAN. For instance,
AnyDBC-MC is up to 335.9 times faster than PDSDBSCAN on the
Gas Sensor dataset with 16 threads. AnyDBC-MC exhibits near-linear
scalability, achieving a 14.5× speedup on the Corpus dataset with 16
threads, with scalability further enhanced by larger block sizes (𝛼, 𝛽)
that increase per-thread workload and reduce synchronization over-
head. In AnyDBC-MC, steps like merging (Step 4) and graph updates
(Step 8) may suffer from load imbalance when the number of merge
pairs is fewer than the number of threads, and scalability can be slightly
reduced by NUMA effects.

Mai et al. [36] proposed Any-OPTICS for anytime OPTICS cluster-
ing, designed to improve performance in large-scale applications by
reducing expensive distance computations. This is achieved by gener-
ating intermediate results and refining them continuously. Any-OPTICS
works on multiple levels and uses the distance function to generate the
reachability plot, which represents the ordering of objects. It essen-
tially produces multiple reachability plots of various approximations

J.S. Challa et al. Computer Science Review 59 (2026) 100850
by employing a sequence of lower-bounding (LB) distances of the true
distance function. However, performance depends on the choice of
lower-bounding distances. Any-OPTICS-XS [36] is an extended version
of Any-OPTICS, offering greater efficiency when handling highly ex-
pensive distance calculations. It relies on the monotonicity property of
the reachability plots and a sequence of LBs, which helps to reduce the
total number of distance calculations and enhance performance.

Sakai et al. [76] introduced Anytime Cell-Based DBSCAN, which is
another anytime DBSCAN approach that enhances DBSCAN by dividing
the dataset into smaller cells, which are then randomly selected and
connected to compute clustering results rapidly. The algorithm itera-
tively refines these connections as more cells are processed to improve
clustering accuracy and deliver precise results. However, clustering
quality in early stages may depend heavily on the random selection
of cells, potentially leading to less representative clusters until more
iterations refine the connections.

Folino et al. [75] introduced the SPARROW-SNN approach, which
is a distributed, biologically inspired clustering algorithm designed
for peer-to-peer networks with a small-world topology. It combines
an adaptive, flocking-based approach with a shared nearest-neighbor
(SNN) clustering method to discover clusters independently across
peers. By identifying dense regions in data and forming clusters around
core points where local neighborhood density exceeds a specified
threshold, it can detect clusters of varying shapes and sizes. Addition-
ally, this decentralized, asynchronous approach supports incremental
clustering and adapts well to large, distributed datasets. Essentially,
this algorithm presents a trade-off between the number of peers used
for the clustering and the accuracy of the clustering results. SPARROW-
SNN achieves a significant reduction in execution time by processing
a fraction of the dataset while scaling efficiently with more peers. By
visiting only 5% of the data, accuracy drops only from 88% to 81%; for
10% of the visits, from 99% to 94%. This shows near-linear scalability
in distributed settings since increasing peers reduces per-peer work-
load with minimal loss in clustering quality. The algorithm’s design
minimizes global dependencies by using local, asynchronous com-
munication between peers and decentralized clustering, where peers
work independently and they only merge via neighbor updates. These
are the characteristics that generally enhance parallelism. However,
communication costs may increase with peers.

3.2. Constraint-based anytime algorithm

Van et al. [77] presented the COBRAS(Constraint-Based Repeated
Aggregation and Splitting) algorithm, an interactive constraint-based
clustering approach. Being query-efficient and time-efficient, it com-
bines user feedback with pairwise queries to create effective clusters.
COBRAS works by grouping data into super-instances (small, locally
coherent groups) that are assumed to belong to the same cluster. It
iteratively refines the super-instances based on user feedback, enabling
it to produce more granular clustering that improves over time, which
makes it particularly suited for interactive and semi-supervised cluster-
ing tasks. However, effectiveness depends on the quality and represen-
tativeness of user-provided pairwise constraints, and performance can
degrade if user feedback is noisy or biased.

4. Anytime frequent itemset mining

Anytime frequent itemset (FI) mining algorithms produce an ap-
proximate set of FIs whose approximation can be progressively im-
proved as more processing time is available. There are three anytime
FI mining algorithms for static data, as summarized in Fig. 9. The
existing anytime methods have already exploited the use of statistical
bounds and a sampling-based approach for quick and approximate
results that improve over time. So, there is no future scope to im-
prove, and thus leading to scarcity in FI mining. This scarcity can be
primarily attributed to several factors, such as the computational cost,
12
Fig. 9. Anytime frequent itemset mining algorithms.

combinatorial complexity and the difficulty of generating meaningful,
valid intermediate results without exhaustive computation. FI mining
is inherently expensive and complex (exponential in worst-case) due
to the combinatorial explosion of itemsets. The search space for item-
sets is exponential in the number of items in candidate generation
algorithms, due to which the number of FIs can grow combinatorially,
especially when the minimum support threshold is low. Unlike classi-
fication (where early patterns support meaningful end results), partial
FIs cannot reduce the complexity of space exploration.

Zhang et al. [14] developed an anytime static approach for mining
large databases shared by multiple users. This technique identifies
frequent itemsets (FI) in the database, gradually enhancing the quality
of results as computation time increases. It provides progressively
refined FIs, where early approximate mining outcomes can be accessed
in an anytime manner. To support multiple-user inquiries, the approach
leverages sampling and incremental mining, ensuring that intermediate
results can be utilized effectively across users. This approach has been
successfully applied to stock market data, utilizing the intermediate
results generated by the anytime mining process. The method outper-
forms Apriori, with a consistent running time below 1500 s, even as
incremental steps increase to 4. However, the accuracy of intermediate
results depends on the sampling quality, and incremental updates may
not capture sudden or highly dynamic changes in data distribution.

Giacometti et al. [20] introduced FPOF, an anytime approach for
calculating the Frequent Pattern Outlier Factor, which is a metric used
to detect anomalies in datasets. The method utilizes pattern sampling
rather than exhaustive pattern mining, allowing the algorithm to pro-
duce approximations of FPOF with a guaranteed maximum error, based
on statistical bounds like Bennett’s inequality. This makes it suitable
for large datasets, where exhaustive mining would be impractical. On
a 500 K-transactional dataset, it achieved 90% accuracy within 10 s.
FPOF is interruptible and resource-adaptive but sensitive to sampling
bias, which can affect outlier detection accuracy.

Hu et al. [78] proposed ALPINE, a progressive anytime frequent
itemset (FI) mining algorithm that provides definite guarantees during
mining. Unlike traditional algorithms that only return complete results
at the end, ALPINE incrementally enumerates FIs in a progressive order,
ensuring that each discovered itemset is correct and final, with no need
for retraction or reordering later. This is achieved by partitioning the
search space into itemset intervals indexed by support and systemati-
cally exploring them in increasing frequency order, making the mining
process both monotonic and complete over time. The algorithm ensures
that at any interruption point, the set of itemsets discovered so far
is definitive and requires no revision, ensuring reliable intermediate
outputs and guaranteeing that they will be part of the final result.
Although ALPINE guarantees correctness at all times, the overhead
of maintaining support-indexed itemset intervals can reduce efficiency
when handling extremely large, dense, or highly frequent datasets. This
may lead to higher memory usage and slower performance compared
to specialized non-anytime algorithms like FP-growth.

J.S. Challa et al. Computer Science Review 59 (2026) 100850
5. Anytime algorithms for recommendation systems

Platforms like Amazon, Netflix, and Spotify use recommender sys-
tems (RS) to personalize content or product suggestions for users.
Anytime Algorithms can quickly provide recommendations based on a
limited user profile or session data. It refines recommendations as more
interaction data (clicks, views, ratings) is gathered in real-time.

Arai et al. [67] introduced an anytime framework for top-𝑘 queries
on multi-attribute exact and fuzzy datasets, enhancing algorithms like
TA (Threshold Algorithm) and TA-Sorted. The framework provides
probabilistic quality measures (confidence that the current top-𝑘 is
correct, precision as a lower bound on overlap with the true top-𝑘, and
score distance as an upper bound on score difference) at any execu-
tion point, allowing early termination with quantified guarantees. The
approach uses data distribution models (e.g., histograms or probability
density functions) to estimate unseen tuple scores probabilistically, en-
suring monotonic improvement for TA (and expected monotonicity for
TA-Sorted). The framework reduces runtime by allowing early termina-
tion with guarantees, with extensions for multidimensional histograms
to handle attribute correlations. It ensures flexibility in trading off
computation time for result quality, making these algorithms suitable
for resource-constrained environments where early, usable results are
preferred over waiting for full convergence. However, the method is
limited by its reliance on accurate pre-computed or on-demand data
distribution models, which may be unavailable or inaccurate for hidden
or dynamic data sources, leading to unreliable guarantees.

Ben-Shimon [68] introduces anytime algorithms for top-𝑁 item–
item collaborative filtering recommenders, addressing the needs of RS
providers who must balance computational costs with model quality
for outsourced services. The neighborhood-based CF is integrated into
an anytime framework, where models can be interrupted at any time,
yielding valid (suboptimal) results that improve monotonically and
converge to optimality. Two ordering methods for item-pair similarity
computations are proposed: (1) LSH Tree, which uses locality-sensitive
hashing to build a balanced binary tree of item signatures, prioritizing
likely similar pairs via bottom-up traversal and (2) Most Popular First,
which sorts items by decreasing popularity (consumption set size) and
computes similarities sequentially. These outperform a baseline (Ama-
zon’s arbitrary-order approach) in time-quality trade-offs. However,
the approach focuses only on item–item similarity with the Jaccard
coefficient, limiting generality to other similarity measures or model-
based recommenders and is also limited by their reliance on implicit
feedback datasets.

Ben-Shimon et al. [69] proposed another anytime algorithm for
balancing computational costs and recommendation quality in RS,
particularly for recommendation service providers. The algorithm gen-
erates recommendations of increasing quality as more time becomes
available. The popular item–item top-N collaborative filtering approach
is integrated into an anytime framework by prioritizing the order of
item-pair similarity computations, ensuring valid suboptimal models at
any interruption point while converging to optimality with sufficient
time. This can be achieved by including two size-based heuristics for
ordering pairs: an upper bound estimate (favoring pairs with similar
and larger consumption set sizes) and an expected Jaccard estimate
(assuming uniform user consumption distributions for precomputation)
to prioritize item-pair computations, with efficient implementations
via grouping or precalculation. However, the approach is sensitive to
highly skewed consumption distributions, though the methods scale
well to large catalogs.

Yang et al. [70] proposed KARPET (Kernelization1 And Rapid
Pruning-based Exploration for Tree patterns), an any-𝑘 algorithm for
retrieving top-𝑘 tree pattern matches in labeled graphs (heterogeneous
information networks, HINs). Unlike traditional top-𝑘 algorithms re-
quiring a fixed 𝑘, KARPET is an anytime algorithm that quickly returns
the highest-ranked tree pattern matches (based on edge/node weights)
and progressively delivers subsequent lower-ranked matches, allowing
13
termination at any point with valid results. It tackles the NP-complete
subgraph isomorphism problem for acyclic query patterns by leverag-
ing: (1) aggressive pruning of the search space using the Yannakakis
algorithm for homomorphic patterns, (2) a dynamic programming-
based bottom-up cost calculation followed by top-down guided search,
and (3) filtering to ensure isomorphism (no node repetition). KARPET
exploits label constraints to reduce the gap between homomorphism
and isomorphism, achieving millisecond-level response times for top
results on graphs with millions of nodes/edges. However, KARPET is
designed for tree (acyclic) query patterns, limiting its applicability to
cyclic patterns common in some graph applications.

6. Anytime algorithms for streaming data

Nowadays, the volume, velocity, and variety of data being gener-
ated have grown exponentially, particularly with the advent of Internet
of Things (IoT) devices, real-time monitoring systems, and social media
platforms. This has led to an increasing demand for streaming data
analytics, where streaming data is characterized by the continuous
arrival of a sequence of data objects at a fast and variable rate. They are
dynamic in nature, with real-time data arrival, and require processing
of data objects on the fly as they arrive rather than being stored and
analyzed in batches. Streaming data presents unique challenges, such
as the need for real-time processing, limited memory resources, and the
ability to handle evolving data distributions (concept drift). Traditional
batch-processing algorithms are unsuitable for these scenarios, as they
require the entire dataset to be available upfront and are not designed
to provide intermediate results or adapt to evolving data distributions.

Anytime streaming algorithms have emerged as a solution to these
challenges. They are designed to handle varying inter-arrival rates of
data in the streams. Essentially, they produce approximate but valid
results when the stream speed is high and produce more accurate
results when the stream speed is low. Most of them take advantage
of hierarchical indexing structures in order to achieve the anytime
features. The key characteristics of these algorithms are similar to
anytime algorithms for large datasets; (i) Interruptibility, i.e. the abil-
ity to provide valid results at any point during execution, even if
interrupted. In addition to interruptibility, these algorithms also have
properties like (ii) Resource Adaptiveness, i.e., the ability to adjust
to varying levels of computational resources (e.g., time, memory) and
produce results that improve as more resources become available. (iii)
Incremental Learning, i.e. the ability to update models incrementally
as new data arrives, without requiring a complete reprocessing of the
entire data and (iv) Scalability, i.e. the ability to handle high-speed data
streams and large volumes of data efficiently, often through the use
of hierarchical indexing structures or parallel processing techniques.
They are applied across a wide range of data analytics tasks, includ-
ing classification, clustering, frequent itemset mining and anomaly
detection. Anytime streaming algorithms include — Anytime Nearest
Neighbors [16,17], Anytime Bayesian classifiers [39,79,80], Anytime
Setwise Classification [40], ClusTree [12], LiarTree [81], SubClus-
tree [82], AnyFI [15,83], etc. Anytime streaming algorithms efficiently
process high-speed data streams and can be widely used in applica-
tions that include — Financial Analytics (fraud detection and stock
market analysis) [84], Cybersecurity (intrusion detection and malware
classification) [40], Healthcare Monitoring (patient vital sign tracking
and anomaly detection), IoT & Smart Cities for Traffic monitoring, Air
Quality Assessment, Energy Consumption Optimization, Social Media
Analytics (sentiment analysis and event detection in live streams),
etc. A prominent real-time application is network traffic monitoring
for anomaly detection. In such systems, massive and unpredictable
volumes of traffic, evolving cyber threats, and limited processing re-
sources on network edge devices (routers, firewalls) demand anytime
streaming algorithms that can dynamically adapt to varying data rates,
handle concept drift, and maintain real-time responsiveness without

J.S. Challa et al. Computer Science Review 59 (2026) 100850
compromising on detection accuracy. In such scenarios, anytime al-
gorithms have emerged as a solution. Specifically, when the system
is under high load or working under constrained hardware (like edge
routers), anytime algorithms quickly generate a coarse-grained analysis
to detect anomalies without stalling. As more resources or time become
available, either because the traffic eases or the system reprioritizes
tasks, the algorithm incrementally refines its earlier output, enabling
more precise anomaly detection. This progressive refinement allows the
system to remain responsive under pressure while still improving detec-
tion quality over time. Another application is fraud detection in credit
card transactions [20]. These systems monitor financial transactions to
detect suspicious or anomalous behavior, where delays could lead to
financial loss. Anytime algorithms can detect suspicious activity early
and revise it if additional data (e.g., user behavior history) is given.

Anytime streaming algorithm, such as ClusTree [12], is an anytime
hierarchical clustering algorithm designed for evolving data streams.
It maintains aggregated micro-clusters in a tree that is updated incre-
mentally, allowing it to provide clustering results at anytime. Its design
efficiently handles variable stream speeds, concept drift and limited
memory, though it is tailored specifically for clustering In contrast,
AnySC [85] is an anytime setwise classification algorithm that employs
a hierarchical CProf-forest structure to classify test entities in data
streams within any given processing time allowance. It incrementally
refines classification results using a best-first traversal strategy and
supports updates. AnyFI [83], on the other hand, focuses on anytime
frequent itemset mining for transactional data streams, employing a
Buffered Frequent Itemset Forest and tilted-time windows to produce
intermediate results that improve with time, though with potentially
high memory usage.

7. limitations of the survey

This survey presents a comprehensive review of anytime algorithms
across various data analytics tasks, such as with a particular focus
on classification, clustering, frequent itemset mining, etc. These tasks
were chosen due to their prominence in anytime algorithm research,
encompassing 56 articles published between 1996 and 2025. However,
a few limitations remain:

• We have selected the algorithms based on Anytime properties,
such as interruptibility, resource adaptiveness, incremental learn-
ing and scalability & focused on only core data analytics tasks.

• The literature on anytime algorithms for static data is not yet fully
explored for all the tasks of data analytics; mainly, core tasks are
focused on in this survey.

• The literature remains skewed towards classification tasks, while
other domains, such as clustering, frequent itemset mining and
especially parallel anytime algorithms, are relatively underex-
plored, mainly due to many computational challenges. This gap
reflects both the limited existing work and the need for further
exploration.

• The survey provides a primarily qualitative review and lacks em-
pirical benchmarks comparing accuracy, speedup, or scalability
across anytime algorithms.

• The issues related to industrial deployment, such as integration
with existing systems and real-time constraints, are not deeply
explored due to limited information in the literature.

8. Open issues and research opportunities in the design of any-
time algorithms

Based on the survey conducted on anytime algorithms for data
analytics, we have found the following aspects remain open and worth-
while to be further studied in the future.
14
• Lack of Anytime variants for traditional algorithms: While
numerous algorithms exist in the literature for processing the
large datasets, many of them do not have their respective anytime
variants. Traditional algorithms such as Denclue [86], Shared
Nearest Neighbors [87], RECOME [88], SLINK [89], CLINK and
AverageLINK, etc, are designed to work within limited memory
and computational time to achieve optimal results. However, they
are not suitable for scenarios where real-time or progressive re-
sults are needed. Developing anytime variants of these traditional
algorithms would significantly expand the applicability of the
anytime algorithm to a broader range of data mining tasks.

• Lack of Interruptible variants Many algorithms reported in the
literature are contract algorithms wherein the resource alloca-
tion (e.g., time, memory) must be known in advance. Examples
include ID3-k & LSID3 [22], Anytime Cost-sensitive induction
trees [23], Multi-User Static FI [14], etc. Although these algo-
rithms are capable of handling interruptions and resource con-
straints within a fixed budget, they do not provide meaningful
results at the intermediate stages. Moreover, they are computa-
tionally expensive and may require significant processing memory
and power to generate the results. Hence, efficient interruptible
variants of the above algorithms can be developed.

• Need for Parallel and Scalable Anytime Implementations
Most algorithms in the literature are sequential in nature, which
poses a memory and computational resource bottleneck while
processing large datasets. Only a few algorithms actually support
parallelism [34,74,75]. This opens up opportunities to develop
parallel algorithms for various parallel architectures such as
distributed memory, shared memory, hybrid and GP-GPU ar-
chitectures. One can experiment on both data parallel and task
parallel workflows for the designed algorithms while exploiting
the above parallel hardware architectures. Parallelization can
significantly benefit the anytime algorithms in terms of efficiency,
scalability, and performance, especially while handling large
datasets.

• Potential Applications for Anytime Algorithms There is al-
ways an open-ended opportunity to develop novel anytime algo-
rithms for many use cases that involve quick decision-making in
time-constrained or dynamic environments. For example, mod-
ern traffic systems aim to optimize vehicle routing and flow
in real-time using data from sensors, GPS, and traffic cameras.
Anytime algorithms help in generating quick route suggestions
based on current traffic data for changing conditions like ac-
cidents, road closures, or congestion. If more time or data are
given, the algorithm can refine the route further. Similarly, in
the domain of cloud computing, anytime algorithms can dynam-
ically allocate resources based on fluctuating/varying workloads,
ensuring efficient performance even under varying demands of
users. By leveraging their ability to provide immediate though
approximate, valid solutions, anytime algorithms can enhance the
performance or optimize the algorithm that may not be capable of
responding swiftly to changing conditions. Another application is
Object recognition [19], which involves identifying and classify-
ing objects within images or videos. Anytime algorithms provide
early but approximate object detection, which helps avoid de-
lays in decision-making, especially in time-critical systems like
self-driving cars.

9. Conclusion

This survey provides a comprehensive review of anytime algorithms
for data analytics, emphasizing their role in addressing the demands
of large-scale, time-sensitive, and resource-constrained environments.
We systematically categorized and reviewed, in a detailed manner,
a number of representative state-of-the-art anytime algorithms across

J.S. Challa et al. Computer Science Review 59 (2026) 100850
Table 4
Summary of anytime classification algorithms for large datasets. Acronyms used IL: Interruptiblity; RA: Resource Adaptiveness;
SI: Supports Incremental Learning; IP: Existence of Parallel Version.
 Algorithm Year Category IL RA SI IP
 ID3-k & LSID3 [22] 2004 Induction-trees based 3
 IIDT [37] 2005 Induction-trees based 3 3
 Esmeir et al. [41] 2007 Induction-trees based 3
 ACT [23] 2007 Induction-trees based 3
 Esmeir et al. [42] 2008 Induction-trees based 3
 Esmeir et al. [43] 2011 Induction-trees based 3
 DeCoste et al. [13] 2002 Kernel-based 3
 Sofman et al. [44] 2011 Kernel-based 3
 Greedy Miser [45] 2012 Feature-based 3
 AFR [46] 2013 Feature-based 3
 EnE [47] 2000 Ensemble-based 3
 SpeedBoost [25] 2012 Ensemble-based 3
 SpeedMachines [48] 2013 Ensemble-based 3
 OTB & OMB [26] 2015 Ensemble-based 3
 Anytime DNN [49] 2017 Neural Nets-based 3
 Lee et al. [28] 2018 Neural Nets-based 3
 MSDnet [29] 2018 Neural Nets-based 3
 Hu et al. [27] 2019 Neural Nets-based 3
 Anytime NB [50] 1996 Prob. Estimation-based 3
 treeNet [51] 1997 Prob. Estimation-based 3
 Hulten et al. [52] 2002 Prob. Estimation-based 3
 AAODE [31] 2006 Prob. Estimation-based 3
 AAPE [53] 2007 Prob. Estimation-based 3
 AAPWE [54] 2008 Prob. Estimation-based 3
 SAAPE [32] 2009 Prob. Estimation-based 3
 SimpleRank [16] 2006 Nearest Neighbor-based 3
 MVP-Trees [30] 2008 Nearest Neighbor-based 3
 Any-𝑘-NN [38] 2024 Nearest Neighbor-based 3 3 3 3
 NN classifier [55] 2008 Nearest Neighbor-based 3
 IEThresh [56] 2009 Active Learning-based 3
 Tomanek et al. [57] 2010 Active Learning-based 3
 AAL [58] 2013 Active Learning-based 3
 Ramirez et al. [59] 2014 Active Learning-based 3
 Karayev et al. [19] 2012 Vision Appl.-based 3
 Anytime Scenes [60] 2014 Vision Appl.-based 3
 Liu et al. [61] 2016 Vision Appl.-based 3
 ICF [62] 2012 Vision Appl.-based 3
 AFS [63] 2001 Application-based 3
 Schlobach et al. [64] 2007 Application-based 3
 APM [65] 2012 Application-based 3
 Viet et al. [66] 2013 Application-based 3
Table 5
Summary of anytime algorithms for clustering, FI Mining and Recommenda-
tion Systems. Acronyms used IL: Interruptiblity; RA: Resource Adaptiveness;
SI: Supports Incremental Learning and IP: Existence of Parallel Version.
 Algorithm Year Category IL RA SI IP
 A-DBSCAN [33] 2013 Density-based Clust. 3
 A-DBSCAN-XS [34] 2015 Density-based Clust. 3 3
 AnyDBC [35] 2016 Density-based Clust. 3
 AnyDBC-MC [74] 2018 Density-based Clust. 3 3
 AnyOPTICS [36] 2016 Density-based Clust. 3
 SPARROW-SNN [75] 2009 Density-based Clust. 3 3
 Sakai et al. [76] 2022 Density-based Clust. 3
 COBRAS [77] 2018 Constraint-based Clust. 3
 Multi-User Static FI [14] 2002 FI Mining 3
 FPOF [20] 2016 FI Mining 3
 ALPINE [78] 2017 FI Mining 3 3
 Aria et al. [67] 2009 Recommendation-based 3
 Ben-Shimon [68] 2013 Recommendation-based 3 3
 Ben-Shimon et al. [69] 2016 Recommendation-based 3 3
 KARPET [70] 2018 Recommendation-based 3 3

various data analytics tasks, designed to handle large datasets. These
algorithms are categorized based on their foundational methodologies,
covering a variety of approaches, including classification, clustering,
and frequent itemset mining. This categorization highlights various
algorithms employed for anytime data analytics and provides a struc-
tured overview of how different algorithms are suited to different data
15
analytics tasks. Our literature survey analysis, based on 41 classifica-
tion algorithms (1996–2025), 8 clustering algorithms (2009–2022), 3
frequent itemset mining algorithms (2002–2020) and 4 recommenda-
tion systems algorithms (2009–2018), shows that classification-focused
anytime algorithms are the most mature, while clustering, frequent
itemset mining and recommendation systems remain emerging areas
with significant research potential. Despite the progress, key research
challenges remain. We introduced metrics for performance evaluation
of anytime algorithms and compared anytime algorithms with non-
anytime alternatives, highlighting their advantages in time-sensitive
scenarios.

Table 4 summarizes the anytime classification algorithms useful for
large-scale data based on different machine learning models. They are
compared based on a set of key factors, which helps in understanding
their applicability and behavior in real-world scenarios. Table 5 lists
the anytime clustering, frequent itemset mining and recommendation
system algorithms proposed for large datasets. Overall Table 4, 5 sum-
marizes all the algorithms presented in this paper while highlighting
the specific features of each algorithm. They provide an overview of
various anytime algorithms for data analytics in terms of their anytime
capabilities, interruptibility, applications, and parallelism.

The survey also answers the questions outlined in Section 1.4.
The key findings from the survey include the ability of the anytime
algorithms to balance time constraints with solution quality, making
them highly effective in large-scale, time-sensitive analytics tasks as
seen in, for instance, hierarchical 𝑘-NN classifiers (Any-𝑘-NN) (RQ1).
The design of anytime algorithms is focused on four fundamental

J.S. Challa et al. Computer Science Review 59 (2026) 100850
principles for various tasks of data analytics: interruptibility, resource
adaptiveness, solution quality, and scalability. To achieve these ob-
jectives, many anytime algorithms leverage incremental updates and
hierarchical structures to handle large datasets (RQ2). It highlights the
evolution of anytime algorithms from decision-tree and probabilistic
models to more recent developments involving ensemble learning, deep
neural networks, and distributed frameworks, showcasing their theo-
retical advancements over traditional methods (RQ3). This survey also
highlights the significant challenges identified in anytime algorithms
and future research opportunities (refer to Section 8) (RQ4). It also
emphasises how parallelization techniques can enhance the scalability
and efficiency of these algorithms (RQ5).

In conclusion, anytime algorithms represent a robust and evolving
solution to the challenges of modern data analytics. Their capacity
to trade off between computational effort and decision quality makes
them not only theoretically appealing but also highly practical for a
wide range of real-world applications.

Declaration of Generative AI and AI-assisted technologies in the
writing process

During the preparation of this work, the author(s) used Grammarly
in order to enhance grammar and clarity. After using this tool/service,
the author(s) reviewed and edited the content as needed and take(s)
full responsibility for the content of the publication.

Funding sources

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, first ed.,
Addison-Wesley Longman Publishing Co., Inc., USA, 2006, p. 769.

[2] V. Kumar, R.S. Singh, M. Rambabu, Y. Dua, Deep learning for hyperspectral
image classification: A survey, Comput. Sci. Rev. 53 (2024) 100658.

[3] D.V. Yevle, P.S. Mann, Artificial intelligence based classification for waste
management: A survey based on taxonomy, classification & future direction,
Comput. Sci. Rev. 56 (2025) 100723.

[4] S. El Khediri, W. Fakhet, T. Moulahi, R. Khan, A. Thaljaoui, A. Kachouri, Im-
proved node localization using K-means clustering for Wireless Sensor Networks,
Comput. Sci. Rev. 37 (2020) 100284.

[5] D. Adhikari, W. Jiang, J. Zhan, D.B. Rawat, A. Bhattarai, Recent advances in
anomaly detection in Internet of Things: Status, challenges, and perspectives,
Comput. Sci. Rev. 54 (2024) 100665.

[6] K.G. Al-Hashedi, P. Magalingam, Financial fraud detection applying data mining
techniques: A comprehensive review from 2009 to 2019, Comput. Sci. Rev. 40
(2021) 100402.

[7] P.-N. Tan, M. Steinbach, V. Kumar, Finding spatio-temporal patterns in earth
science data, Earth Sci. (2001) 1–12.

[8] V. Springel, S.D. White, A. Jenkins, C.S. Frenk, N. Yoshida, L. Gao, J. Navarro,
R. Thacker, D. Croton, J. Helly, J.A. Peacock, S. Cole, P. Thomas, H. Couchman,
A. Evrard, J. Colberg, F. Pearce, Simulations of the formation, evolution and
clustering of galaxies and quasars, Nature 435 (7042) (2005) 629–636.

[9] D.J. Hand, N.A. Heard, Finding groups in gene expression data, J. Biomed.
Biotechnol. 2005 (2) (2005) 215–225.

[10] J. Pei, J. Han, B. Mortazavi-asl, H. Zhu, Mining access patterns efficiently from
web logs, Curr. Issues New Appl. Knowl. Discov. Data Min. (2000) 396–407.
16
[11] S. Brin, R. Motwani, J.D. Ullman, S. Tsur, Dynamic itemset counting and
implication rules for market basket data, SIGMOD Rec. (ACM Spec. Interes.
Group Manag. Data) 26 (2) (1997) 255–264.

[12] P. Kranen, I. Assent, C. Baldauf, T. Seidl, The ClusTree: Indexing micro-clusters
for anytime stream mining, Knowl. Inf. Syst. 29 (2) (2011) 249–272.

[13] D. DeCoste, Anytime interval-valued outputs for kernel machines: Fast support
vector machine classification via distance geometry, in: Proc. of the 19th
International Conference on Machine Learning, Vol. 9, 2002, pp. 99–106.

[14] S. Zhang, C. Zhang, Anytime mining for multiuser applications, IEEE Trans. Syst.
Man Cybern. A:Syst. Hum. 32 (4) (2002) 515–521.

[15] P. Goyal, J.S. Challa, S. Shrivastava, N. Goyal, Anytime frequent itemset mining
of transactional data streams, Big Data Res. 21 (2020) 100146.

[16] K. Ueno, A. Xi, E. Keogh, D.J. Lee, Anytime classification using the nearest
neighbor algorithm with applications to stream mining, in: Proceedings - IEEE
International Conference on Data Mining, 2006, pp. 623–632.

[17] C.I. Lemes, D.F. Silva, G.E. Batista, Adding diversity to rank examples in anytime
nearest neighbor classification, in: Proc. of the 13th International Conference on
Machine Learning and Applications, ICMLA, 2014, pp. 129–134.

[18] G. Nagy, A.R. Várkonyi-Kóczy, J. Tóth, An anytime voice controlled ambient
assisted living system for motion disabled persons, in: Proc. of the International
Symposium on Medical Measurements and Applications (MeMeA), IEEE, 2015,
pp. 163–168.

[19] S. Karayev, T. Baumgartner, M. Fritz, T. Darrell, Timely object recognition,
in: Proc. of the Conference on Neural Information Processing Systems, Curran
Associates Inc., Red Hook, NY, USA, 2012, pp. 890–898.

[20] A. Giacometti, A. Soulet, Anytime algorithm for frequent pattern outlier
detection, Int. J. Data Sci. Anal. 2 (2016) 119–130.

[21] L.H.O. Rios, L. Chaimowicz, A survey and classification of a* based best-first
heuristic search algorithms, in: Proc. of the Brazilian Symposium on Artificial
Intelligence, Springer, 2010, pp. 253–262.

[22] S. Esmeir, S. Markovitch, Lookahead-based algorithms for anytime induction
of decision trees, in: Proc. of the 21st International Conference on Machine
Learning, 2004, p. 33.

[23] S. Esmeir, S. Markovitch, Anytime induction of cost-sensitive trees, in: Proc. of
the Conference on Advances in Neural Information Processing Systems, 2007,
pp. 1–8.

[24] K. Myers, M. Kearns, S. Singh, M.a. Walker, A boosting approach to topic spotting
on subdialogues, in: Proc. of the 17th International Conference on Machine
Learning, 2000, pp. 655–662.

[25] A. Grubb, J.A. Bagnell, SpeedBoost: Anytime prediction with uniform
near-optimality, J. Mach. Learn. Res. 22 (2012) 458–466.

[26] B. Wang, J. Pineau, Online boosting algorithms for anytime transfer and
multitask learning, in: Proc. of the AAAI Conference on Artificial Intelligence,
Vol. 29, 2015, pp. 3038–3044.

[27] H. Hu, D. Dey, M. Hebert, J.A. Bagnell, Learning anytime predictions in neural
networks via adaptive loss balancing, in: Proc. of the 33rd AAAI Conference on
Artificial Intelligence, 2019, pp. 3812–3821.

[28] H. Lee, J. Shin, Anytime neural prediction via slicing networks vertically, 2018,
pp. 1–13, ArXiv arXiv:1807.0.

[29] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, K. Weinberger, Multi-scale
dense networks for resource efficient image classification, in: Proc. of the 6th
International Conference on Learning Representations, 2018, pp. 1–14.

[30] W. Xu, D.P. Miranker, R. Mao, S. Ramakrishnan, Anytime K-nearest neighbor
search for database applications, in: Proc. of the 24th International Conference
on Data Engineering Workshop, 2008, pp. 426–435.

[31] G.I. Webb, J.R. Boughton, Y. Yang, Learning for anytime classification, in: Proc.
of the AAAI Conference on Artificial Intelligence, 2006, pp. 1–6.

[32] B. Hui, Y. Yang, G.I. Webb, Anytime classification for a pool of instances, Mach.
Learn. 77 (1) (2009) 61–102.

[33] S.T. Mai, X. He, J. Feng, C. Böhm, Efficient anytime density-based clustering, in:
Proc. of the International Conference on Data Mining, SIAM, 2013, pp. 112–120.

[34] S.T. Mai, X. He, J. Feng, C. Plant, C. Böhm, Anytime density-based clustering of
complex data, Knowl. Inf. Syst. 45 (2) (2015) 319–355.

[35] S.T. Mai, I. Assent, M. Storgaard, AnyDBC : An efficient anytime density-based
clustering algorithm for very large complex datasets, in: Proc. of the 22nd
SIGKDD International Conference on Knowledge Discovery and Data Mining,
2016, pp. 1025–1034.

[36] S.T. Mai, I. Assent, A. Le, Anytime OPTICS: An efficient approach for hierarchical
Density-Based clustering, in: Proc. of the 21st International Conference on
Database Systems for Advanced Applications, Springer, 2016, pp. 164–179.

[37] S. Esmeir, S. Markovitch, Interruptible anytime algorithms for iterative improve-
ment of decision trees, in: Proc of the 1st International Workshop on Utility-Based
Data Mining, 2005, pp. 78–85.

[38] Aarti, J.S. Challa, H. Harsh, U. Darolia, M. Agarwal, R. Chaudhary, N. Goyal,
P. Goyal, A hierarchical anytime k-NN classifier for large-scale high-speed data
streams, in: Proc. of the 16th International Conference on Agents and Artificial
Intelligence, 2024, pp. 276–287.

[39] T. Seidl, I. Assent, P. Kranen, R. Krieger, J. Herrmann, Indexing density models
for incremental learning and anytime classification on data streams, in: Proc. of
the 12th International Conference on Extending Database Technology, 2009, pp.
311–322.

http://refhub.elsevier.com/S1574-0137(25)00126-1/sb1
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb1
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb1
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb2
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb2
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb2
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb3
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb3
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb3
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb3
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb3
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb4
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb4
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb4
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb4
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb4
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb5
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb5
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb5
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb5
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb5
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb6
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb6
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb6
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb6
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb6
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb7
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb7
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb7
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb8
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb8
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb8
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb8
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb8
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb8
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb8
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb9
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb9
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb9
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb10
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb10
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb10
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb11
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb11
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb11
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb11
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb11
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb12
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb12
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb12
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb13
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb13
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb13
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb13
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb13
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb14
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb14
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb14
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb15
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb15
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb15
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb16
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb16
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb16
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb16
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb16
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb17
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb17
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb17
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb17
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb17
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb18
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb18
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb18
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb18
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb18
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb18
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb18
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb19
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb19
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb19
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb19
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb19
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb20
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb20
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb20
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb21
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb21
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb21
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb21
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb21
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb22
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb22
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb22
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb22
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb22
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb23
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb23
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb23
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb23
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb23
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb24
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb24
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb24
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb24
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb24
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb25
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb25
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb25
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb26
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb26
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb26
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb26
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb26
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb27
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb27
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb27
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb27
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb27
http://arxiv.org/abs/1807.0
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb29
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb29
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb29
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb29
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb29
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb30
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb30
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb30
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb30
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb30
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb31
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb31
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb31
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb32
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb32
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb32
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb33
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb33
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb33
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb34
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb34
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb34
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb35
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb35
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb35
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb35
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb35
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb35
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb35
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb36
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb36
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb36
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb36
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb36
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb37
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb37
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb37
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb37
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb37
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb38
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb38
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb38
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb38
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb38
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb38
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb38
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb39
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb39
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb39
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb39
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb39
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb39
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb39

J.S. Challa et al. Computer Science Review 59 (2026) 100850
[40] J.S. Challa, P. Goyal, V.M. Giri, D. Mantri, N. Goyal, AnySC: Anytime Set-
wise classification of variable speed data streams, in: Proc. of the International
Conference on Big Data, IEEE, 2019, pp. 967–974.

[41] S. Esmeir, S. Markovitch, Anytime learning of decision trees, J. Mach. Learn.
Res. 8 (5) (2007) 891–933.

[42] S. Esmeir, S. Markovitch, Anytime induction of low-cost, low-error classifiers: A
sampling-based approach, J. Artificial Intelligence Res. 33 (2008) 1–31.

[43] S. Esmeir, S. Markovitch, Anytime learning of anycost classifiers, Mach. Learn.
82 (3) (2011) 445–473.

[44] B. Sofman, B. Neuman, A. Stentz, J.A. Bagnell, Anytime online novelty and
change detection for mobile robots, J. Field Robot. 28 (4) (2011) 589–618.

[45] Z. Xu, K. Weinberger, O. Chapelle, The greedy miser: Learning under test-time
budgets, 2012, arXiv preprint arXiv:1206.6451.

[46] Z. Xu, M.J. Kusner, G. Huang, K.Q. Weinberger, Anytime representation learning,
in: Proc. of the 30th International Conference on Machine Learning, Vol. 28,
2013, pp. 2113–2121.

[47] K.M. Kary, S. Singh, A boosting approach to topic spotting on subdialogues,
in: Proc. of the 17th International Conference on Machine Learning, Morgan
Kaufmann, San Francisco, CA, USA, 2000, pp. 1–8.

[48] A. Grubb, D. Munoz, J.A. Bagnell, M. Hebert, SpeedMachines: Anytime structured
prediction, 2013, pp. 1–17, arXiv preprint arXiv:1312.0579.

[49] T. Bolukbasi, J. Wang, O. Dekel, V. Saligrama, Adaptive neural networks for
efficient inference, in: Proc. of the 34th International Conference on Machine
Learning, PMLR, 2017, pp. 527–536.

[50] C.-L. Liu, M.P. Wellman, On state-space abstraction for anytime evaluation of
Bayesian networks, ACM SIGART Bull. 7 (2) (1996) 50–57.

[51] N. Jitnah, A. Nicholson, Treenets: A framework for anytime evaluation of belief
networks, in: Proc. of the International Joint Conference on Qualitative and
Quantitative Practical Reasoning, Springer, 1997, pp. 350–364.

[52] G. Hulten, P. Domingos, Mining complex models from arbitrarily large databases
in constant time, in: Proc. of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2002, pp. 525–531.

[53] Y. Yang, G. Webb, K. Korb, K.M. Ting, Classifying under computational resource
constraints: anytime classification using probabilistic estimators, Mach. Learn. 69
(2007) 35–53.

[54] B. Hui, Y. Wu, A new anytime classifier basing on AAPE: Anytime averaged
probabilistic with weight estimator (AAPWE), in: Proc. of the 4th International
Conference on Wireless Communications, Networking and Mobile Computing,
IEEE, 2008, pp. 1–5.

[55] X. Xi, K. Ueno, E. Keogh, D.-J. Lee, Converting non-parametric distance-based
classification to anytime algorithms, Pattern Anal. Appl. 11 (2008) 321–336.

[56] P. Donmez, J.G. Carbonell, J. Schneider, Efficiently learning the accuracy of
labeling sources for selective sampling, in: Proc. of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2009, pp.
259–268.

[57] K. Tomanek, U. Hahn, A comparison of models for cost-sensitive active learning,
in: Coling 2010: Posters, 2010, pp. 1247–1255.

[58] M.E. Ramirez-Loaiza, A. Culotta, M. Bilgic, Towards anytime active learning:
Interrupting experts to reduce annotation costs, in: Proc. of the ACM SIGKDD
Workshop on Interactive Data Exploration and Analytics, 2013, pp. 87–94.

[59] M.E. Ramirez-Loaiza, A. Culotta, M. Bilgic, Anytime active learning, in: Proc. of
the National Conference on Artificial Intelligence, Vol. 3, 2014, pp. 2048–2054.

[60] S. Karayev, M. Fritz, T. Darrell, Anytime recognition of objects and scenes, in:
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2014,
pp. 572–579.

[61] B. Liu, X. He, Learning dynamic hierarchical models for anytime scene labeling,
in: Lecture Notes in Computer Science, in: LNCS, vol. 9910, 2016, pp. 650–666.

[62] B. Fröhlich, E. Rodner, J. Denzler, As time goes by—anytime semantic segmen-
tation with iterative context forests, in: Proc. of the Joint 34th DAGM and 36th
OAGM Symposium on Pattern Recognition, Springer, 2012, pp. 1–10.

[63] M. Last, A. Kandel, O. Maimon, E. Eberbach, Anytime algorithm for feature
selection, in: Proc. of the 2nd International Conference on Rough Sets and
Current Trends in Computing, RSCTC, Springer, 2001, pp. 532–539.

[64] S. Schlobach, E. Blaauw, M. El Kebir, A. Ten Teije, F. Van Harmelen, S. Bortoli,
M. Hobbelman, K. Millian, Y. Ren, S. Stam, P. Thomassen, R. Van Het Schip,
W. Van Willigem, Anytime classification by ontology approximation, in: CEUR
Workshop Proceedings, Vol. 291, 2007.
17
[65] G. Bartók, N. Zolghadr, C. Szepesvári, An adaptive algorithm for finite stochastic
partial monitoring, 2012, arXiv preprint arXiv:1206.6487.

[66] N.Q. Viet, D.T. Anh, Using motif information to improve anytime time series
classification, in: Proc. of the IEEE International Conference on Soft Computing
and Pattern Recognition (SoCPaR), 2013, pp. 1–6.

[67] B. Arai, G. Das, D. Gunopulos, N. Koudas, Anytime measures for top-k algorithms
on exact and fuzzy data sets, VLDB J. 18 (2) (2009) 407–427.

[68] D. Ben-Shimon, Anytime algorithms for top-N recommenders, in: Proceedings of
the 7th ACM Conference on Recommender Systems, 2013, pp. 463–466.

[69] D. Ben-Shimon, L. Rokach, G. Shani, B. Shapira, Anytime algorithms for
recommendation service providers, ACM Trans. Intell. Syst. Technol. (TIST) 7
(3) (2016) 1–26.

[70] X. Yang, D. Ajwani, W. Gatterbauer, P.K. Nicholson, M. Riedewald, A. Sala,
Any-k: Anytime top-k tree pattern retrieval in labeled graphs, in: Proceedings of
the 2018 World Wide Web Conference, 2018, pp. 489–498.

[71] G.R. Hjaltason, H. Samet, Distance browsing in spatial databases, ACM Trans.
Database Syst. 24 (2) (1999) 265–318.

[72] F. Cao, M. Estert, W. Qian, A. Zhou, Density-based clustering over an evolving
data stream with noise, in: Proc. of the 6th International Conference on Data
Mining, SIAM, 2006, pp. 328–339.

[73] P. Li, Y.g. Ding, P.p. Yao, K.m. Xue, C.m. Li, Some methods for classification
and analysis of multivariate observations, J. Mater. Eng. Perform. 25 (8) (2016)
3439–3447.

[74] S.T. Mai, I. Assent, J. Jacobsen, M.S. Dieu, Anytime parallel density-based
clustering, Data Min. Knowl. Discov. 32 (4) (2018) 1121–1176.

[75] G. Folino, A. Forestiero, G. Spezzano, Distributed anytime clustering using
biologically inspired systems, in: Proc. of the IEEE International Conference on
Adaptive and Intelligent Systems, 2009, pp. 120–125.

[76] T. Sakai, K. Tamura, H. Kitakami, T. Takezawa, Anytime Cell-based DBSCAN
algorithm that connects randomly selected cells and its performance evaluation,
Int. J. Serv. Knowl. Manag. 6 (1) (2022).

[77] T. Van Craenendonck, S. Dumančić, E. Van Wolputte, H. Blockeel, COBRAS:
interactive clustering with pairwise queries, in: Proc. of the 17th International
Symposium on Advances in Intelligent Data Analysis, Springer, 2018, pp.
353–366.

[78] Q. Hu, T. Imielinski, Alpine: Progressive itemset mining with definite guarantees,
in: Proceedings of the 2017 SIAM International Conference on Data Mining,
SIAM, 2017, pp. 63–71.

[79] P. Kranen, S. Günnemann, S. Fries, T. Seidl, MC-tree: Improving bayesian anytime
classification, in: Proc. of the 22nd International Conference on Scientific and
Statistical Database Management, Springer, 2010, pp. 252–269.

[80] P. Kranen, M. Hassani, T. Seidl, BT* - An advanced algorithm for anytime
classification, Lecture Notes in Comput. Sci. 7338 LNCS (2012) 298–315.

[81] M. Hassani, P. Kranen, T. Seidl, Precise anytime clustering of noisy sensor data
with logarithmic complexity, in: Proc. of the 5th International Workshop on
Knowledge Discovery from Sensor Data, 2011, pp. 52–60.

[82] M. Hassani, P. Kranen, R. Saini, T. Seidl, Subspace anytime stream clustering, in:
Proc. of the 26th International Conference on Scientific and Statistical Database
Management, 2014, pp. 1–4.

[83] P. Goyal, J.S. Challa, S. Shrivastava, N. Goyal, AnyFI: An anytime frequent
itemset mining algorithm for data streams, in: Proc. of the IEEE International
Conference on Big Data, 2017, pp. 942–947.

[84] I. Assent, P. Kranen, C. Baldauf, T. Seidl, Detecting outliers on arbitrary data
streams using anytime approaches, in: Proc. of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2010, pp. 10–15.

[85] J.S. Challa, P. Goyal, A. Kokandakar, D. Mantri, P. Verma, S. Balasubramaniam,
N. Goyal, Anytime clustering of data streams while handling noise and concept
drift, J. Exp. Theor. Artif. Intell. 34 (3) (2022) 399–429.

[86] A. Hinneburg, H.H. Gabriel, DENCLUE 2.0: Fast clustering based on kernel
density estimation, Lecture Notes in Comput. Sci. 4723 LNCS (2007) 70–80.

[87] S. Kumari, S. Maurya, P. Goyal, S.S. Balasubramaniam, N. Goyal, Scalable
parallel algorithms for shared nearest neighbor clustering, in: Proc. of the 23rd
International Conference on High Performance Computingv(HiPC), IEEE, 2017,
pp. 72–81.

[88] Y.-a. Geng, Q. Li, R. Zheng, F. Zhuang, R. He, N. Xiong, RECOME: A new density-
based clustering algorithm using relative KNN kernel density, Inform. Sci. 436
(2018) 13–30.

[89] Robin Sibson, A Density-Based algorithm for discovering clusters in large spatial
databases with noise, Comput. J. 16 (1973) 30–34.

http://refhub.elsevier.com/S1574-0137(25)00126-1/sb40
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb40
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb40
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb40
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb40
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb41
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb41
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb41
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb42
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb42
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb42
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb43
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb43
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb43
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb44
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb44
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb44
http://arxiv.org/abs/1206.6451
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb46
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb46
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb46
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb46
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb46
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb47
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb47
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb47
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb47
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb47
http://arxiv.org/abs/1312.0579
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb49
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb49
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb49
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb49
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb49
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb50
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb50
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb50
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb51
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb51
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb51
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb51
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb51
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb52
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb52
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb52
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb52
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb52
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb53
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb53
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb53
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb53
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb53
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb54
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb54
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb54
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb54
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb54
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb54
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb54
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb55
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb55
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb55
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb56
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb56
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb56
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb56
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb56
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb56
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb56
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb57
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb57
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb57
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb58
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb58
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb58
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb58
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb58
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb59
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb59
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb59
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb60
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb60
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb60
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb60
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb60
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb61
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb61
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb61
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb62
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb62
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb62
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb62
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb62
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb63
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb63
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb63
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb63
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb63
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb64
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb64
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb64
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb64
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb64
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb64
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb64
http://arxiv.org/abs/1206.6487
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb66
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb66
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb66
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb66
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb66
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb67
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb67
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb67
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb68
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb68
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb68
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb69
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb69
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb69
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb69
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb69
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb70
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb70
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb70
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb70
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb70
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb71
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb71
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb71
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb72
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb72
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb72
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb72
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb72
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb73
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb73
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb73
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb73
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb73
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb74
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb74
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb74
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb75
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb75
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb75
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb75
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb75
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb76
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb76
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb76
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb76
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb76
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb77
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb77
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb77
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb77
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb77
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb77
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb77
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb78
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb78
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb78
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb78
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb78
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb79
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb79
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb79
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb79
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb79
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb80
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb80
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb80
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb81
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb81
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb81
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb81
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb81
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb82
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb82
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb82
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb82
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb82
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb83
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb83
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb83
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb83
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb83
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb84
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb84
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb84
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb84
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb84
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb85
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb85
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb85
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb85
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb85
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb86
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb86
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb86
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb87
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb87
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb87
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb87
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb87
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb87
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb87
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb88
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb88
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb88
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb88
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb88
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb89
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb89
http://refhub.elsevier.com/S1574-0137(25)00126-1/sb89

	Time-sensitive data analytics: A survey of anytime techniques, applications and challenges
	Introduction
	Challenges faced by Traditional Algorithms
	Anytime Algorithms in Data Analytics
	Metrics for Performance Evaluation of Anytime Algorithms
	Characteristics of Anytime Algorithms

	Our Contribution

	Anytime Classification
	Induction Tree-based Anytime Algorithms
	Kernel-based Anytime Algorithms
	Feature-based Anytime Algorithms
	Ensemble-based Anytime Algorithms
	Neural Networks-based Anytime Algorithms
	Probability Estimation-based Anytime Algorithms
	Nearest Neighbors-based Anytime Algorithms
	Active Learning-based Anytime Algorithms
	Anytime Algorithms for Vision Applications
	Application-based Other Anytime Algorithms for Classification

	Anytime Clustering
	Density-based Anytime Algorithms
	Constraint-based Anytime Algorithm

	Anytime Frequent Itemset Mining
	Anytime Algorithms for Recommendation Systems
	Anytime Algorithms for Streaming Data
	 Limitations of the survey
	Open Issues and Research Opportunities in the Design of Anytime Algorithms
	Conclusion
	Declaration of Generative AI and AI-assisted technologies in the writing process
	Funding Sources
	Declaration of competing interest
	Data availability
	References

